Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.398
Filtrer
1.
Small ; : e2405692, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39221636

RÉSUMÉ

Pressure-modulated self-trapped exciton (STE) emission mechanism in all-inorganic lead-free metal halide double perovskites characterized by large Stokes-shifted broadband emission, has attracted much attention across various fields such as optics, optoelectronics, and biomedical sciences. Here, by employing the all-inorganic lead-free metal halide double perovskite Cs2TeCl6 as a paradigm, the authors elucidate that the performance of STE emission can be modulated by pressure, attributable to the pressure-induced evolution of the electronic state (ES). Two ES transitions happen at pressures of 1.6 and 5.8 GPa, sequentially. The electronic behaviors of Cs2TeCl6 can be jointly modulated by both pressure and ES transitions. When the pressure reaches 1.6 GPa, the Huang-Rhys factor S, indicative of the strength of electron-phonon coupling, attains an optimum value of ≈12.0, correlating with the pressure-induced photoluminescence (PL) intensity of Cs2TeCl6 is 4.8-fold that of its PL intensity under ambient pressure. Through analyzing the pressure-dependent STE dynamic behavioral changes, the authors have revealed the microphysical mechanism underlying the pressure-modulated enhancement and quenching of STE emission in Cs2TeCl6.

2.
Adv Sci (Weinh) ; : e2404436, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39239846

RÉSUMÉ

Exploration of high-temperature bosonic condensation is of significant importance for the fundamental many-body physics and applications in nanodevices, which, however, remains a huge challenge. Here, in combination of many-body perturbation theory and first-principles calculations, a new-type spatially indirect exciton can be optically generated in two-dimensional (2D) Bi2S2Te because of its unique structure feature. In particular, the spin-singlet spatially indirect excitons in Bi2S2Te monolayer are dipole/parity allowed and reveal befitting characteristics for excitonic condensation, such as small effective mass and satisfied dilute limitation. Based on the layered Bi2S2Te, the possibility of the high-temperature excitonic Bose-Einstein condensation (BEC) and superfluid state in two dimensions, which goes beyond the current paradigms in both experiment and theory, are proved. It should be highlighted that record-high phase transition temperatures of 289.7 and 72.4 K can be theoretically predicted for the excitonic BEC and superfluidity in the atomic thin Bi2S2Te, respectively. It therefore can be confirmed that Bi2S2Te featuring bound bosonic states is a fascinating 2D platform for exploring the high-temperature excitonic condensation and applications in such as quantum computing and dissipationless nanodevices.

3.
Small ; : e2404346, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39235385

RÉSUMÉ

Magnetic 2D materials offer a promising platform for manipulating quantum states at the nanoscale. Recent studies have underscored the significant influence of 2D magnetic materials on the optical behaviors of transition-metal dichalcogenides (TMDs), revealing phenomena such as interlayer exciton-magnon interactions, magnetization-dependent valley polarization, and an enhanced Zeeman effect. However, the controlled manipulation of anisotropic optical properties in TMDs via magnetism remains challenging. Here, the magnetic ordering in FePS3 profoundly impacts the optical characteristics of WSe2, achieving a giant linear polarization degree of 5.1 in exciton emission is demonstrated. This is supported by a detailed analysis of low-temperature photoluminescence (PL) and Raman spectra from nL-FePS3/WSe2 heterostructures. These findings indicate that a phase transition in FePS3 from paramagnetic to antiferromagnetic enhances interlayer Coulomb interactions, inducing a transition from non-polar to polar behavior in the heterostructures. Additionally, valley-polarized PL spectra under magnetic fields from -9 to 9 T reveal the influence of FePS3 on valley polarization and Zeeman splitting of excitons in monolayer WSe2. These results present a novel strategy for tailoring the optoelectronic properties of 2D magnetic van der Waals heterostructures, paving the way for advancements in nanoscale device design.

4.
Anal Biochem ; 696: 115658, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39244003

RÉSUMÉ

A novel photoelectrochemical (PEC) biosensor was developed incorporating a specifically designed RNA aptamer for the detection of theophylline (TP). This involved utilizing two nucleotide base aptamers with tailored sequences designed to target TP. The 3' end of a single-stranded RNA sequence (5'-GGAUACCA-(CH2)6-SH-3') and the 5' end of a complementary stranded RNA sequence (5'-HS-(CH2)6-CCUUGGAAGCC-3') were linked to gold nanoparticles (AuNPs) and CdS quantum dots (QDs), respectively. These two single-stranded RNAs (ssRNA) formed a double-stranded RNA (dsRNA) capable of recognizing TP. This major structural change altered the spacing between QDs and NPs, which signaled the presence and concentration of TP. TP was photoelectrochemical catalytic oxidation by the hole of CdS QDs under illumination, then anode photocurrent was generated. Due to the increase in surface impedance and the effect of exciton energy transfer (EET) between QDs and AuNPs, the photocurrent would undergo varying degrees of change. TP was detected by changes in photocurrent. PEC detection of TP was achieved in the range of 0.1 µM-200 µM. The detection limit was 0.033 µM. The method exhibited commendable reproducibility and remarkable selectivity. The biosensor was used to measure TP content in tea, beverages and blood samples, resulting in satisfactory recovery rates.

5.
Chemosphere ; 364: 143236, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39222690

RÉSUMÉ

The misuse and inevitable release of antibiotics can cause significant harm to both human health and the environment, and the use of polymeric semiconductors for photodegradation of antibiotics in aqueous environments is one of the most effective strategies to alleviate the current dilemma. Nevertheless, the inherently high exciton binding energy (Eb) and low photogenerated carrier transfer efficiency for most photocatalysts results in unsatisfactory photodegradation performance. Hence, this work proposes a donor polarization strategy to regulate the exciton dissociation of conjugated microporous polymers (CMPs) by minimizing their Eb. Results exhibited that the introduction of the strong donor unit 3,4-ethylenedioxythiophene (EDOT) not only reduces the Eb and effectively promotes exciton dissociation, but also broadens the visible light absorption of CMP. Among them, EdtTz-CMP with the lowest Eb (99 meV) delivered an efficiency of 94.6% in photocatalytic degradation of tetracycline (TC) with in 90 min, significantly higher than those of its analogues. This work provides a viable approach to design CMPs by tuning the intrinsic dipole of the donor for efficient environmental purification.

6.
Nano Lett ; 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39225684

RÉSUMÉ

Atomically thin transition metal dichalcogenides (TMDs) with ambient stable exciton resonances have emerged as an ideal material platform for exciton-polaritons. In particular, the strong coupling between excitons in TMDs and optical resonances in anisotropic photonic nanostructures can form exciton-polaritons with polarization selectivity, which offers a new degree of freedom for the manipulation of the light-matter interaction. In this work, we present the experimental demonstration of polarization-controlled exciton-polaritons in tungsten disulfide (WS2) strongly coupled with polarization singularities in the momentum space of low-symmetry photonic crystal (PhC) nanostructures. The utilization of polarization singularities can not only effectively modulate the polarization states of exciton-polaritons in the momentum space but also facilitate or suppress their far field coupling capabilities by tuning the in-plane momentum. Our results provide new strategies for creating polarization-selective exciton-polaritons.

7.
Nano Lett ; 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39265089

RÉSUMÉ

Transition metal dichalcogenide heterostructures have garnered strong interest for their robust excitonic properties, mixed light-matter states such as exciton-polaritons, and tailored properties, vital for advanced device engineering. Two-dimensional heterostructures inherit their physics from monolayers with the addition of interlayer processes that have been particularly emphasized for their electronic and optical properties. Here, we demonstrate the interlayer coupling of the MoSe2 phonons to WSe2 excitons in a WSe2/MoSe2 heterostructure using resonant Raman scattering. The WSe2 monolayer induces an interlayer resonance in the Raman cross-section of the MoSe2 A1g phonons. Frozen-phonon calculations within density functional theory reveal a strong deformation-potential coupling between the A1g MoSe2 phonon and the electronic states of the close-by WSe2 layer approaching 20% of the intralayer coupling to the MoSe2 electrons. Understanding the vibrational properties of van der Waals heterostructures requires going beyond the sum of their constituents and considering cross-material coupling.

8.
Angew Chem Int Ed Engl ; : e202412253, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39259427

RÉSUMÉ

Self-trapped exciton (STE) emission, typified by antimony (Sb), with broadband characteristics, represents the next generation of materials for solid-state lighting and radiation detection. However, little is known about the multiexciton behavior of the Sb emission center. Here, we proposed a general approach for designing antimony-centered multi-exciton emitting materials through self-assembly. Benefitting from controllable multiexciton behavior, dual-band white light emission spanning the entire visible spectrum was achieved. Relying on the reduction of an effective atomic number brought by self-assembly, excellent scintillation response to ß-rays was attained. This study offers unprecedented insight into hybrid single/triple STE emission and unveils new avenues for single-emitter white-light emission, as well as radiographic testing using low-risk ß-rays as sources.

9.
Nano Lett ; 24(36): 11163-11169, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39225119

RÉSUMÉ

Prolonging hot carrier cooling, a crucial factor in optoelectronic applications, including hot carrier photovoltaics, presents a significant challenge. High-energy band-nesting excitons within parallel bands offer a promising and underexplored avenue for addressing this issue. Here, we exploit an exceptional D exciton cooling prolongation of 2 to 3 orders of magnitude compared to sub-picosecond in typical transition metal dichalcogenides (TMDs) owing to the complex Coulomb environment and the sequential and mismatch-valley relaxation. Simultaneously, the intervalley scattering upconversion of band-edge excitons with the slow D exciton formation in the metastable Γ valley/hill also reduces the cooling rate. We successfully extract D and C excitons as hot carriers through integrating with various thicknesses of TiOx, achieving the highest efficiency of 98% and 85% at a Ti thickness of 2 nm. Our findings highlight the potential of band-nesting excitons for extending hot carrier cooling time, paving the way for advancements in hot carrier-based optoelectronic devices.

10.
Adv Sci (Weinh) ; : e2407254, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39162045

RÉSUMÉ

High-efficiency non-doped deep-blue organic light-emitting diodes (OLEDs) meeting the standard of BT.2020 color gamut is desired but rarely reported. Herein, an asymmetric structural engineering based on crossed long-short axis (CLSA) strategy is developed to obtain three new deep-blue emitters (BICZ, PHDPYCZ, and PHPYCZ) with a hot-exciton characteristic. Compared to 2BuCz-CNCz featuring a symmetric single hole-transport framework, these asymmetric emitters with the introduction of different electron-transport units show the enhancement of photoluminescence efficiency and improvement of bipolar charge transport capacity. Further combined with high radiative exciton utilization efficiency and light outcoupling efficiency, the non-doped OLED based on PHPYCZ exhibits the best performance with an excellent current efficiency of 3.49%, a record-high maximum external quantum efficiency of 9.5%, and a CIE y coordinate of 0.049 approaching the BT.2020 blue point. The breakthrough obtained in this work can inspire the molecular design of deep-blue emitters for high-performance non-doped BT.2020 blue OLEDs.

11.
Article de Anglais | MEDLINE | ID: mdl-39149417

RÉSUMÉ

Local fluctuations of the sugar-phosphate backbones and bases of DNA (a form of DNA 'breathing') play a central role in the assembly of protein-DNA complexes. We present a single-molecule fluorescence method to sensitively measure the local conformational fluctuations of exciton-coupled cyanine [(iCy3)2] dimer-labeled DNA fork constructs in which the dimer probes are placed at varying positions relative to the DNA fork junction. These systems exhibit spectroscopic signals that are sensitive to the local conformations adopted by the sugar-phosphate backbones and bases immediately surrounding the dimer probe label positions. The (iCy3)2 dimer has one symmetric (+) and one anti-symmetric (-) exciton with respective transition dipole moments oriented perpendicular to one another. We excite single molecule samples using a continuous-wave, linearly polarized laser with its polarization direction rotated at a frequency of 1 MHz. The ensuing fluorescence signal is modulated as the laser polarization alternately excites the symmetric and anti-symmetric excitons of the (iCy3)2 dimer probe. Phase-sensitive detection of the signal at the photon-counting level provides information about the distribution of local conformations and conformational dynamics. We analyze our data using a kinetic network model, which we use to parametrize the free energy surface of the system. In addition to observing DNA breathing at and near ss-dsDNA junctions, the approach can be used to study the effects of proteins that bind and function at these sites.

12.
Small ; : e2403345, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39118557

RÉSUMÉ

Although brightness and efficiency have been continually improved, the inability to achieve superior efficiency, color stability, and low-efficiency roll-off simultaneously in white organic light-emitting diodes (OLEDs) remains a knotty problem restricting the commercial application. In this paper, emission balance for two different horizontal orientation emitting molecules is maintained by using hole transport materials and bipolar host materials to control carriers' recombination and exciton diffusion. Impressively, the obtained devices exhibit extremely stable white emission with small chromaticity coordinates variation of (0.0023, 0.0078) over a wide brightness range from 1000 to 50000 cd m-2. Meanwhile, the optimal white OLED realizes the power efficiency, current efficiency, and external quantum efficiency up to 70.68 lm W-1, 85.53 cd A-1, and 24.33%, respectively at the practical brightness of 1000 cd m-2. Owing to reduced heterogeneous interfaces and broadening recombination region, this device exhibits a high EQE over 20% under high luminance of 10000 cd m-2, demonstrating slight efficiency roll-off. The operating mechanism of the device is analyzed by versatile experimental and theoretical evidences, which concludes precise manipulation of charges and excitons is the key points to achieve these excellent performances. This work provides an effective strategy for the design of high-performance white OLEDs.

13.
Adv Sci (Weinh) ; : e2407862, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39120494

RÉSUMÉ

Two-dimensional (2D) antiferromagnetic (AFM) semiconductors are promising components of opto-spintronic devices due to terahertz operation frequencies and minimal interactions with stray fields. However, the lack of net magnetization significantly limits the number of experimental techniques available to study the relationship between magnetic order and semiconducting properties. Here, they demonstrate conditions under which photocurrent spectroscopy can be employed to study many-body magnetic excitons in the 2D AFM semiconductor NiI2. The use of photocurrent spectroscopy enables the detection of optically dark magnetic excitons down to bilayer thickness, revealing a high degree of linear polarization that is coupled to the underlying helical AFM order of NiI2. In addition to probing the coupling between magnetic order and dark excitons, this work provides strong evidence for the multiferroicity of NiI2 down to bilayer thickness, thus demonstrating the utility of photocurrent spectroscopy for revealing subtle opto-spintronic phenomena in the atomically thin limit.

14.
Angew Chem Int Ed Engl ; : e202412691, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39133206

RÉSUMÉ

The development of nonfullerene acceptors (NFAs), represented by ITIC, has contributed to improving the power conversion efficiency (PCE) of organic solar cells (OSCs). Although tuning the electronic structures to reduce the exciton binding energy (Eb) is considered to promote photocharge generation, a rational molecular design for NFAs has not been established. In this study, we designed and developed two ITIC-based NFAs bearing spiro-substituted bithiophene or biphenyl units (named SpiroT-DCI and SpiroF-DCI) to tune the frontier molecular orbital (FMO) distribution of NFAs. While the highest occupied molecular orbitals (HOMOs) of SpiroF-DCI and ITIC are delocalized in the main π-conjugated framework, the HOMO of SpiroT-DCI is distributed on the bithiophene unit. Reflecting this difference, SpiroT-DCI exhibits a smaller Eb than either SpiroF-DCI or ITIC, and exhibits greater external quantum efficiency in single-component OSCs. Furthermore, SpiroT-DCI shows improved PCEs for bulk-heterojunction OSCs with a donor of PBDB-T, compared with that of either SpiroT-DCI or ITIC. Time-resolved spectroscopy measurements show that the photo-induced intermolecular charge separation is effective even in pristine SpiroT-DCI films. This study highlights the introduction of spiro-substituted bithiophene units that are effective in tuning the FMOs of ITIC, which is desirable for reducing the Eb and improving the PCE in OSCs.

15.
Nanophotonics ; 13(18): 3503-3518, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39185487

RÉSUMÉ

Bound states in the continuum have recently been utilized in photonic crystal gratings to achieve strong coupling and ultralow threshold condensation of exciton-polariton quasiparticles with atypical Dirac-like features in their dispersion relation. Here, we develop the single- and many-body theory of these new effective relativistic polaritonic modes and describe their mean-field condensation dynamics facilitated by the interplay between protection from the radiative continuum and negative-mass optical trapping. Our theory accounts for tunable grating parameters giving full control over the diffractive coupling properties between guided polaritons and the radiative continuum, unexplored for polariton condensates. In particular, we discover stable cyclical condensate solutions mimicking a driven-dissipative analog of the zitterbewegung effect characterized by coherent superposition of ballistic and trapped polariton waves. We clarify important distinctions between the polariton nearfield and farfield explaining recent experiments on the emission characteristics of these long lived nonlinear Dirac polaritons.

16.
Materials (Basel) ; 17(16)2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39203305

RÉSUMÉ

A fully quantum, numerically accurate methodology is presented for the simulation of the exciton dynamics and time-resolved fluorescence of cavity-tuned two-dimensional (2D) materials at finite temperatures. This approach was specifically applied to a monolayer WSe2 system. Our methodology enabled us to identify the dynamical and spectroscopic signatures of polaronic and polaritonic effects and to elucidate their characteristic timescales across a range of exciton-cavity couplings. The approach employed can be extended to simulation of various cavity-tuned 2D materials, specifically for exploring finite temperature nonlinear spectroscopic signals.

17.
ACS Nano ; 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39215393

RÉSUMÉ

Optical anisotropy is a fundamental attribute of some crystalline materials and is quantified via birefringence. A birefringent crystal gives rise to not only asymmetrical light propagation but also attenuation along two distinct polarizations, a phenomenon called linear dichroism (LD). Two-dimensional (2D) layered materials with high in-plane and out-of-plane anisotropy have garnered interest in this regard. Mithrene, a 2D metal-organic chalcogenate (MOCHA) compound, exhibits strong excitonic resonances due to its naturally occurring multiquantum well (MQW) structure and in-plane anisotropic response in the blue wavelength (∼400-500 nm) regime. The MQW structure and the large refractive indices of mithrene allow the hybridization of the excitons with photons to form self-hybridized exciton-polaritons in mithrene crystals with appropriate thicknesses. Here, we report the giant birefringence (∼1.01) and the tunable in-plane anisotropic response of mithrene, which stem from its low symmetry crystal structure and strong excitonic properties. We show that the LD in mithrene can be tuned by leveraging the anisotropic exciton-polariton formation via the cavity coupling effect, exhibiting giant in-plane LD (∼77.1%) at room temperature. Our results indicate that mithrene is a polaritonic birefringent material for polarization-sensitive nanophotonic applications in the short wavelength regime.

18.
ACS Nano ; 18(35): 24558-24568, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39159432

RÉSUMÉ

Perovskite nanocrystals (PCNs) exhibit a significant quantum confinement effect that enhances multiexciton generation, making them promising for photocatalytic CO2 reduction. However, their conversion efficiency is hindered by poor exciton dissociation. To address this, we synthesized ferrocene-methanol-functionalized CsPbBr3 (CPB/FcMeOH) using a ligand engineering approach. By manipulating the electronic coupling between ligands and the PCN surface, facilitated by the increased dipole moment from hydrogen bonding in FcMeOH molecules, we effectively controlled exciton dissociation and interfacial charge transfer. Under 5 h of irradiation, the CO yield of CPB/FcMeOH reached 772.79 µmol g-1, 4.95 times higher than pristine CPB. This high activity is due to the formation of hydrogen-bonded FcMeOH clusters on the CPB surface. The nonpolar disruption and strong dipole moment of FcMeOH molecules enhance electronic coupling between the FcMeOH ligands and the CPB surface, reducing the surface barrier energy. Consequently, exciton dissociation and interfacial charge transfer are promoted, efficiently utilizing multiple excitons in quantum-confined domains. Transient absorption spectroscopy confirms that CPB/FcMeOH exhibits optimized exciton behavior with fast internal relaxation, trapping, and a short recombination time, allowing photogenerated charges to more rapidly participate in CO2 reduction.

19.
ACS Nano ; 18(35): 24523-24531, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39159423

RÉSUMÉ

At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps.

20.
ACS Nano ; 18(34): 23196-23204, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39141918

RÉSUMÉ

Excitonic devices operate based on excitons, which can be excited by photons as well as emitting photons and serve as a medium for photon-carrier conversion. Excitonic devices are expected to combine the advantages of both the high response rate of photonic devices and the high integration of electronic devices simultaneously. However, because of the neutral feature, exciton transport is generally achieved via diffusion rather than using electric fields, and the efficient control of exciton flux directionality has always been difficult. In this work, a precisely designed one-dimensional periodic nanostructure (1DPS) is used to introduce periodic strain field along with resonant mode to the WS2 monolayer, achieving exciton oriented diffusion with a 7.6-fold exciton diffusion coefficient enhancement relative to that of intrinsic, while enhancing the excitonic emission intensity by a factor of 10 and reducing exciton saturation threshold power by 2 orders of magnitude. Based on the analysis of the density functional theory (DFT) and the finite-element method (FEM), we attribute the anisotropy of exciton diffusion to exciton funneling induced by periodic potentials, which do not require excessive potential height difference for an efficient oriented diffusion. As a result of resonant emission, the exciton diffusion is dragged into the nonlinear regime owing to the high exciton density close to saturation, which improves the exciton diffusion coefficient and diffusion anisotropy more appreciably.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE