Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 147
Filtrer
1.
Biol Pharm Bull ; 47(7): 1265-1274, 2024.
Article de Anglais | MEDLINE | ID: mdl-38987175

RÉSUMÉ

There is evidence that propolis exhibits anti-inflammatory, anticancer, and antioxidant properties. We assessed the potential beneficial effects of Brazilian propolis on liver injury in nonalcoholic fatty liver disease (NAFLD). Our findings demonstrate that Brazilian propolis suppresses inflammation and fibrosis in the liver of mice with NAFLD by inhibiting the expression of genes involved in endoplasmic reticulum (ER) stress. Additionally, Brazilian propolis also suppressed the expression of ER stress-related genes in HepG2 cells treated with an excess of free fatty acids, leading to cell apoptosis. A deeper analysis revealed that kaempferol, one of the components present in Brazilian propolis, induces cell proliferation through the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and protects against oxidative stress. In conclusion, Brazilian propolis exhibits hepatoprotective properties against oxidative stress by inhibiting ER stress in NAFLD-induced model mice.


Sujet(s)
Apoptose , Stress du réticulum endoplasmique , Foie , Stéatose hépatique non alcoolique , Stress oxydatif , Propolis , Propolis/pharmacologie , Propolis/usage thérapeutique , Animaux , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Humains , Stéatose hépatique non alcoolique/traitement médicamenteux , Stéatose hépatique non alcoolique/anatomopathologie , Stéatose hépatique non alcoolique/métabolisme , Cellules HepG2 , Stress oxydatif/effets des médicaments et des substances chimiques , Mâle , Foie/effets des médicaments et des substances chimiques , Foie/anatomopathologie , Foie/métabolisme , Apoptose/effets des médicaments et des substances chimiques , Souris , Kaempférols/pharmacologie , Kaempférols/usage thérapeutique , Brésil , Prolifération cellulaire/effets des médicaments et des substances chimiques , Souris de lignée C57BL
2.
Clin Transl Oncol ; 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38967737

RÉSUMÉ

BACKGROUND: Triple-negative breast cancer (TNBC) is the most common malignant tumor in China. The expression and cell surface levels of TNF receptor superfamily member 10B (TNFRSF10B) are associated with apoptosis and chemotherapy. However, the precise molecular mechanisms that govern the regulation of TNFRSF10B remain unclear. MATERIALS AND METHODS: RNA-Seq data related to TNBC chemotherapy resistance were acquired from the GEO database. The mRNA and protein levels of TNFRSF10B were detected using RT-PCR and Western blotting, respectively. Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect cell proliferation. Annexin V/7-AAD staining was used to evaluate apoptosis. The cell membrane TNFRSF10B was analyzed by Western blotting and immunofluorescence. Inducers and inhibitors of endoplasmic reticulum stress (ERS) were used to assess the effect of ERS on TNFRSF10B localization. RESULTS: TNFRSF10B expression was downregulated in TNBC and was associated with prognosis. TNFRSF10B overexpression inhibits the growth of TNBC both in vivo and in vitro and can partially counteract chemotherapy resistance. ERS activation in TNBC promotes the expression of TNFRSF10B, leading to its enrichment on the cell membrane surface, thereby activating the apoptotic pathways. CONCLUSION: ERS regulates the expression and subcellular localization of TNFRSF10B in TNBC cells. They synergistically affect anti-apoptosis and chemotherapy resistance in TNBC cells.

3.
J Cell Physiol ; : e31383, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39039752

RÉSUMÉ

The endoplasmic reticulum (ER) is crucial for protein quality control, and disruptions in its function can lead to various diseases. ER stress triggers an adaptive response called the unfolded protein response (UPR), which can either restore cellular homeostasis or induce cell death. Melatonin, a safe and multifunctional compound, shows promise in controlling ER stress and could be a valuable therapeutic agent for managing the UPR. By regulating ER and mitochondrial functions, melatonin helps maintain cellular homeostasis via reduction of oxidative stress, inflammation, and apoptosis. Melatonin can directly or indirectly interfere with ER-associated sensors and downstream targets of the UPR, impacting cell death, autophagy, inflammation, molecular repair, among others. Crucially, this review explores the mechanistic role of melatonin on ER stress in various diseases including liver damage, neurodegeneration, reproductive disorders, pulmonary disease, cardiomyopathy, insulin resistance, renal dysfunction, and cancer. Interestingly, while it alleviates the burden of ER stress in most pathological contexts, it can paradoxically stimulate ER stress in cancer cells, highlighting its intricate involvement in cellular homeostasis. With numerous successful studies using in vivo and in vitro models, the continuation of clinical trials is imperative to fully explore melatonin's therapeutic potential in these conditions.

4.
Biol Res ; 57(1): 45, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982468

RÉSUMÉ

BACKGROUND: Diabetic neuropathy (DN) is recognized as a significant complication arising from diabetes mellitus (DM). Pathogenesis of DN is accelerated by endoplasmic reticulum (ER) stress, which inhibits autophagy and contributes to disease progression. Autophagy is a highly conserved mechanism crucial in mitigating cell death induced by ER stress. Chrysin, a naturally occurring flavonoid, can be found abundantly in honey, propolis, and various plant extracts. Despite possessing advantageous attributes such as being an antioxidant, anti-allergic, anti-inflammatory, anti-fibrotic, and anticancer agent, chrysin exhibits limited bioavailability. The current study aimed to produce a more bioavailable form of chrysin and discover how administering chrysin could alter the neuropathy induced by Alloxan in male rats. METHODS: Chrysin was formulated using PEGylated liposomes to boost its bioavailability and formulation. Chrysin PEGylated liposomes (Chr-PLs) were characterized for particle size diameter, zeta potential, polydispersity index, transmission electron microscopy, and in vitro drug release. Rats were divided into four groups: control, Alloxan, metformin, and Chr-PLs. In order to determine Chr- PLs' antidiabetic activity and, by extension, its capacity to ameliorate DN, several experiments were carried out. These included measuring acetylcholinesterase, fasting blood glucose, insulin, genes dependent on autophagy or stress in the endoplasmic reticulum, and histopathological analysis. RESULTS: According to the results, the prepared Chr-PLs exhibited an average particle size of approximately 134 nm. They displayed even distribution of particle sizes. The maximum entrapment efficiency of 90.48 ± 7.75% was achieved. Chr-PLs effectively decreased blood glucose levels by 67.7% and elevated serum acetylcholinesterase levels by 40% compared to diabetic rats. Additionally, Chr-PLs suppressed the expression of ER stress-related genes (ATF-6, CHOP, XBP-1, BiP, JNK, PI3K, Akt, and mTOR by 33%, 39.5%, 32.2%, 44.4%, 40.4%, 39.2%, 39%, and 35.9%, respectively). They also upregulated the miR-301a-5p expression levels by 513% and downregulated miR-301a-5p expression levels by 65%. They also boosted the expression of autophagic markers (AMPK, ULK1, Beclin 1, and LC3-II by 90.3%, 181%, 109%, and 78%, respectively) in the sciatic nerve. The histopathological analysis also showed that Chr-PLs inhibited sciatic nerve degeneration. CONCLUSION: The findings suggest that Chr-PLs may be helpful in the protection against DN via regulation of ER stress and autophagy.


Sujet(s)
Autophagie , Diabète expérimental , Neuropathies diabétiques , Stress du réticulum endoplasmique , Flavonoïdes , Liposomes , Animaux , Flavonoïdes/pharmacologie , Flavonoïdes/administration et posologie , Autophagie/effets des médicaments et des substances chimiques , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Mâle , Diabète expérimental/traitement médicamenteux , Diabète expérimental/complications , Rats , Neuropathies diabétiques/traitement médicamenteux , Neuropathies diabétiques/prévention et contrôle , Polyéthylène glycols/pharmacologie , Alloxane , Rat Wistar , Rat Sprague-Dawley
5.
Chemosphere ; 362: 142622, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38880264

RÉSUMÉ

The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 µg/mL SEOM-PM2.5. Exposure to 5 µg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 µg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.


Sujet(s)
Polluants atmosphériques , Bronches , Survie cellulaire , Cellules épithéliales , Matière particulaire , Hydrocarbures aromatiques polycycliques , Solvants , Humains , Cellules épithéliales/effets des médicaments et des substances chimiques , Matière particulaire/toxicité , Lignée cellulaire , Polluants atmosphériques/toxicité , Survie cellulaire/effets des médicaments et des substances chimiques , Bronches/cytologie , Bronches/effets des médicaments et des substances chimiques , Solvants/toxicité , Solvants/composition chimique , Hydrocarbures aromatiques polycycliques/toxicité , Mexique , Espèces réactives de l'oxygène/métabolisme
6.
Biol Res ; 57(1): 34, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38812057

RÉSUMÉ

Studies have suggested that endoplasmic reticulum stress (ERS) is involved in neurological dysfunction and that electroacupuncture (EA) attenuates neuropathic pain (NP) via undefined pathways. However, the role of ERS in the anterior cingulate cortex (ACC) in NP and the effect of EA on ERS in the ACC have not yet been investigated. In this study, an NP model was established by chronic constriction injury (CCI) of the left sciatic nerve in rats, and mechanical and cold tests were used to evaluate behavioral hyperalgesia. The protein expression and distribution were evaluated using western blotting and immunofluorescence. The results showed that glucose-regulated protein 78 (BIP) and inositol-requiring enzyme 1α (IRE-1α) were co-localized in neurons in the ACC. After CCI, BIP, IRE-1α, and phosphorylation of IRE-1α were upregulated in the ACC. Intra-ACC administration of 4-PBA and Kira-6 attenuated pain hypersensitivity and downregulated phosphorylation of IRE-1α, while intraperitoneal injection of 4-PBA attenuated hyperalgesia and inhibited the activation of P38 and JNK in ACC. In contrast, ERS activation by intraperitoneal injection of tunicamycin induced behavioral hyperalgesia in naive rats. Furthermore, EA attenuated pain hypersensitivity and inhibited the CCI-induced overexpression of BIP and pIRE-1α. Taken together, these results demonstrate that EA attenuates NP by suppressing BIP- and IRE-1α-mediated ERS in the ACC. Our study presents novel evidence that ERS in the ACC is implicated in the development of NP and provides insights into the molecular mechanisms involved in the analgesic effect of EA.


Sujet(s)
Modèles animaux de maladie humaine , Électroacupuncture , Stress du réticulum endoplasmique , Gyrus du cingulum , Névralgie , Rat Sprague-Dawley , Animaux , Électroacupuncture/méthodes , Gyrus du cingulum/métabolisme , Névralgie/thérapie , Mâle , Stress du réticulum endoplasmique/physiologie , Rats , Technique de Western , Protéines du choc thermique/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Hyperalgésie/thérapie , Chaperonne BiP du réticulum endoplasmique
7.
Nutr Res ; 126: 180-192, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38759501

RÉSUMÉ

Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.


Sujet(s)
Alimentation riche en graisse , Stress du réticulum endoplasmique , Entrainement fractionné de haute intensité , Insulinorésistance , Foie , Souris de lignée C57BL , Mitochondries du foie , Conditionnement physique d'animal , Animaux , Alimentation riche en graisse/effets indésirables , Mâle , Foie/métabolisme , Mitochondries du foie/métabolisme , Souris , Stéatose hépatique non alcoolique/métabolisme , Stéatose hépatique non alcoolique/thérapie , Stéatose hépatique/prévention et contrôle , Oxydoréduction
8.
Arch Toxicol ; 98(7): 2085-2100, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38619592

RÉSUMÉ

Thallium (Tl) and its two cationic species, Tl(I) and Tl(III), are toxic for most living beings. In this work, we investigated the effects of Tl (10-100 µM) on the viability and proliferation capacity of the adherent variant of PC12 cells (PC12 Adh cells). While both Tl(I) and Tl(III) halted cell proliferation from 24 h of incubation, their viability was ~ 90% even after 72 h of treatment. At 24 h, increased levels of γH2AX indicated the presence of DNA double-strand breaks. Simultaneously, increased expression of p53 and its phosphorylation at Ser15 were observed, which were associated with decreased levels of p-AKTSer473 and p-mTORSer2448. At 72 h, the presence of large cytoplasmic vacuoles together with increased autophagy predictor values suggested that Tl may induce autophagy in these cells. This hypothesis was corroborated by images obtained by transmission electron microscopy (TEM) and from the decreased expression at 72 h of incubation of SQSTM-1 and increased LC3ß-II to LC3ß-I ratio. TEM images also showed enlarged ER that, together with the increased expression of IRE1-α from 48 h of incubation, indicated that Tl-induced ER stress preceded autophagy. The inhibition of autophagy flux with chloroquine increased cell mortality, suggesting that autophagy played a cytoprotective role in Tl toxicity in these cells. Together, results indicate that Tl(I) or Tl(III) are genotoxic to PC12 Adh cells which respond to the cations inducing ER stress and cytoprotective autophagy.


Sujet(s)
Autophagie , Prolifération cellulaire , Survie cellulaire , Stress du réticulum endoplasmique , Thallium , Autophagie/effets des médicaments et des substances chimiques , Cellules PC12 , Animaux , Rats , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Thallium/toxicité , Prolifération cellulaire/effets des médicaments et des substances chimiques , Altération de l'ADN/effets des médicaments et des substances chimiques , Cassures double-brin de l'ADN/effets des médicaments et des substances chimiques , Protéine p53 suppresseur de tumeur/métabolisme , Protéine p53 suppresseur de tumeur/génétique , Phosphorylation , Microscopie électronique à transmission
9.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article de Anglais | MEDLINE | ID: mdl-38612890

RÉSUMÉ

The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), which aims to restore proteostasis and avoid cell death. However, endoplasmic response-associated degradation (ERAD) is sometimes triggered to degrade the misfolded and unassembled proteins instead. If stress persists, cells activate three sensors: PERK, IRE-1, and ATF6. Glioma cells can use these sensors to remain unresponsive to chemotherapeutic treatments. In such cases, the activation of ATF4 via PERK and some proteins via IRE-1 can promote several types of cell death. The search for new antitumor compounds that can successfully and directly induce an endoplasmic reticulum stress response ranges from ligands to oxygen-dependent metabolic pathways in the cell capable of activating cell death pathways. Herein, we discuss the importance of the ER stress mechanism in glioma and likely therapeutic targets within the UPR pathway, as well as chemicals, pharmaceutical compounds, and natural derivatives of potential use against gliomas.


Sujet(s)
Stress du réticulum endoplasmique , Gliome , Humains , Réponse aux protéines mal repliées , Réticulum endoplasmique , Gliome/traitement médicamenteux , Préparations pharmaceutiques
10.
Mol Cell Biochem ; 479(11): 3167-3179, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-38308790

RÉSUMÉ

Overactivation of the classic arm of the renin-angiotensin system (RAS) is one of the main mechanisms involved in obesity-related cardiac remodeling, and a possible relationship between RAS and ER stress in the cardiovascular system have been described. Thus, the aim of this study is to evaluate if activating the protective arm of the RAS by ACE inhibition or aerobic exercise training could overturn diet-induced pathological cardiac hypertrophy by attenuating ER stress. Male C57BL/6 mice were fed a control (SC) or a high-fat diet (HF) for 16 weeks. In the 8th week, HF-fed animals were randomly divided into HF, enalapril treatment (HF-En), and aerobic exercise training (HF-Ex) groups. Body mass (BM), food and energy intake, plasma analyzes, systolic blood pressure (SBP), physical conditioning, and plasma ACE and ACE2 activity were evaluated. Cardiac morphology, and protein expression of hypertrophy, cardiac metabolism, RAS, and ER stress markers were assessed. Data presented as mean ± standard deviation and analyzed by one-way ANOVA with Holm-Sidak post-hoc. HF group had increased BM and SBP, and developed pathological concentric cardiac hypertrophy, with overactivation of the classic arm of the RAS, and higher ER stress. Both interventions reverted the increase in BM, and SBP, and favored the protective arm of the RAS. Enalapril treatment improved pathological cardiac hypertrophy with partial reversal of the concentric pattern, and slightly attenuated cardiac ER stress. In contrast, aerobic exercise training induced physiological eccentric cardiac hypertrophy, and fully diminished ER stress.


Sujet(s)
Énalapril , Stress du réticulum endoplasmique , Souris de lignée C57BL , Obésité , Conditionnement physique d'animal , Animaux , Énalapril/pharmacologie , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Mâle , Souris , Obésité/métabolisme , Obésité/anatomopathologie , Cardiomégalie/métabolisme , Cardiomégalie/anatomopathologie , Cardiomégalie/traitement médicamenteux , Remodelage ventriculaire/effets des médicaments et des substances chimiques , Souris obèse , Alimentation riche en graisse/effets indésirables , Système rénine-angiotensine/effets des médicaments et des substances chimiques , Inhibiteurs de l'enzyme de conversion de l'angiotensine/pharmacologie
11.
Hypertension ; 81(5): 977-990, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38372140

RÉSUMÉ

To celebrate 100 years of American Heart Association-supported cardiovascular disease research, this review article highlights milestone papers that have significantly contributed to the current understanding of the signaling mechanisms driving hypertension and associated cardiovascular disorders. This article also includes a few of the future research directions arising from these critical findings. To accomplish this important mission, 4 principal investigators gathered their efforts to cover distinct yet intricately related areas of signaling mechanisms pertaining to the pathogenesis of hypertension. The renin-angiotensin system, canonical and novel contractile and vasodilatory pathways in the resistance vasculature, vascular smooth muscle regulation by membrane channels, and noncanonical regulation of blood pressure and vascular function will be described and discussed as major subjects.


Sujet(s)
Système cardiovasculaire , Hypertension artérielle , Humains , Transduction du signal , Pression sanguine , Système rénine-angiotensine/physiologie , Angiotensine-II/métabolisme
12.
Heliyon ; 10(1): e23403, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38169850

RÉSUMÉ

The Covid-19 infection outbreak led to a global epidemic, and although several vaccines have been developed, the appearance of mutations has allowed the virus to evade the immune response. Added to this is the existing risk of the appearance of new emerging viruses. Therefore, it is necessary to explore novel antiviral therapies. Here, we investigate the potential in vitro of plant extracts to modulate cellular stress and inhibit murine hepatitis virus (MHV)-A59 replication. L929 cells were treated with P2Et (Caesalpinia spinosa) and Anamu SC (Petiveria alliacea) plant extracts during infection and virus production, ROS (reactive oxygen species), UPR (unfolded protein response), and autophagy were assessed. P2Et inhibited virus replication and attenuated both ROS production and UPR activation induced during infection. In contrast, the sustained presence of Anamu SC during viral adsorption and replication was required to inhibit viral infection, tending to induce pro-oxidant effects, and increasing UPR gene expression. Notably, the loss of the PERK protein resulted in a slight decrease in virus yield, suggesting a potential involvement of this UPR pathway during replication. Intriguingly, both extracts either maintained or increased the calreticulin surface exposure induced during infection. In conclusion, our findings highlight the development of antiviral natural plant extracts that differentially modulate cellular stress.

13.
Environ Toxicol ; 39(3): 1072-1085, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-37800474

RÉSUMÉ

The implementation of nanotechnology in different sectors has generated expectations as a new source of use due to the novel characteristics that it will bring. Particularly, nano pesticides promise to be more sustainable and less harmful to the ecosystem and human health; however, most studies continue to focus on their efficacy in the field, leaving aside the effect on humans. This project aimed to evaluate the genotoxic effect of a nano-encapsulated pesticide on bronchial epithelial cells (NL-20) in vitro and elucidate the mechanism through which they induce damage. The nano fraction (NF) of the pesticide Karate Zeon® 5 CS was characterized and isolated, and the uptake into the cell and the changes induced in the cellular ultrastructure were evaluated. In addition, the primary markers of oxidative stress, reticulum stress, and genotoxicity were assessed using the micronucleus test. A 700 nm fraction with a Z potential of -40 mV was obtained, whose main component is polyurea formaldehyde; this allows the capsules to enter the cell through macropinocytosis and clathrin-mediated endocytosis. Inside, they induce oxidative stress activating a reticulum stress response via the BIP protein and the IRE-1 sensor, triggering an inflammatory response. Likewise, stress reduces cell proliferation, increasing genotoxic damage through micronuclei; however, this damage is mainly induced by direct contact of the capsules with the nucleus. This pioneering study uses a nanometric encapsulated commercial pesticide to evaluate the molecular mechanism of induced damage. It makes it the first step in analyzing whether these substances represent a contaminant or an emerging solution.


Sujet(s)
Pesticides , Humains , Pesticides/toxicité , Écosystème , Stress oxydatif , Altération de l'ADN , Stress du réticulum endoplasmique
14.
Biochim Biophys Acta Gen Subj ; 1868(1): 130502, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-37925033

RÉSUMÉ

BACKGROUND: The endoplasmic reticulum (ER) transmembrane chaperones DNAJB12(B12) and DNAJB14(B14) are cofactors that cooperate with cytosolic Heat Shock-70 protein (HSC70) facilitating folding/degradation of nascent membrane proteins and supporting the ER-membrane penetration of viral particles. Here, we assessed structural/functional features of B12/B14 with respect to their regulation by ER stress and their involvement in ER stress-mediated protein reflux. METHODS: We investigated the effect of Unfolded Protein Response(UPR)-eliciting drugs on the expression/regulation of B12-B14 and their roles in ER-to-cytosol translocation of Protein Disulfide Isomerase-A1(PDI). RESULTS: We show that B12 and B14 are similar but do not seem redundant. They share predicted structural features and show high homology of their cytosolic J-domains, while their ER-lumen DUF1977 domains are quite dissimilar. Interactome analysis suggested that B12/B14 associate with different biological processes. UPR activation did not significantly impact on B12 gene expression, while B14 transcripts were up-regulated. Meanwhile, B12 and B14 (33.4 kDa isoform) protein levels were degraded by the proteasome upon acute reductive challenge. Also, B12 degradation was impaired upon sulfenic-acid trapping by dimedone. We originally report that knockdown of B12/B14 and their cytosolic partner SGTA in ER-stressed cells significantly impaired the amount of the ER redox-chaperone PDI in a cytosolic-enriched fraction. Additionally, B12 but not B14 overexpression increased PDI relocalization in non-stressed cells. CONCLUSIONS AND GENERAL SIGNIFICANCE: Our findings reveal that B12/B14 regulation involves thiol redox processes that may impact on their stability and possibly on physiological effects. Furthermore, we provide novel evidence that these proteins are involved in UPR-induced ER protein reflux.


Sujet(s)
Réticulum endoplasmique , Chaperons moléculaires , Chaperons moléculaires/métabolisme , Réticulum endoplasmique/métabolisme , Cytosol/métabolisme , Proteasome endopeptidase complex/métabolisme , Oxydoréduction
15.
Biol Res ; 56(1): 64, 2023 Dec 02.
Article de Anglais | MEDLINE | ID: mdl-38041162

RÉSUMÉ

BACKGROUND: Asthma is a heterogenous disease that characterized by airway remodeling. SYVN1 (Synoviolin 1) acts as an E3 ligase to mediate the suppression of endoplasmic reticulum (ER) stress through ubiquitination and degradation. However, the role of SYVN1 in the pathogenesis of asthma is unclear. RESULTS: In the present study, an ovalbumin (OVA)-induced murine model was used to evaluate the effect of SYVN1 on asthma. An increase in SYVN1 expression was observed in the lungs of mice after OVA induction. Overexpression of SYVN1 attenuated airway inflammation, goblet cell hyperplasia and collagen deposition induced by OVA. The increased ER stress-related proteins and altered epithelial-mesenchymal transition (EMT) markers were also inhibited by SYVN1 in vivo. Next, TGF-ß1-induced bronchial epithelial cells (BEAS-2B) were used to induce EMT process in vitro. Results showed that TGF-ß1 stimulation downregulated the expression of SYVN1, and SYVN1 overexpression prevented ER stress response and EMT process in TGF-ß1-induced cells. In addition, we identified that SYVN1 bound to SIRT2 and promoted its ubiquitination and degradation. SIRT2 overexpression abrogated the protection of SYVN1 on ER stress and EMT in vitro. CONCLUSIONS: These data suggest that SYVN1 suppresses ER stress through the ubiquitination and degradation of SIRT2 to block EMT process, thereby protecting against airway remodeling in asthma.


Sujet(s)
Asthme , Facteur de croissance transformant bêta-1 , Animaux , Souris , Remodelage des voies aériennes , Asthme/induit chimiquement , Asthme/métabolisme , Asthme/anatomopathologie , Transition épithélio-mésenchymateuse , Sirtuine-2/métabolisme , Ubiquitination
16.
Antioxidants (Basel) ; 12(11)2023 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-38001860

RÉSUMÉ

The endoplasmic reticulum is a subcellular organelle key in the control of synthesis, folding, and sorting of proteins. Under endoplasmic reticulum stress, an adaptative unfolded protein response is activated; however, if this activation is prolonged, cells can undergo cell death, in part due to oxidative stress and mitochondrial fragmentation. Here, we report that endoplasmic reticulum stress activates c-Abl tyrosine kinase, inducing its translocation to mitochondria. We found that endoplasmic reticulum stress-activated c-Abl interacts with and phosphorylates the mitochondrial fusion protein MFN2, resulting in mitochondrial fragmentation and apoptosis. Moreover, the pharmacological or genetic inhibition of c-Abl prevents MFN2 phosphorylation, mitochondrial fragmentation, and apoptosis in cells under endoplasmic reticulum stress. Finally, in the amyotrophic lateral sclerosis mouse model, where endoplasmic reticulum and oxidative stress has been linked to neuronal cell death, we demonstrated that the administration of c-Abl inhibitor neurotinib delays the onset of symptoms. Our results uncovered a function of c-Abl in the crosstalk between endoplasmic reticulum stress and mitochondrial dynamics via MFN2 phosphorylation.

17.
Reprod Biomed Online ; 47(5): 103289, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37657301

RÉSUMÉ

RESEARCH QUESTION: Do microRNAs (miRNAs) play a role in regulating endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) in decidualized cells and endometrium associated with reproductive failures? DESIGN: Endometrial stromal cell line St-T1b was decidualized in vitro with 8-Br-cAMP over 5 days, or treated with the ERS inducer thapsigargin. Expression of ERS sensors, UPR markers and potential miRNA regulators was analysed by quantitative PCR. Endometrial biopsies from patients with recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) were investigated for the location of miRNA expression. RESULTS: Decidualization of St-T1b cells resulted in increased expression of ERS sensors including ATF6α, PERK and IRE1α, and the UPR marker, CHOP. TXNIP, which serves as a link between the ERS pathway and inflammation, as well as inflammasome NLRP3 and interleukin 1ß expression increased in decidualized cells. An in-silico analysis identified miR-17-5p, miR-21-5p and miR-193b-3p as miRNAs potentially involved in regulation of the ERS/UPR pathways and inflammation associated with embryo implantation. Their expression decreased significantly (P ≤ 0.0391) in non-decidualized cells in the presence of thapsigargin. Finally, expression of the selected miRNAs was localized by in-situ hybridization in stromal and glandular epithelial cells in endometrial samples from patients with RPL and RIF. Expression in stroma cells from patients with RPL was lower in comparison with stroma cells from patients with RIF. CONCLUSIONS: Decidualization in St-T1b cells is accompanied by ERS/UPR processes, associated with an inflammatory response that is potentially influenced by miR-17-5p, miR-21-5p and miR-193b-3p. These miRNAs are expressed differentially in stromal cells from patients with RPL and RIF, indicating an alteration in regulation of the ERS/UPR pathways.


Sujet(s)
Avortements à répétition , microARN , Grossesse , Femelle , Humains , microARN/génétique , microARN/métabolisme , Endoribonucleases/métabolisme , Thapsigargine/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Endomètre/métabolisme , Stress du réticulum endoplasmique , Réponse aux protéines mal repliées , Avortements à répétition/anatomopathologie , Inflammation/métabolisme
18.
J Biochem Mol Toxicol ; 37(12): e23492, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37561086

RÉSUMÉ

Cisplatin (CP) is a chemotherapeutic drug used to treat solid tumors. However, studies have revealed its nephrotoxic effect. Oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction are involved in CP-induced renal damage. Thus, preconditioning (hormetic effect) of ER stress is a strategy to prevent CP-induced renal damage. On the other hand, isoliquiritigenin (IsoLQ) is recognized as a flavonoid with antioxidant properties and an inducer of ER stress. Therefore, we evaluated the ER stress-inducing capacity of IsoLQ and its possible protective effect against CP-induced nephrotoxicity in adult male Wistar rats. The findings reflected that IsoLQ pretreatment might decrease renal damage by reducing plasma creatinine and blood urea nitrogen levels in animals with CP-induced nephrotoxicity. These may be associated with IsoLQ activating ER stress and unfolded protein response (UPR). We found increased messenger RNA levels of the ER stress marker glucose-related protein 78 kDa (GRP78). In addition, we also found that pretreatment with IsoLQ reduced the levels of CCAAT/enhancer-binding protein-homologous protein (CHOP) and X-box-binding protein 1 (XBP1) in the renal cortex, reflecting that IsoLQ can regulate the UPR and activation of the apoptotic pathway. Moreover, this preconditioning with IsoLQ of ER stress had oxidative stress-regulatory effects, as it restored the activity of glutathione peroxidase and glutathione reductase enzymes. Finally, IsoLQ modifies the protein expression of mitofusin 2 (Mfn-2) and voltage-dependent anion channel (VDAC). In conclusion, these data suggest that IsoLQ pretreatment has a nephroprotective effect; it could functionally regulate the ER and mitochondria and reduce CP-induced renal damage by attenuating hormesis-mediated ER stress.


Sujet(s)
Apoptose , Cisplatine , Rats , Animaux , Mâle , Cisplatine/toxicité , Rat Wistar , Rein , Stress oxydatif , Stress du réticulum endoplasmique
19.
Virol J ; 20(1): 145, 2023 07 11.
Article de Anglais | MEDLINE | ID: mdl-37434252

RÉSUMÉ

BACKGROUND: Cell responses to different stress inducers are efficient mechanisms that prevent and fight the accumulation of harmful macromolecules in the cells and also reinforce the defenses of the host against pathogens. Vaccinia virus (VACV) is an enveloped, DNA virus, belonging to the Poxviridae family. Members of this family have evolved numerous strategies to manipulate host responses to stress controlling cell survival and enhancing their replicative success. In this study, we investigated the activation of the response signaling to malformed proteins (UPR) by the VACV virulent strain-Western Reserve (WR)-or the non-virulent strain-Modified Vaccinia Ankara (MVA). METHODS: Through RT-PCR RFLP and qPCR assays, we detected negative regulation of XBP1 mRNA processing in VACV-infected cells. On the other hand, through assays of reporter genes for the ATF6 component, we observed its translocation to the nucleus of infected cells and a robust increase in its transcriptional activity, which seems to be important for virus replication. WR strain single-cycle viral multiplication curves in ATF6α-knockout MEFs showed reduced viral yield. RESULTS: We observed that VACV WR and MVA strains modulate the UPR pathway, triggering the expression of endoplasmic reticulum chaperones through ATF6α signaling while preventing IRE1α-XBP1 activation. CONCLUSIONS: The ATF6α sensor is robustly activated during infection while the IRE1α-XBP1 branch is down-regulated.


Sujet(s)
Facteurs de transcription , Virus de la vaccine , Facteurs de transcription/génétique , Virus de la vaccine/génétique , Endoribonucleases , Protein-Serine-Threonine Kinases , Stress du réticulum endoplasmique , Réponse aux protéines mal repliées
20.
Environ Toxicol Pharmacol ; 101: 104192, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37348771

RÉSUMÉ

The effects of the exposure of proliferating MDCK cells to thallium [Tl(I) or Tl(III)] on cell viability and proliferation were investigated. Although Tl stopped cell proliferation, the viability was > 95%. After 3 h, two autophagy markers (SQSTM-1 expression and LC3ß localization) were altered, and at 48 h increased expression of SQSTM-1 (60%) and beclin-1 (50-100%) were found. At 24 h, the expression of endoplasmic reticulum (ER) stress markers ATF-6 and IRE-1 were increased in 100% and 150%, respectively, accompanied by XBP-1 splicing and nuclear translocation. At 48 h, major ultrastructure abnormalities were found, including ER enlargement and cytoplasmic vacuolation which was not prevented by protein synthesis inhibition. Increased PHB (85% and 40% for Tl(I) and Tl(III), respectively) and decreased ß-tubulin (45%) expression were found which may be related to the promotion of paraptosis. In summary, Tl(I) and Tl(III) promoted ER stress and probably paraptosis in MDCK cells, impairing their proliferation.


Sujet(s)
Apoptose , Thallium , Animaux , Chiens , Thallium/pharmacologie , Cellules rénales canines Madin-Darby , Stress du réticulum endoplasmique , Prolifération cellulaire , Autophagie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE