Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nanomaterials (Basel) ; 12(5)2022 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-35269311

RÉSUMÉ

Zinc oxide (ZnO) has interesting optoelectronic properties, but suffers from chemical instability when in contact with perovskite interfaces; hence, the perovskite deposited on the top degrades promptly. Surface passivation strategies alleviate this instability issue; however, synthesis to passivate ZnO nanoparticles (NPs) in situ has received less attention. Here, a new synthesis at low temperatures with an ethanolamine post treatment has been developed. By using ZnO NPs prepared with ethanolamine and butanol (BuOH), (E-ZnO), the stability of the FA0.9Cs0.1PbI3 (FACsPI)−ZnO interface was achieved, with a photoconversion efficiency of >18%. Impedance spectroscopy demonstrates that the recombination at the interface was reduced in the system with E-ZnO/perovskite compared to common SnO2/perovskite and that the quality of the perovskite on the top is clearly due to the ZnO in situ passivation with ethanolamine. This work extends the use of E-ZnO as an n-type charge extraction layer and demonstrates its feasibility with methylammonium perovskite. Moreover, this study paves the way for other in situ passivation methods with different target molecules, along with new insights regarding the perovskite interface rearrangement when in contact with the modified electron transport layer (ETL).

2.
Front Chem ; 7: 50, 2019.
Article de Anglais | MEDLINE | ID: mdl-30788340

RÉSUMÉ

In this work, niobium oxide films were deposited by reactive magnetron sputtering under different oxygen flow rate and applied as electron transport layer in perovskite solar cells. It was found that the deposition made using 3.5 sccm of oxygen flow resulted in films with better electrical properties which helped the extraction of the photogenerated electrons to the external circuit, improving the Jsc and consequently the device efficiency. In addition, by photoluminescence measurements, we found a better charge transfer from perovskite to TiO2/niobium oxide film deposited at 3.5 sccm of oxygen flow.

3.
ACS Appl Mater Interfaces ; 9(35): 29654-29659, 2017 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-28805366

RÉSUMÉ

Optimization of the interface between the electron transport layer (ETL) and the hybrid perovskite is crucial to achieve high-performance perovskite solar cell (PSC) devices. Fullerene-based compounds have attracted attention as modifiers on the surface properties of TiO2, the archetypal ETL in regular n-i-p PSCs. However, the partial solubility of fullerenes in the aprotic solvents used for perovskite deposition hinders its application to low-temperature solution-processed PSCs. In this work, we introduce a new method for fullerene modification of TiO2 layers derived from nanoparticles (NPs) inks. Atomic force microscopy characterization reveals that the resulting ETL is a network of TiO2-NPs interconnected by fullerenes. Interestingly, this surface modification enhances the bottom interface of the perovskite by improving the charge transfer as well as the top perovskite interface by reducing surface trap states enhancing the contact with the p-type buffer layer. As a result, rigid PSCs reached a 17.2% power conversion efficiency (PCE), while flexible PSCs exhibited a remarkable stabilized PCE of 12.2% demonstrating the potential application of this approach for further scale-up of PSC devices.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE