Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Environ Sci Technol ; 57(31): 11656-11665, 2023 08 08.
Article de Anglais | MEDLINE | ID: mdl-37503546

RÉSUMÉ

Due to their prevalence in urban contaminated water, the driving factors of organophosphate esters (OPEs) need to be well examined, and their related ecological impacts should include that of their transformation products (TPs). Additionally, a robust framework needs to be developed to integrate multiple variables related to ecological impacts for improving the ecological health assessment. Therefore, OPEs and TPs in urban stormwater and wastewater in Hong Kong were analyzed to fill these gaps. The results revealed that the total concentrations of OPEs in stormwater were positively correlated with the area of transportation land. Individual TP concentrations and the mass ratios of individual TPs/OPEs were somewhat higher in sewage effluents than that in stormwater. OPEs generally showed relatively higher risk quotients than TPs; however, the total risk quotients increased by approximately 38% when TPs were factored in. Moreover, the molecular docking results suggested that the investigated TPs might cause similar endocrine disruption in marine organisms as their parent OPEs. This study employed the Toxicological-Priority-Index scheme to successfully integrate the ecological risks and endocrine-disrupting effects to refine the ecological health assessment of the exposure to OPEs and their TPs, which can better inform the authority on the prioritization for regulating these contaminants of emerging concern in urban built environments.


Sujet(s)
Ignifuges , Polluants chimiques de l'eau , Eaux d'égout , Polluants chimiques de l'eau/analyse , Simulation de docking moléculaire , Surveillance de l'environnement/méthodes , Organophosphates , Esters , Chine , Ignifuges/analyse
2.
Sci Total Environ ; 869: 161793, 2023 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-36702264

RÉSUMÉ

Increasing concerns have been raised on the health risks of parabens in the regard of their widespread applications and potential endocrine disrupting activities. In this study, four typical parabens, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), and butyl paraben (BuP) were systematically investigated for their estrogen receptor- and steroid hormone-related endocrine disruptions using multi-level approaches. Paraben exposure promoted the proliferation of MCF-7 cells, increased the luciferase activity in MVLN cells, and induced the vitellogenin (vtg) expression in zebrafish larvae, showing the typical estrogenic effects. The in vitro protein assays further revealed that PrP and BuP could bind with two isoforms of estrogen receptors (ERs). The estrogenic activities of parabens were predicted to be positively correlated with their chemical structure complexity by using molecular docking analysis. Furthermore, the synthesis and secretion of estradiol (E2) and testosterone (T) were significantly disturbed in H295R cells and zebrafish larvae, which could be regulated by paraben-induced transcriptional disturbance in both in vitro steroidogenesis and in vivo hypothalamic-pituitary-gonadal (HPG) axis. Parabens could disturb the endocrine system by activating the ERs and disrupting the steroid hormone synthesis and secretion, suggesting their potential deleterious risks to the environment and human health.


Sujet(s)
Perturbateurs endocriniens , Parabènes , Récepteurs des oestrogènes , Animaux , Humains , Oestradiol , Simulation de docking moléculaire , Parabènes/toxicité , Parabènes/métabolisme , Récepteurs des oestrogènes/métabolisme , Danio zébré/métabolisme , Perturbateurs endocriniens/métabolisme , Perturbateurs endocriniens/pharmacologie
3.
Sci Total Environ ; 756: 143986, 2021 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-33307501

RÉSUMÉ

Co-occurrence of microplastics and chemicals was a complex environmental issue, whereas little concerned on the effect of microplastics on the toxicity of chemicals. In this study, we studied the changes of toxicity of triphenyl phosphate (TPhP) to zebrafish, in the presence of micro-polystyrene (MPS, 5.8 µm) and nano-polystyrene (NPS, 46 nm). Results indicated that separate MPS and NPS had no acute toxicity and little reproductive toxicity on zebrafish. TPhP alone was a highly toxic substance with a median lethal concentration (LC50) of 976 µg/L, the presence of MPS and NPS did not have significant effect on the acute toxicity of TPhP. TPhP alone stimulated the enlargement of liver and gonad of fish (except the testis) by 1.25-2.12 fold, and the presence of NPS further aggravated this stimulation by 1.23-2.84 fold, while MPS did not. The gonadal histology indicated that comparing with TPhP alone, the addition of MPS and NPS further inhibited the process of spermatogenesis and oogenesis, even causing obvious lacunas in testis and atretic follicles oocytes in ovary. Meanwhile, TPhP did not significantly disturb the hormone homeostasis (E2/T) and vitellogenin (Vtg) content in fish, but the presence of NPS increased the E2/T ratio and Vtg content in male fish, while slightly decreased those in female fish, which implying that effects of PS was sex-dependent. As a result, the egg production, the fertilization rate and hatchability of eggs significantly reduced after combined TPhP+PS exposure, demonstrating that co-occurrence of TPhP and PS, especially NPS, could greatly impaired the reproductive performance of zebrafish.


Sujet(s)
Polluants chimiques de l'eau , Danio zébré , Animaux , Femelle , Mâle , Microplastiques , Organophosphates/toxicité , Matières plastiques/toxicité , Polluants chimiques de l'eau/toxicité
4.
Environ Pollut ; 254(Pt B): 113088, 2019 Nov.
Article de Anglais | MEDLINE | ID: mdl-31491697

RÉSUMÉ

Airborne lower-chlorinated PCBs are vulnerable to metabolization to PCB sulfates through further sulfation of the hydroxylated metabolites (OH-PCBs). However, studies on the toxic effects and mechanisms of PCB sulfates are still very limited. Here, we investigated for the first time the potential endocrine disruption effects of PCB sulfates through estrogen-related receptor γ (ERRγ) in comparison with their OH-PCBs precursors and PCB parent compounds. The binding affinity of thirteen PCBs/OH-PCBs/PCB sulfates was measured by using fluorescence competitive binding assays based on fluorescence polarization (FP). All of the tested chemicals could bind to ERRγ with the Kd (dissociation constant) values ranging from not available (NA) to 3.2 µM 4'-OH-PCB 12 showed the highest binding affinity with Kd value of 3.2 µM, which was comparable to that of a synthetic ERRγ agonist GSK4716. The effects of the thirteen chemicals on the ERRγ transcriptional activity were determined by using the luciferase reporter gene assay. We found the PCBs/OH-PCBs/PCB sulfates acted as agonists for ERRγ, with the lowest observed effective concentration reaching 3 µM. The binding affinity and agonistic activity of PCBs towards ERRγ were both enhanced after hydroxylation, while further sulfation of OH-PCBs decreased the activity instead. Molecular docking simulation showed that OH-PCBs had lower binding energy than the corresponding PCBs and PCB sulfates, indicating that OH-PCBs had higher binding affinity theoretically. In addition, OH-PCBs could form hydrogen bonds with amino acids Glu316 and Arg247 while PCBs and PCB sulfates could not, which might be the main factor impacting the binding affinity and agonistic activity. Overall, ERRγ is a novel target for lower-chlorinated PCBs and their metabolites.


Sujet(s)
Perturbateurs endocriniens/composition chimique , Polychlorobiphényles/composition chimique , Récepteurs des oestrogènes/composition chimique , Motifs d'acides aminés , Perturbateurs endocriniens/métabolisme , Halogénation , Humains , Hydroxylation , Cinétique , Simulation de docking moléculaire , Polychlorobiphényles/métabolisme , Récepteurs des oestrogènes/génétique , Récepteurs des oestrogènes/métabolisme , Sulfates/composition chimique , Sulfates/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE