Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.310
Filtrer
1.
Cureus ; 16(7): e64380, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39131018

RÉSUMÉ

Introduction The primary goal of endodontic therapy is to achieve a three-dimensional filling of the root canal. The sealer plays a crucial role in filling the residual gaps between the gutta-percha and the canal wall, which prevents fluids and bacteria from entering the canal and causing complications. This study evaluates and compares the sealing ability of four root canal sealers to the root dentin. Methods and materials In this study, forty single-rooted mandibular premolar teeth with fully-formed apices were collected. The teeth were decoronated and instrumented. Later, the teeth were randomly divided into four groups, each comprising ten specimens, based on the sealer used for obturation. The first group was obturated with BioRoot RCS (Septodont, Septodont Holding, Paris, France), the second group with MTA-Fillapex (Angelus, Angelus Indústria de Produtos Odontológicos S/A, Brazil), the third group with EpoxySeal (Safe Endo, SafeEndo Dental India Pvt. Ltd., Gujarat, India), and the fourth group with Sealapex (Kerr, Kerr Corporation, Brea, CA). Following obturation, the teeth were sectioned vertically using a diamond disc, and the marginal adaptation of these sealers to the root dentin was assessed using scanning electron microscopy (SEM). The values were then statistically analyzed. Results EpoxySeal showed the maximum amount of marginal adaptation (5.22±0.47), followed by BioRoot RCS (5.48±0.58) and MTA-Fillapex (8.24±0.74), and the least amount of marginal adaptation was shown by Sealapex (11.64±1.35). Based on the analysis of variance (ANOVA), a statistically significant difference (p≤0.001) was observed. According to Tukey's post hoc test, the mean difference between all groups showed statistical significance (p≤0.05) except between BioRoot RCS and EpoxySeal. Conclusion Within the limitations of this in vitro study, it is concluded that EpoxySeal and BioRoot RCS exhibited superior marginal adaptation to the root dentin. BioRoot RCS can be recommended as a sealer of choice owing to its additional properties, such as antimicrobial and hydrophilic affinity during setting.

2.
Materials (Basel) ; 17(15)2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39124390

RÉSUMÉ

This study focused on evaluating the sensitivity and limitations of the simplified equipment used in the Digital Image Correlation (DIC) technique, comparing them with the analog extensometer, based on the mechanical property data of a composite made of fiberglass and epoxy resin. The objectives included establishing a methodology based on the literature, fabricating samples through manual lamination, conducting mechanical tests according to the ASTM D3039 and D3518 standards, comparing DIC with the analog extensometer of the testing machine, and contrasting the experimental results with classical laminate theory. Three composite plates with specific stacking sequences ([0]3, [90]4, and [±45]3) were fabricated, and samples were extracted for testing to determine tensile strength, modulus of elasticity, and other properties. DIC was used to capture deformation fields during testing. Comparisons between data obtained from the analog extensometer and DIC revealed differences of 11.1% for the longitudinal modulus of elasticity E1 and 5.6% for E2. Under low deformation conditions, DIC showed lower efficiency due to equipment limitations. Finally, a theoretical analysis based on classical laminate theory, conducted using a Python script, estimated the longitudinal modulus of elasticity Ex and the shear strength of the [±45]3 laminate, highlighting a relative difference of 31.2% between the theoretical value of 7136 MPa and the experimental value of 5208 MPa for Ex.

3.
Clin Oral Investig ; 28(9): 479, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39126493

RÉSUMÉ

OBJECTIVES: The aim of this retrospective study was to compare the clinical results of two root canal sealers and three obturation techniques used for non-surgical root canal treatment. MATERIALS AND METHODS: A total of two hundred eighty-three root canal treated teeth in two hundred thirty-seven patients with minimum a 6-month follow-up was included for this study. The canals were filled with three different modes: 1) cold lateral condensation (CLC) and AH Plus Sealer; 2) continuous wave condensation technique (CWC) and AH Plus Sealer, and 3) sealer-based obturation technique (SBO) and AH Plus Bioceramic Sealer. The treatment outcome was analysed based on clinical signs and symptoms, and periapical radiograph (periapical index, PAI). RESULTS: There were no significant differences in treatment outcome between various sealers and filling techniques applied. The sealer extrusion was found most frequently in the CWC group (60.67%), followed by SBO (59.21%) and CLC (21.19%) with statistically significant differences (p < .05). The initial diagnosis, previous treatment and sealer extrusion (p < .05) were prognostic factors that affected treatment outcome. CONCLUSIONS: Based on the findings of this study, neither the sealer type nor the filling technique affected the treatment success while preoperative diagnosis, previous treatment and sealer extrusion had significant effect on the outcome. CLINICAL RELEVANCE: A bioceramic sealant applied along with the single-cone technique might be considered as an alternative method in root canal obturation.


Sujet(s)
Produits d'obturation des canaux radiculaires , Obturation de canal radiculaire , Humains , Produits d'obturation des canaux radiculaires/usage thérapeutique , Études rétrospectives , Obturation de canal radiculaire/méthodes , Mâle , Femelle , Résultat thérapeutique , Adulte d'âge moyen , Adulte , Résines époxy/usage thérapeutique , Sujet âgé , Traitement de canal radiculaire/méthodes
4.
Macromol Rapid Commun ; : e2400356, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39137315

RÉSUMÉ

The optimization of flame retardancy and thermal conductivity in epoxy resin (EP), utilized in critical applications such as mechanical components and electronics packaging, is a significant challenge. This study introduces a novel, ultrasound-assisted self-assembly technique to create a dual-functional filler consisting of carbon nanotubes and ammonium polyphosphate (CNTs@APP). This method, leveraging dynamic ligand interactions and strategic solvent selection, allows for precise control over the assembly and distribution of CNTs on APP surfaces, distinguishing it from conventional blending approaches. The integration of 7.5 wt.% CNTs@APP10 into EP nanocomposites results in substantial improvements in flame retardancy, as evidenced by a limiting oxygen index (LOI) value of 31.8% and achievement of the UL-94 V-0 rating. Additionally, critical fire hazard indicators, including total heat release (THR), total smoke release (TSR), and the peak intensity of CO yield (PCOY), are significantly reduced by 45.9% to 77.5%. This method also leads to a remarkable 3.6-fold increase in char yield, demonstrating its game-changing potential over traditional blending techniques. Moreover, despite minimal CNTs addition, thermal conductivity is notably enhanced, showing a 53% increase. This study introduces a novel approach in the development of multifunctional EP nanocomposites, offering potential for wide range of applications.

5.
Molecules ; 29(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39125060

RÉSUMÉ

We report a transformative epoxy system with a microalgae-derived bio-binder from hydrothermal liquefaction processing (HTL). The obtained bio-binder not only served as a curing agent for conventional epoxy resin (e.g., EPON 862), but also acted as a modifying agent to enhance the thermal and mechanical properties of the conventional epoxy resin. This game-changing epoxy/bio-binder system outperformed the conventional epoxy/hardener system in thermal stability and mechanical properties. Compared to the commercial EPON 862/EPIKURE W epoxy product, our epoxy/bio-binder system (35 wt.% bio-binder addition with respect to the epoxy) increased the temperature of 60% weight loss from 394 °C to 428 °C and the temperature of maximum decomposition rate from 382 °C to 413 °C, while the tensile, flexural, and impact performance of the cured epoxy improved in all cases by up to 64%. Our research could significantly impact the USD 38.2 billion global market of the epoxy-related industry by not only providing better thermal and mechanical performance of epoxy-based composite materials, but also simultaneously reducing the carbon footprint from the epoxy industry and relieving waste epoxy pollution.


Sujet(s)
Résines époxy , Microalgues , Microalgues/composition chimique , Résines époxy/composition chimique , Température , Composés époxy/composition chimique , Résistance à la traction
6.
Molecules ; 29(15)2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39125101

RÉSUMÉ

Currently, the composite industry is focusing on more environmentally friendly resources in order to generate a new range of biobased materials. In this manuscript, we present a new work using lignocellulosic wastes from the paper industry to incorporate into biobased epoxy systems. The manufactured materials were composed of kraft lignin, glass fiber, and a sustainable epoxy system, obtaining a 40% biobased content. Using a vacuum infusion process, we fabricated the composites and analyzed their mechanical and UV resistance properties. The findings reveal a significant correlation between the lignin content and flexural modulus and strength, showing an increase of 69% in the flexural modulus and 134% in the flexural strength with the presence of 5% of lignin content. Moreover, it is necessary to highlight that the presence of synthesized lignin inhibits the UV degradation of the biobased epoxy coating. We propose that the use of lignocellulosic-based wastes could improve the mechanical properties and generate UV resistance in the composite materials.

7.
Polymers (Basel) ; 16(15)2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39125140

RÉSUMÉ

The development of more recyclable materials is a key requirement for a transition towards a more circular economy. Thanks to exchange reactions, vitrimer, an attractive alternative for recyclable materials, is an innovative class of polymers that is able to change its topology without decreasing its connectivity. In this work, a bisphenol compound (VP) was prepared from saturated cardanol, i.e., 3-pentadecylphenol and vanillyl alcohol. Then, VP was epoxidized to obtain epoxide (VPGE). Finally, VPGE and citric acid (CA) were polymerized in the presence of catalyst TBD to prepare a fully bio-based vitrimer based on transesterification. The results from differential scanning calorimetry (DSC) showed that the VPGE/CA system could be crosslinked at around 163 °C. The cardanol-derived vitrimers had good network rearrangement properties. Meanwhile, because of the dynamic structural elements in the network, the material was endowed with excellent self-healing, welding, and recyclability.

8.
Polymers (Basel) ; 16(15)2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39125151

RÉSUMÉ

In this work, we studied the effect of bismuth oxide particle size and its attenuation capacity as a filler additive in epoxy resins. Six samples were prepared according to the amount of microparticles and nanoparticles in the sample and were coded as ERB-1, ERB-2, ERB-3, ERB-4, ERB-5, and ERB-6. One of the composite epoxies contained Bi2O3 microparticles at a 50:50 ratio (ERB-6) and was chosen as the control composite, and the number of microparticles (MPs) was gradually decreased and replaced by nanoparticles (NPs) to produce epoxy-containing Bi2O3 nanoparticles at a 50:50 ratio (ERB-1). The morphological and thermal characteristics of the studied composites were tested. The attenuation capability of the prepared composites, which is determined by the Bi2O3 particle size, was determined experimentally using a semiconductor detector, an HPGe-detector, and three different gamma-ray point sources (Am-241, Co-60, and Cs-137). The linear attenuation coefficient (LAC) of ERB-3, which contained 30% nanoparticles and 20% microparticles, had the highest value compared to the other composites at all the energies discussed, while the ERB-6 composite had the lowest value at all energies. The radiation-shielding efficiency (RSE) of the prepared samples was determined at all discussed energies; at 662 keV, the radiation-shielding efficiency values were 15.97%, 13.94%, and 12.55% for ERB-3, ERB-1, and ERB-6, respectively. The statistics also proved that the attenuation capacities of the samples containing a combination of nanoparticles and microparticles were much superior to those of the samples containing only microparticles or nanoparticles. A ranking of the samples based on their attenuation capacity is as follows: ERB-3 > ERB-4 > ERB-2 > ERB-1 > ERB-5 > ERB-6.

9.
Polymers (Basel) ; 16(15)2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39125179

RÉSUMÉ

This review is a fundamental tool for researchers and engineers involved in the design and optimization of fiber-reinforced composite materials. The aim is to provide a comprehensive analysis of the mechanical performance of composites with epoxy matrices reinforced with carbon nanofibers (CNFs). The review includes studies investigating the static mechanical response through three-point bending (3PB) tests, tensile tests, and viscoelastic behavior tests. In addition, the properties of the composites' resistance to interlaminar shear strength (ILSS), mode I and mode II interlaminar fracture toughness (ILFT), and low-velocity impact (LVI) are analyzed. The incorporation of small amounts of CNFs, mostly between 0.25 and 1% by weight was shown to have a notable impact on the static and viscoelastic properties of the composites, leading to greater resistance to time-dependent deformation and better resistance to creep. ILSS and ILFT modes I and II of fiber-reinforced composites are critical parameters in assessing structural integrity through interfacial bonding and were positively affected by the introduction of CNFs. The response of composites to LVI demonstrates the potential of CNFs to increase impact strength by reducing the energy absorbed and the size of the damage introduced. Epoxy matrices reinforced with CNFs showed an average increase in stiffness of 15% and 20% for bending and tensile, respectively. The laminates, on the other hand, showed an increase in bending stiffness of 20% and 15% for tensile and modulus, respectively. In the case of ILSS and ILFT modes I and II, the addition of CNFs promoted average increases in the order of 50%, 100%, and 50%, respectively.

10.
Molecules ; 29(14)2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-39064830

RÉSUMÉ

The performance and phase-separated microstructures of epoxy asphalt binders greatly depend on the concentration of epoxy resin or bitumen. In this paper, the effect of the epoxy resin (ER) concentration (10-90%) on the viscosity, thermo-mechanical properties, and phase-separated morphology of warm-mix epoxy asphalt binders (WEABs) was investigated using the Brookfield rotational viscometer, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and laser scanning confocal microscopy (LSCM). Due to the high reactivity of epoxy resin, the viscosity of WEABs increases with time. Furthermore, the initial viscosity of WEABs decreases with the ER concentration. Depending on the ER concentration, the viscosity-time behavior of WEABs is divided into three stages: slow (10-40%), fast (50-80%), and extremely slow (90%). In the slow stage, the viscosity slightly increases with the ER concentration, while the fast stage shows an opposite trend. DSC and DMA results reveal that WEABs with 10-80% ER exhibit two glass transition temperatures (Tgs) for cured epoxy resin and bitumen. Moreover, the Tgs of epoxy resin and bitumen increase with the ER concentration. However, WEAB with 90 % ER has only one Tg. LSCM observation shows that phase separation occurs in all WEABs. For WEABs containing 10-40% ER, spherical epoxy particles act as the discontinuous phase and disperse in the continuous bitumen phase. However, in WEABs with 50-90% ER, phase inversion takes place. Contrarily, bitumen particles disperse in the continuous epoxy phase. The damping properties of WEABs with the continuous epoxy phases increase with the ER concentration, while the crosslinking density shows an opposite trend. The occurrence of phase inversion results in a sharp increase in the tensile strength of WEABs. For WEABs with the continuous epoxy phases, the elongation at break increases with the ER concentration. The toughness first increases and then decreases with the ER concentration. A maximum toughness value shows at 70% ER.

11.
Polymers (Basel) ; 16(14)2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39065327

RÉSUMÉ

This study describes the production of a new biobased epoxy thermoset and its use with long hemp fibres to produce high-performance composites that are totally biobased. The synthesis of BioIgenox, an epoxy resin derived from a lignin biorefinery, and its curing process have been optimised to decrease their environmental impact. The main objective of this study is to characterise the rheology and kinetics of the epoxy system with a view to optimising the composite manufacturing process. Thus, the epoxy resin/hardener system was chosen considering the constraints imposed by the implementation of composites reinforced with plant fibres. The viscosity of the chosen mixture shows the compatibility of the formulation with the traditional implementation processes of the composites. In addition, unlike BPA-a precursor of diglycidyl ether of bisphenol A (DGEBA) epoxy resin-BioIgenox and its precursor do not have endocrine disrupting activities. The neat polymer and its unidirectional hemp fibre composite are characterised using three-point bending tests. Results measured for the fully biobased epoxy polymer show a bending modulus, a bending strength, a maximum strain at failure and a Tg of, respectively, 3.1 GPa, 55 MPa, 1.82% and 120 °C. These values are slightly weaker than those of the DGEBA-based epoxy material. It was also observed that the incorporation of fibres into the fully biobased epoxy system induces a decrease in the damping peak and a shift towards higher temperatures. These results point out the effective stress transfers between the hemp fibres and the fully biobased epoxy system. The high mechanical properties and softening temperature measured in this work with a fully biobased epoxy system make this type of composite a very promising sustainable material for transport and lightweight engineering applications.

12.
Polymers (Basel) ; 16(14)2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39065346

RÉSUMÉ

With the background of the fossil fuel energy crisis, the development of self-healing and recyclable polymer materials has become a research hotspot. In this work, a kind of cross-linking agent with pendent furan groups was first prepared and then used to produce the Polyurethane elastomer based on Diels-Alder chemistry (EPU-DA). In addition, in order to further enhance the mechanical properties of the elastomer, cellulose nanofibers (CNFs) were added into the Polyurethane system to prepare a series of composites with various contents of CNF (wt% = 0.1~0.7). Herein, the FTIR and DSC were used to confirm structure and thermal reversible character. The tensile test also indicated that the addition of CNF increased the mechanical properties compared to the pure Polyurethane elastomer. Due to their reversible DA covalent bonds, the elastomer and composites were recycled under high-temperature conditions, which extends Polyurethane elastomers' practical applications. Moreover, damaged coating can also be repaired, endowing this Polyurethane material with good potential for application in the field of metal protection.

13.
Polymers (Basel) ; 16(14)2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39065342

RÉSUMÉ

The application of lignin as a filler for poly (lactic acid) (PLA) is limited by their poor interfacial adhesion. To address this challenge, lignin-graft-poly(lauryl methacrylate) (LG-g-PLMA) was first blended with poly (lactic acid), and then epoxidized soybean oil (ESO) was also added to prepare PLA/LG-g-PLMA/ESO composite, which was subsequently hot pressed to prepare the composite films. The effect of ESO as a plasticizer on the thermal, mechanical, and rheological properties, as well as the fracture surface morphology of the PLA/LG-g-PLMA composite films, were investigated. It was found that the compatibility and toughness of the composites were improved by the addition of ESO. The elongation at break of the composites with an ESO content of 5 phr was increased from 5.6% to 104.6%, and the tensile toughness was increased from 4.1 MJ/m3 to 44.7 MJ/m3, as compared with the PLA/LG-g-PLMA composite without ESO addition. The toughening effect of ESO on composites is generally attributed to the plasticization effect of ESO, and the interaction between the epoxy groups of ESO and the terminal carboxyl groups of PLA. Furthermore, PLA/LG-g-PLMA/ESO composite films exhibited excellent UV barrier properties and an overall migration value below the permitted limit (10 mg/dm2), indicating that the thus-prepared biocomposite films might potentially be applied to environmentally friendly food packaging.

14.
Polymers (Basel) ; 16(14)2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39065343

RÉSUMÉ

The degradation of electrical insulating materials has been a subject of interest for decades as they are commonly applied in many fields of electrical engineering. Suitably modeling such a process is important since the known and well-described degradation process reveals the effect of ambient conditions, and this allows us to possibly estimate a material's remaining useful life. However, not many studies are dealing with the effect of the hygrothermal degradation of impregnating mono-component epoxy resins in the context of electrical engineering. Therefore, this study deals with this issue and discusses both the dielectric response (based on the measurement of relative permittivity, dissipation factor, and dielectric strength) and the mechanical response (based on measurements of tensile strength and Shore D hardness) to a hygrothermal degradation experiment. In addition, the results of thermal analyses are presented for the evaluation of the pristine specimen manufacturing process and possible post-curing processes. Furthermore, this study presents several methodologies for modeling the degradation process, including a novel methodology in this area based on Bayesian experimental design. As an outcome, mechanical parameters are proven to be specific in terms of the actual condition of the material and the Bayesian enhanced degradation model seems to be superior to the conventional evaluation methods in this particular study.

15.
Polymers (Basel) ; 16(14)2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39065352

RÉSUMÉ

This study presents the characterization of cross-linking parameters of a liquid crystalline epoxy monomer with an aromatic diamine as a curing agent. The mixture tested consisted of bis [4-(10,11-epoxyundecanoyloxy)benzoate] p-phenylene (LCEM) and 1,3-phenylenediamine (1,3-PDA). This paper focuses on the structural characterization of such systems using X-ray analysis. To investigate this, a comprehensive analysis was conducted using Differential Scanning Calorimetry (DSC) and Wide-Angle X-ray Scattering (WAXS). Through DSC analysis, the curing behavior and transition temperature of the liquid crystal epoxy system were established. To fully characterize the cross-linking of the system, a novel technique called DSC-TOPEM® was employed. The use of this technique enabled real-time monitoring of the curing process and provided precise information on the cross-linking energy, which resulted in the finding that the mixture was cross-linking faster than expected. WAXS analysis was performed to assess the structural changes formed during the cross-linking. The results of this analysis confirm that lower cross-linking temperatures of the mixture cause better ordering of mesogens than higher ones.

16.
Polymers (Basel) ; 16(14)2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39065358

RÉSUMÉ

This study focused on effective methods of laser engraving treatment (LET), plasma spraying, and resin pre-coating (RPC) to manufacture the reinforced adhesive joints of titanium alloy and carbon fiber-reinforced polymer (TA-CFRP) composites. The combined treatments contributed to the creation of a better adhesive bonding condition and offer a vertical gap between circular protrusions to form epoxy pins and carbon nanotube (CNT)-reinforced epoxy pins. The bonding strength of the TA-CFRP composite was reinforced by 130.6% via treatments with a twice-engraving unit of 0.8 mm, plasma spraying, and RPC. The original debonding failure on the TA surface was changed into the cohesive failure of the epoxy adhesive and delamination-dominated failure of the CFRP panel. Overall, laser engraving has been confirmed as an effective and controllable treatment method to reinforce the bonding strength of the TA-CFRP joint combined with plasma spraying and RPC. It may be considered as an alternative in industry for manufacturing high-performance metal-CFRP composites.

17.
Polymers (Basel) ; 16(14)2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39065371

RÉSUMÉ

Epoxy resins were reinforced with different ZnO nanofillers (commercial ZnO nanoparticles (ZnO NPs), recycled ZnO and functionalized ZnO NPs) in order to obtain ZnO-epoxy composites with suitable mechanical properties, high adhesion strength, and good resistance to corrosion. The final properties of ZnO-epoxy composites depend on several factors, such as the type and contents of nanofillers, the epoxy resin type, curing agent, and preparation methods. This paper aims to review the preparation methods, mechanical and anti-corrosion performance, and applications of ZnO-epoxy composites. The epoxy-ZnO composites are demonstrated to be valuable materials for a wide range of applications, including the development of anti-corrosion and UV-protective coatings, for adhesives and the chemical industry, or for use in building materials or electronics.

18.
Materials (Basel) ; 17(14)2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39063855

RÉSUMÉ

Due to the intricate and volatile nature of the service environment surrounding prestressing anchoring materials, stress corrosion poses a significant challenge to the sustained stability of underground reinforcement systems. Consequently, it is imperative to identify effective countermeasures against stress corrosion failure in cable bolts within deep underground environments, thereby ensuring the safety of deep resource extraction processes. In this study, the influence of various coatings on the stress corrosion resistance of cable bolts was meticulously examined and evaluated using specifically designed stress-corrosion-testing systems. The specimens were subjected to loading using four-point bending frames and exposed to simulated underground corrosive environments. A detailed analysis and comparison of the failure patterns and mechanisms of specimens coated with different materials were conducted through the meticulous observation of fractographic features. The results revealed stark differences in the stress corrosion behavior of coated and uncoated bolts. Notably, epoxy coatings and chlorinated rubber coatings exhibited superior anti-corrosion capabilities. Conversely, galvanized layers demonstrated the weakest effect due to their sacrificial anti-corrosion mechanism. Furthermore, the effectiveness of the coatings was found to be closely linked to the curing agent and additives used. The findings provide valuable insights for the design and selection of coatings that can enhance the durability and reliability of cable bolts in deep underground environments.

19.
Materials (Basel) ; 17(14)2024 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-39063892

RÉSUMÉ

Due to their remarkable intrinsic physical properties, carbon nanotubes (CNTs) can enhance mechanical properties and confer electrical and thermal conductivity to polymers currently being investigated for use in advanced applications based on thermal management. An epoxy resin filled with varying concentrations of CNTs (up to 3 wt%) was produced and experimentally characterized. The electrical percolation curve identified the following two critical filler concentrations: 0.5 wt%, which is near the electrical percolation threshold (EPT) and suitable for exploring mechanical and piezoresistive properties, and 3 wt% for investigating thermo-electric properties due to the Joule effect with applied voltages ranging from 70 V to 200 V. Near the electrical percolation threshold (EPT), the CNT concentration in epoxy composites forms a sparse, sensitive network ideal for deformation sensing due to significant changes in electrical resistance under strain. Above the EPT, a denser CNT network enhances electrical and thermal conductivity, making it suitable for Joule heating applications. Numerical models were developed using multiphysics simulation software. Once the models have been validated with experimental data, as a perfect agreement is found between numerical and experimental results, a simulation study is performed to investigate additional physical properties of the composites. Furthermore, a statistical approach based on the design of experiments (DoE) was employed to examine the influence of certain thermal parameters on the final performance of the materials. The purpose of this research is to promote the use of contemporary statistical and computational techniques alongside experimental methods to enhance understanding of materials science. New materials can be identified through these integrated approaches, or existing ones can be more thoroughly examined.

20.
Materials (Basel) ; 17(14)2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39063914

RÉSUMÉ

The application of organic coatings is the most cost-effective and common method for metallic equipment toward corrosion, whose anti-corrosion property needs to be improved and evaluated in a short time. To rapidly and rationally assess the anti-corrosion property of organic coatings in the ocean splash zone, a new accelerated test was proposed. In the study, the corrosion protection property of the coating samples was measured by an improved AC-DC-AC test in a simulated seawater of 3.5 wt.% NaCl solution, a simulated ocean splash zone test and a new accelerated test combining the above two tests. The results showed that the corrosion rate of the coating samples was high in the improved AC-DC-AC test, which lost its anti-corrosion property after 24 cycles equal to 96 h. The main rapid failure reason was that the time of the water and corrosive media arriving at the carbon steel substrate under the alternating cathodic and anodic polarization with symmetrical positive and negative electric charges was shortened. The entire impedance of the coating samples was improved by about 1.6 times more than that in the initial early time in the simulated ocean splash zone test, which was caused by the damage effect from the salt spraying, drying, humidifying, salt immersion, high temperature and UVA irradiation being weaker than the enhancement effect from the post-curing process by the UVA irradiation. In the new accelerated test, the samples lost their corrosion resistance after 12 cycles equal to 288 h with the fastest failure rate. On account of the coupling process of the salt spraying, drying, humidifying, salt immersion, high temperature combined with the cathodic and anodic polarization and the UVA irradiation, the penetration and transmission rate of water and corrosive media in the coating were further accelerated, the corrosion rate on the carbon steel substrate was reinforced even larger and the destruction of the top polymer molecules was more serious. The new accelerated test showed the strongest damage-acceleration effect than that in the other two tests.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE