Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 156
Filtrer
1.
ACS Sens ; 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39079008

RÉSUMÉ

This article reports on a bioanalytical sensor device that hosts three different transducer principles: impedance spectroscopy, quartz-crystal microbalance with dissipation monitoring, and the thermal-current-based heat-transfer method. These principles utilize a single chip, allowing one to perform either microbalance and heat transfer measurements in parallel or heat transfer and impedance measurements. When taking specific precautions, the three measurement modalities can even be used truly simultaneously. The probed parameters are distinctly different, so that one may speak about multiparametric or "orthogonal" sensing without crosstalk between the sensing circuits. Hence, this sensor allows one to identify which of these label-free sensing principles performs best for a given bioanalytical application in terms of a high signal amplitude and signal-to-noise ratio. As a proof-of-concept, the three-parameter sensor was validated by studying the spontaneous, collective detachment of eukaryotic cells in the presence of a temperature gradient between the QCM chip and the supernatant liquid. In addition to heat transfer, detachment can also be monitored by the impedance- and QCM-related signals. These features allow for the distinguishing between different yeast strains that differ in their flocculation genes, and the sensor device enables proliferation monitoring of yeast colonies over time.

2.
Heliyon ; 10(12): e32509, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38952384

RÉSUMÉ

The combination of solid oxide fuel cells (SOFCs) and wood gasification has the potential to significantly increase renewable electricity production and decrease emissions. Depending on the quality of the wood gas, degradation processes have a significant impact on the reliability and lifetime of the SOFC. Using electrochemical impedance spectroscopy (EIS) and subsequent distribution of relaxation times (DRT) analysis, the impact on the degradation of coupling wood gasification with a commercial SOFC stack is determined in this study. The thermal behavior of the SOFC stack under various operating conditions, as well as various synthetic wood gas mixtures classified by their hydrogen-to-carbon (H/C) ratio, was assessed. The decrease in the H/C ratio from 8 to 1, observed during syngas and real wood gas operation, leads to a rightward shift in the Nyquist plots, suggesting an increase in the SOFC stack's impedance. Correlations between variations in the H/C ratio and their effects on anodic electrooxidation, ionic conduction, gas transport, and diffusion were identified using DRT analysis to interpret the EIS results. By incorporating an upstream desulfurization system and ensuring an H/C ratio greater than 2, the coupling of biomass gasification with the SOFC stack was stable to degradation issues.

3.
Chemphyschem ; : e202400528, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38945822

RÉSUMÉ

Electrochemical impedance spectroscopy (EIS), a conventional and alternating-current-(AC)-based technique for impedance measurement, is commonly used in battery diagnosis. However, it requires expensive equipment and demanding operating conditions and is complex and model-dependent in data analysis. Recently, novel direct current (DC) analytics have emerged as an alternative to EIS. They are simple yet powerful, being capable of revealing impedance information that traditionally could only be obtained through EIS and determining Li-ion diffusion coefficient. Besides, a complete EIS spectrum can be predicted based on constant current charging curves in the support of machine learning methods. This work highlights the similarities and discrepancies between DC techniques and EIS in the electrochemical analysis of Liion batteries. Looking ahead, DC techniques may be a promising substitute for EIS in future battery diagnosis, requiring simplified equipment while offering a deep understanding of battery impedance and its underlying electrochemical processes.

4.
Sci Total Environ ; 932: 172828, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38692312

RÉSUMÉ

Ammonia­nitrogen wastewater is one of the main pollutants in the current environment. Rapid detection of microorganisms resistant to ammonia­nitrogen provides a basis for bioremediation of ammonia­nitrogen contaminated sites. This study uses electrochemical analysis for efficiently detecting of ammonia-resistant bacteria, utilizing a commercially available, low-cost screen-printed electrode (SPE) modified with agarose-based hydrogel (gel) or graphene oxide (GO). At the same time, the study employed electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) to monitor bacterial growth, revealing Escherichia coli (E. coli) inhibition upon ammonia­nitrogen addition, while Raoultella terrigena (RN1) and Pseudomonas (RN2) exhibit tolerance. The method provides sensitivity results in <45 min, which is significantly faster than traditional methods. RN1 and RN2 exhibit promising ammonia­nitrogen removal rates, reaching up to 81 % and 92 %, respectively. This study aimed to develop an effective electrochemical method for rapidly detecting the sensitivity of microorganisms to ammonia­nitrogen. The method offers advantages such as high speed, efficiency, and cost-effectiveness, potentially providing valuable microbial resources for mitigating ammonia nitrogen wastewater pollution.


Sujet(s)
Ammoniac , Techniques de biocapteur , Techniques électrochimiques , Hydrogels , Azote , Eaux usées , Ammoniac/analyse , Techniques de biocapteur/méthodes , Eaux usées/microbiologie , Techniques électrochimiques/méthodes , Bactéries/effets des médicaments et des substances chimiques , Polluants chimiques de l'eau/analyse , Graphite , Escherichia coli/effets des médicaments et des substances chimiques
5.
Materials (Basel) ; 17(3)2024 Jan 27.
Article de Anglais | MEDLINE | ID: mdl-38591454

RÉSUMÉ

Premature failure and degradation of layers are the main problems for transportation infrastructure. Addressing these issues necessitates implementing structural health monitoring (SHM) for pavement construction layers. To this end, this research investigated the stress/strain and damage detection capabilities of a self-sensing cementitious composite developed for potential utilization in the construction of an intelligent subgrade layer. The prepared self-sensing cementitious composite consisted of 10% cement and hybrid conductive fillers, including multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in sand. Initial findings reveal that the electrical resistivity of the composite is significantly affected by the concentration of MWCNTs/GNPs, with a minimum concentration of more than 0.5% needed to achieve a responsive cementitious composite. Moreover, the piezoresistive analysis indicates that an increase in the concentration of MWCNTs/GNPs and stress levels leads to an improvement in the stress/strain-sensing performance. When the self-sensing cementitious composite is subjected to equivalent stress levels, variations in the fractional changes in resistivity (FCR) exhibit an increasing trend with decreasing resilient modulus, stemming from a decrease in stiffness due to the increased concentration of MWCNTs/GNPs. Additionally, the electrochemical impedance spectroscopy (EIS) analysis demonstrates a contraction for the Nyquist plots under compressive ramp loading prior to failure, followed by the expansion of these curves post-failure. Scanning electron microscopy (SEM) images visually showcase the bridging effects of MWCNTs and the filling effects of GNPs within the composite structure.

6.
Sci Rep ; 14(1): 7716, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38565595

RÉSUMÉ

A simple technique was utilized to fabricate pure hexagonal La2O3 nanorods by utilizing lanthanum(III) nitrate hexahydrate (La(NO3)3·6H2O) and ammonia (NH4OH). The La2O3 nanoparticles were analyzed using XRD, TGA, Raman, SEM, FTIR, TEM, PL spectroscopy, and Mott-Schottky techniques. The XRD analysis confirmed the production of La(OH)3 nanorods under appropriate conditions, which were then successfully converted into La2O2CO3 and finally into La2O3 nanorods through annealing. The TGA analysis showed that the total weight loss was due to water evaporation and the dissolution of minimal moisture present in the environment. The FTIR analysis confirmed the presence of functional groups. The SEM analysis revealed changes in morphology. The TEM analysis to determine the particle size. The PL findings showed three emission peaks at 390, 520, and 698 nm due to interband transitions and defects in the samples. The Mott-Schottky analysis demonstrated that the flatband potential and acceptor density varied with annealing temperature, ranging from 1 to 1.2 V and 2 × 1018 to 1.4 × 1019 cm-3, respectively. Annealing at 1000 °C resulted in the lowest resistance to charge transfer (Rct).

7.
Anal Biochem ; 689: 115504, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38458306

RÉSUMÉ

SARS-CoV-2 emerged in late 2019 and quickly spread globally, resulting in significant morbidity, mortality, and socio-economic disruptions. As of now, collaborative global efforts in vaccination and the advent of novel diagnostic tools have considerably curbed the spread and impact of the virus in many regions. Despite this progress, the demand remains for low-cost, accurate, rapid and scalable diagnostic tools to reduce the influence of SARS-CoV-2. Herein, the angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2, was immobilized on two types of electrodes, a screen-printed gold electrode (SPGE) and a screen-printed carbon electrode (SPCE), to develop electrochemical biosensors for detecting SARS-CoV-2 with high sensitivity and selectivity. This was achieved by using 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) and aryl diazonium salt serving as linkers for SPGEs and SPCEs, respectively. Once SARS-CoV-2 was anchored onto the ACE2, the interaction of the virus with the redox probe was analyzed using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Aryl diazonium salt was observed as a superior linker compared to PFDT due to its consistent performance in the modification of the SPCEs and effective ACE2 enzyme immobilization. A distinct pair of redox peaks in the cyclic voltammogram of the biosensor modified with aryl diazonium salt highlighted the redox reaction between the functional groups of SARS-CoV-2 and the redox probe. The sensor presented a linear relationship between the redox response and the logarithm of SARS-CoV-2 concentration, with a detection limit of 1.02 × 106 TCID50/mL (50% tissue culture infectious dose). Furthermore, the biosensor showed remarkable selectivity towards SARS-CoV-2 over H1N1virus.


Sujet(s)
Angiotensin-converting enzyme 2 , Techniques de biocapteur , COVID-19 , SARS-CoV-2 , Humains , Techniques de biocapteur/méthodes , COVID-19/diagnostic , Techniques électrochimiques , Électrodes , Or/composition chimique , SARS-CoV-2/isolement et purification
8.
Sensors (Basel) ; 24(4)2024 Feb 17.
Article de Anglais | MEDLINE | ID: mdl-38400442

RÉSUMÉ

Nanofiber technology is leading the revolution of wearable technology and provides a unique capability to fabricate smart textiles. With the novel fabrication technique of electrospinning, nanofibers can be fabricated and then manufactured into a durable conductive string for the application of smart textiles. This paper presents an electrospun nanofiber mesh-based (NF-Felt) string electrode with a conducting polymer coating for an electrochemical enzymatic glucose sensor. The surface area of a nanofiber matrix is a key physical property for enhanced glucose oxidase (GOx) enzyme binding for the development of an electrochemical biosensor. A morphological characterization of the NF-Felt string electrode was performed using scanning electron microscopy (SEM) and compared with a commercially available cotton-polyester (Cot-Pol) string coated with the same conducting polymer. The results from stress-strain testing demonstrated high stretchability of the NF-Felt string. Also, the electrochemical characterization results showed that the NF-Felt string electrode was able to detect a glucose concentration in the range between 0.0 mM and 30.0 mM with a sensitivity of 37.4 µA/mM·g and a detection limit of 3.31 mM. Overall, with better electrochemical performance and incredible flexibility, the NF-Felt-based string electrode is potentially more suitable for designing wearable biosensors for the detection of glucose in sweat.


Sujet(s)
Techniques de biocapteur , Nanofibres , Dispositifs électroniques portables , Glucose/composition chimique , Nanofibres/composition chimique , Techniques de biocapteur/méthodes , Polymères , Électrodes , Techniques électrochimiques/méthodes , Glucose oxidase/métabolisme
9.
Mikrochim Acta ; 191(3): 146, 2024 02 19.
Article de Anglais | MEDLINE | ID: mdl-38372811

RÉSUMÉ

Salmonella contamination is a major global health challenge, causing significant foodborne illness. However, current detection methods face limitations in sensitivity and time, which mostly rely on the culture-based detection techniques. Hence, there is an immediate and critical need to enhance early detection, reduce the incidence and impact of Salmonella contamination resulting in outbreaks. In this work, we demonstrate a portable non-faradaic, electrochemical sensing platform capable of detecting Salmonella in potable water with an assay turnaround time of ~ 9 min. We evaluated the effectiveness of this sensing platform by studying two sensor configurations: one utilizing pure gold (Au) and the other incorporating a semiconductor namely a zinc oxide thin film coated on the surface of the gold (Au/ZnO). The inclusion of zinc oxide was intended to enhance the sensing capabilities of the system. Through comprehensive experimentation and analysis, the LoD (limit of detection) values for the Au sensor and Au/ZnO sensor were 0.9 and 0.6 CFU/mL, respectively. In addition to sensitivity, we examined the sensing platform's precision and reproducibility. Both the Au sensor and Au/ZnO sensor exhibited remarkable consistency, with inter-study percentage coefficient of variation (%CV) and intra-study %CV consistently below 10%. The proposed sensing platform exhibits high sensitivity in detecting low concentrations of Salmonella in potable water. Its successful development demonstrates its potential as a rapid and on-site detection tool, offering portability and ease of use. This research opens new avenues for electrochemical-based sensors in food safety and public health, mitigating Salmonella outbreaks and improving water quality monitoring.


Sujet(s)
Eau de boisson , Oxyde de zinc , Reproductibilité des résultats , Or , Salmonella
10.
Talanta ; 271: 125726, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38316076

RÉSUMÉ

Oncostatin M (OSM) is an interleukin-6 (IL-6) member family cytokine implicated in the pathogenesis of chronic diseases including inflammatory bowel disease (IBD). OSM is a novel diagnostic biomarker over-expressed in the serum of IBD patients. This paper reports on the first electrochemical OSM immunosensor, developed using a multistep fabrication process aimed at covalently immobilizing OSM antibodies on a mixed self-assembled monolayer coated gold working electrode. Cyclic voltammetry, atomic force microscopy (AFM), IR spectroscopy and optical characterizations were used to validate the sensor functionalization protocol. Electrochemical impedance spectroscopy (EIS) measurements were performed to assess the reliability of the immunosensor preparation and to verify the antibody-antigen complexes formation. The label-free immunosensor showed high sensitivity identifying OSM at clinically relevant concentrations (37-1000 pg mL-1) with low detection limit of 2.86 pg mL-1. Both sensitivity and selectivity of the proposed immunosensor were also demonstrated in human serum in the presence of interfering biomarkers, making it an innovative potential platform for the OSM biomarker detection in IBD patients' serum.


Sujet(s)
Techniques de biocapteur , Maladies inflammatoires intestinales , Humains , Techniques de biocapteur/méthodes , Oncostatine M , Reproductibilité des résultats , Anticorps immobilisés/composition chimique , Dosage immunologique/méthodes , Marqueurs biologiques , Maladies inflammatoires intestinales/diagnostic
11.
Sci Total Environ ; 903: 166447, 2023 Dec 10.
Article de Anglais | MEDLINE | ID: mdl-37604377

RÉSUMÉ

In this study, we are reporting a novel electrochemical capacitance spectroscopy (ECS) platform designed for the sensitive and label-free detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus spike protein (anti-rS) in diluted blood serum. The determination of anti-rS is crucial for identification individuals who have been infected by SARS-CoV-2 virus and may have acquired immunity. The rS protein was immobilized on a screen-printed carbon electrode, which was incubated in diluted blood serum containing anti-rS antibodies. Label-free ECS was applied for the determination of interaction between immobilized rS and free-standing anti-rS. Here reported bioanalytical platform demonstrated high sensitivity and specificity in detecting anti-rS, achieving a limit of detection of 4.38 nM. This versatile platform could be further enhanced by applying various electrode materials and adapting this platform to detect antibodies against some other proteins. Our findings have significant implications for the development of affordable, scalable biosensing platforms capable to provide rapid and accurate public health screening and monitoring, particularly in the context of the coronavirus disease 2019 (COVID-19) pandemic.

12.
Sensors (Basel) ; 23(10)2023 May 09.
Article de Anglais | MEDLINE | ID: mdl-37430506

RÉSUMÉ

In order to advance the development of sensors fabricated with monofunctional sensation systems capable of a versatile response to tactile, thermal, gustatory, olfactory, and auditory sensations, mechanoreceptors fabricated as a single platform with an electric circuit require investigation. In addition, it is essential to resolve the complicated structure of the sensor. In order to realize the single platform, our proposed hybrid fluid (HF) rubber mechanoreceptors of free nerve endings, Merkel cells, Krause end bulbs, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles mimicking the bio-inspired five senses are useful enough to facilitate the fabrication process for the resolution of the complicated structure. This study used electrochemical impedance spectroscopy (EIS) to elucidate the intrinsic structure of the single platform and the physical mechanisms of the firing rate such as slow adaption (SA) and fast adaption (FA), which were induced from the structure and involved the capacitance, inductance, reactance, etc. of the HF rubber mechanoreceptors. In addition, the relations among the firing rates of the various sensations were clarified. The adaption of the firing rate in the thermal sensation is the opposite of that in the tactile sensation. The firing rates in the gustation, olfaction, and auditory sensations at frequencies of less than 1 kHz have the same adaption as in the tactile sensation. The present findings are useful not only in the field of neurophysiology, to research the biochemical reactions of neurons and brain perceptions of stimuli, but also in the field of sensors, to advance salient developments in sensors mimicking bio-inspired sensations.


Sujet(s)
Caoutchouc , Odorat , Toucher , Mécanorécepteurs , Thermoception
13.
3 Biotech ; 13(8): 280, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37496976

RÉSUMÉ

An ultrasensitive impedimetric immunosensor was developed to detect brain natriuretic peptide (BNP) for early diagnosis of heart failure. To construct this immunosensor, anti-BNP antibodies were immobilized covalently onto nanocomposite of chitosan-Au nanoparticles and reduced graphene oxide nanosheets (CHIT-Au@rGONs) electrodeposited onto pencil graphite electrode. This approach impedes charge transfer resistance (Rct) value proportionally to the BNP captured by antigen-antibody interactions. The observed Rct values by this immunosensor, were correlated with linear concentrations of BNP in the range, 1 × 10-2 to 1 × 103 pg/mL, with a limit of detection of 12 pg/mL and limit of quantification of 36.3 pg/mL. The immunosensor detected BNP in spiked human sera. The analytic recovery of added BNP in human sera was 97.04%. The present method was fairly consistent with commercial approach. The working electrode was stored for 2 months in cold. BSA-IgG had no interference in the electrode activity showing its high specificity for BNP. This novel approach provided a new POC-diagnostics, as direct sample measurements are easier and more efficient by this immunosensor compared to existing immunosensors. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03704-x.

14.
Biosensors (Basel) ; 13(7)2023 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-37504068

RÉSUMÉ

Food allergies are an exceptional response of the immune system caused by the ingestion of specific foods. The main foods responsible for allergic reactions are milk, eggs, seafood, soy, peanuts, tree nuts, wheat, and their derived products. Chicken egg ovalbumin (OVA), a common allergen molecule, is often used for the clarification process of wine. Traces of OVA remain in the wine during the fining process, and they can cause significant allergic reactions in sensitive consumers. Consequently, the European Food Safety Authority (EFSA) and the American Food and Drug Administration (FDA) have shown the risks for allergic people to assume allergenic foods and food ingredients, including eggs. Commonly, OVA detection requires sophisticated and time-consuming analytical techniques. Intending to develop a faster assay, we designed a proof-of-concept non-Faradaic impedimetric immunosensor for monitoring the presence of OVA in wine. Polyclonal antibodies anti-OVA were covalently immobilised onto an 11-mercaptoundecanoic-acid (11-MUA)-modified gold surface. The developed immunosensor was able to detect OVA in diluted white wine without the need for an external probe or any pre-treatment step with a sensitivity of 0.20 µg/mL, complying with the limit established by the resolution OIV/COMEX 502-2012 for the quantification of allergens in wine.


Sujet(s)
Techniques de biocapteur , Hypersensibilité alimentaire , Vin , Humains , Ovalbumine/analyse , Vin/analyse , Impédance électrique , Dosage immunologique , Allergènes/analyse , Hypersensibilité alimentaire/diagnostic
15.
Front Cardiovasc Med ; 10: 1155371, 2023.
Article de Anglais | MEDLINE | ID: mdl-37408660

RÉSUMÉ

Introduction: Fibro-calcific aortic valve disease has high prevalence and is associated with significant mortality. Fibrotic extracellular matrix (ECM) remodeling and calcific mineral deposition change the valvular microarchitecture and deteriorate valvular function. Valvular interstitial cells (VICs) in profibrotic or procalcifying environment are frequently used in vitro models. However, remodeling processes take several days to weeks to develop, even in vitro. Continuous monitoring by real-time impedance spectroscopy (EIS) may reveal new insights into this process. Methods: VIC-driven ECM remodeling stimulated by procalcifying (PM) or profibrotic medium (FM) was monitored by label-free EIS. Collagen secretion, matrix mineralization, viability, mitochondrial damage, myofibroblastic gene expression and cytoskeletal alterations were analyzed. Results and Discussion: EIS profiles of VICs in control medium (CM) and FM were comparable. PM reproducibly induced a specific, biphasic EIS profile. Phase 1 showed an initial impedance drop, which moderately correlated with decreasing collagen secretion (r = 0.67, p = 0.22), accompanied by mitochondrial membrane hyperpolarization and cell death. Phase 2 EIS signal increase was positively correlated with augmented ECM mineralization (r = 0.97, p = 0.008). VICs in PM decreased myofibroblastic gene expression (p < 0.001) and stress fiber assembly compared to CM. EIS revealed sex-specific differences. Male VICs showed higher proliferation and in PM EIS decrease in phase 1 was significantly pronounced compared to female VICs (male minimum: 7.4 ± 4.2%, female minimum: 26.5 ± 4.4%, p < 0.01). VICs in PM reproduced disease characteristics in vitro remarkably fast with significant impact of donor sex. PM suppressed myofibroblastogenesis and favored ECM mineralization. In summary, EIS represents an efficient, easy-to-use, high-content screening tool enabling patient-specific, subgroup- and temporal resolution.

16.
Water Res ; 242: 120232, 2023 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-37352674

RÉSUMÉ

Graphene sponge anode functionalized with two-dimensional (2D) boron, i.e., borophene, was applied for electrochemical oxidation of C4-C8 per- and polyfluoroalkyl substances (PFASs). Borophene-doped graphene sponge outperformed boron-doped graphene sponge anode in terms of PFASs removal efficiencies and their electrochemical degradation; whereas at the boron-doped graphene sponge anode up to 35% of the removed PFASs was recovered after the current was switched off, the switch to a 2D boron enabled further degradation of the electrosorbed PFASs. Borophene-doped graphene sponge anode achieved 32-77% removal of C4-C8 PFASs in one-pass flow-through mode from a 10 mM phosphate buffer at 230 A m-2 of anodic current density. Higher molarity phosphate buffer (100 mM) resulted in lower PFASs removal efficiencies (11-60%) due to the higher resistance of the graphene sponge electrode in the presence of phosphate ions, as demonstrated by the electrochemical impedance spectroscopy (EIS) analyses. Electro-oxidation of PFASs was more efficient in landfill leachate despite its high organic loading, with up to 95% and 75% removal obtained for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), versus 77% and 57% removal in the 10 mM phosphate buffer, respectively. Defluorination efficiencies as determined relative to the electrooxidized fraction of PFASs indicated up to 69% and 82% of defluorination of PFOS and PFOA in 10 mM phosphate buffer, which was decreased to 16 and 29% defluorination, respectively, for higher buffer molarity (100 mM) due to the worsened electrochemical performance of the sponge. In landfill leachate, relative defluorination efficiencies of PFOS and PFOA were 33% and 45%, respectively, indicating the inhibiting effect of complex organic and inorganic matrix of landfill leachate on the C-F bond breakage. This study demonstrates that electrochemical degradation of PFASs is possible to achieve in complex and brackish streams using a low-cost graphene sponge anode, without forming toxic chlorinated byproducts even in the presence of >7 g L-1 of chloride.


Sujet(s)
Acides alcanesulfoniques , Fluorocarbones , Graphite , Polluants chimiques de l'eau , Polluants chimiques de l'eau/composition chimique , Bore , Fluorocarbones/composition chimique
17.
Micromachines (Basel) ; 14(6)2023 Jun 16.
Article de Anglais | MEDLINE | ID: mdl-37374847

RÉSUMÉ

Alzheimer's disease (AD) is a neurodegenerative disease with only late-stage detection; thus, diagnosis is made when it is no longer possible to treat the disease, only its symptoms. Consequently, this often leads to caregivers who are the patient's relatives, which adversely impacts the workforce along with severely diminishing the quality of life for all involved. It is, therefore, highly desirable to develop a fast, effective and reliable sensor to enable early-stage detection in an attempt to reverse disease progression. This research validates the detection of amyloid-beta 42 (Aß42) using a Silicon Carbide (SiC) electrode, a fact that is unprecedented in the literature. Aß42 is considered a reliable biomarker for AD detection, as reported in previous studies. To validate the detection with a SiC-based electrochemical sensor, a gold (Au) electrode-based electrochemical sensor was used as a control. The same cleaning, functionalization and Aß1-28 antibody immobilization steps were used on both electrodes. Sensor validation was carried out by means of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) aiming to detect an 0.5 µg·mL-1 Aß42 concentration in 0.1 M buffer solution as a proof of concept. A repeatable peak directly related to the presence of Aß42 was observed, indicating that a fast SiC-based electrochemical sensor was constructed and may prove to be a useful approach for the early detection of AD.

18.
Polymers (Basel) ; 15(11)2023 May 23.
Article de Anglais | MEDLINE | ID: mdl-37299227

RÉSUMÉ

Globally, researchers have devoted consistent efforts to producing excellent coating properties since coating plays an essential role in enhancing electrochemical performance and surface quality. In this study, TiO2 nanoparticles in varying concentrations of 0.5, 1, 2, and 3 wt.% were added into the acrylic-epoxy polymeric matrix with 90:10 wt.% (90A:10E) ratio incorporated with 1 wt.% graphene, to fabricate graphene/TiO2 -based nanocomposite coating systems. Furthermore, the properties of the graphene/TiO2 composites were investigated by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), ultraviolet-visible (UV-Vis) spectroscopy, water contact angle (WCA) measurements, and cross-hatch test (CHT), respectively. Moreover, the field emission scanning electron microscope (FESEM) and the electrochemical impedance spectroscopy (EIS) tests were conducted to investigate the dispersibility and anticorrosion mechanism of the coatings. The EIS was observed by determining the breakpoint frequencies over a period of 90 days. The results revealed that the TiO2 nanoparticles were successfully decorated on the graphene surface by chemical bonds, which resulted in the graphene/TiO2 nanocomposite coatings exhibiting better dispersibility within the polymeric matrix. The WCA of the graphene/TiO2 coating increased along with the ratio of TiO2 to graphene, achieving the highest CA of 120.85° for 3 wt.% of TiO2. Excellent dispersion and uniform distribution of the TiO2 nanoparticles within the polymer matrix were shown up to 2 wt.% of TiO2 inclusion. Among the coating systems, throughout the immersion time, the graphene/TiO2 (1:1) coating system exhibited the best dispersibility and high impedance modulus values (Z0.01 Hz), exceeding 1010 Ω cm2.

19.
Nanomaterials (Basel) ; 13(11)2023 May 30.
Article de Anglais | MEDLINE | ID: mdl-37299667

RÉSUMÉ

CdS thin films were grown on an FTO substrate at different temperatures, employing the low-cost hydrothermal method. All the fabricated CdS thin films were studied using XRD, Raman spectroscopy, SEM, PL spectroscopy, a UV-Vis spectrophotometer, photocurrent, Electrochemical Impedance Spectroscopy (EIS), and Mott-Schottky measurements. According to the XRD results, all the CdS thin films were formed in a cubic (zinc blende) structure with a favorable (111) orientation at various temperatures. The Scherrer equation was used to determine the crystal size of the CdS thin films, which varied from 25 to 40 nm. The SEM results indicated that the morphology of thin films seems to be dense, uniform, and tightly attached to the substrates. PL measurements showed the typical green and red emission peaks of CdS films at 520 nm and 705 nm, and these are attributable to free-carrier recombination and sulfur vacancies or cadmium vacancies, respectively. The optical absorption edge of the thin films was positioned between 500 and 517 nm which related to the CdS band gap. For the fabricated thin films, the estimated Eg was found to be between 2.50 and 2.39 eV. According to the photocurrent measurements, the CdS thin films grown were n-type semiconductors. As indicated by EIS, resistivity to charge transfer (RCT) decreased with temperature, reaching its lowest level at 250 °C. Flat band potential and donor density were found to fluctuate with temperature, from 0.39 to 0.76 V and 4.41 × 1018 to 15.86 × 1018 cm-3, respectively, according to Mott-Schottky measurements. Our results indicate that CdS thin films are promising candidates for optoelectronic applications.

20.
ACS Appl Bio Mater ; 6(7): 2622-2635, 2023 07 17.
Article de Anglais | MEDLINE | ID: mdl-37338424

RÉSUMÉ

Biosensors are valuable tools for the detection of biological species, including cells, pathogens, proteins, and other biological molecules. Biosensing devices integrated with microfluidics not only allow for easier sample preparation, portability, and reduced detection time and cost but also offer unique features such as label-free detection and improved sensitivity. Cardiovascular diseases (CVDs), particularly acute myocardial infarction, which is considered one of the main causes of death, are currently diagnosed by electrocardiography (ECG), which has been proven to be inadequate. To overcome the limitations of ECG, the efficient detection of cardiac biomarkers and specifically the measurement of cardiac troponins (cTnT and cTnI) are suggested. This review aims to expound on microfluidics, the most recent materials to develop these devices, and their application in medical diagnosis, particularly in CVD detection. Moreover, we will explore some of the prevalent and last readout methods to investigate in-depth electrochemical label-free detection methods for CVDs, primarily based on voltammetry and electrochemical impedance spectroscopy, with the main focus on structural details.


Sujet(s)
Techniques de biocapteur , Maladies cardiovasculaires , Humains , Microfluidique , Marqueurs biologiques , Troponine T , Maladies cardiovasculaires/diagnostic , Techniques de biocapteur/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE