Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 205
Filtrer
1.
Mol Plant Pathol ; 25(9): e70003, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39235122

RÉSUMÉ

Sugarcane smut fungus Sporisorium scitamineum produces polyamines putrescine (PUT), spermidine (SPD), and spermine (SPM) to regulate sexual mating/filamentous growth critical for pathogenicity. Besides de novo biosynthesis, intracellular levels of polyamines could also be modulated by oxidation. In this study, we identified two annotated polyamine oxidation enzymes (SsPAO and SsCuAO1) in S. scitamineum. Compared to the wild type (MAT-1), the ss1paoΔ and ss1cuao1Δ mutants were defective in sporidia growth, sexual mating/filamentation, and pathogenicity. The addition of a low concentration of cAMP (0.1 mM) could partially or fully restore filamentation of ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ. cAMP biosynthesis and hydrolysis genes were differentially expressed in the ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ cultures, further supporting that SsPAO- or SsCuAO1-based polyamine homeostasis regulates S. scitamineum filamentation by affecting the cAMP/PKA signalling pathway. During early infection, PUT promotes, while SPD inhibits, the accumulation of reactive oxygen species (ROS) in sugarcane, therefore modulating redox homeostasis at the smut fungus-sugarcane interface. Autophagy induction was found to be enhanced in the ss1paoΔ mutant and reduced in the ss1cuao1Δ mutant. Exogenous addition of cAMP, PUT, SPD, or SPM at low concentration promoted autophagy activity under a non-inductive condition (rich medium), suggesting a cross-talk between polyamines and cAMP signalling in regulating autophagy in S. scitamineum. Overall, our work proves that SsPAO- and SsCuAO1-mediated intracellular polyamines affect intracellular redox balance and thus play a role in growth, sexual mating/filamentation, and pathogenicity of S. scitamineum.


Sujet(s)
Oxydoréduction , Polyamines , Polyamines/métabolisme , Protéines fongiques/métabolisme , Protéines fongiques/génétique , AMP cyclique/métabolisme , Saccharum/microbiologie , Régulation de l'expression des gènes fongiques , Ustilaginales/pathogénicité , Autophagie
2.
Materials (Basel) ; 17(16)2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39203113

RÉSUMÉ

The control of Candida albicans biofilm formation on dentures made of poly(methyl methacrylate) (PMMA) is an important challenge due to the high resistance to antifungal drugs. Interestingly, the natural compounds undecylenic acid (UDA) and farnesol (FAR) both prevent C. albicans biofilm formation and could have a synergetic effect. We therefore modified PMMA with a combination of UDA and FAR (UDA+FAR), aiming to obtain the antifungal PMMA_UDA+FAR composites. Equal concentrations of FAR and UDA were added to PMMA to reach 3%, 6%, and 9% in total of both compounds in composites. The physico-chemical properties of the composites were characterized by Fourier-transform infrared spectroscopy and water contact angle measurement. The antifungal activity of the composites was tested on both biofilm and planktonic cells with an XTT test 0 and 6 days after the composites' preparation. The effect of the UDA+FAR combination on C. albicans filamentation was studied in agar containing 0.0125% and 0.4% UDA+FAR after 24 h and 48 h of incubation. The results showed the presence of UDA and FAR on the composite and decreases in the water contact angle and metabolic activity of both the biofilm and planktonic cells at both time points at non-toxic UDA+FAR concentrations. Thus, the modification of PMMA with a combination of UDA+FAR reduces C. albicans biofilm formation on dentures and could be a promising anti-Candida strategy.

3.
Virulence ; 15(1): 2395833, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39177034

RÉSUMÉ

BACKGROUND: Fatty acid metabolism constitutes a significant and intricate biochemical process within microorganisms. Cytochrome P450 (CYP450) enzymes are found in most organisms and occupy a pivotal position in the metabolism of fatty acids. However, the role of CYP450 enzyme mediated fatty acid metabolism in the pathogenicity of pathogenic fungi remains unclear. METHODS: In this study, a CYP450 enzyme-encoding gene, SsCYP86, was identified in the sugarcane smut fungus Sporisorium scitamineum and its functions were characterized using a target gene homologous recombination strategy and metabonomics. RESULTS: We found that the expression of SsCYP86 was induced by or sugarcane wax or under the condition of mating/filamentation. Sexual reproduction assay demonstrated that the SsCYP86 deletion mutant was defective in mating/filamentation and significantly reduced its pathogenicity. Further fatty acid metabolomic analysis unravelled the levels of fatty acid metabolites were reduced in the SsCYP86 deletion mutant. Exogenous addition of fatty acid metabolites cis-11-eicosenoic acid (C20:1N9), pentadecanoic acid (C15:0), and linolenic acid (C18:3N3) partially restored the mating/filamentation ability of the SsCYP86 deletion mutant and restored the transcriptional level of the SsPRF1, a pheromone response transcription factor that is typically down-regulated in the absence of SsCYP86. Moreover, the constitutive expression of SsPRF1 in the SsCYP86 deletion mutant restored its mating/filamentation. CONCLUSION: Our results indicated that SsCyp86 modulates the SsPRF1 transcription by fatty acid metabolism, and thereby regulate the sexual reproduction of S. scitamineum. These findings provide insights into how CYPs regulate sexual reproduction in S. scitamineum.


Sujet(s)
Cytochrome P-450 enzyme system , Acides gras , Protéines fongiques , Maladies des plantes , Acides gras/métabolisme , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Maladies des plantes/microbiologie , Cytochrome P-450 enzyme system/génétique , Cytochrome P-450 enzyme system/métabolisme , Régulation de l'expression des gènes fongiques , Saccharum/microbiologie , Virulence , Reproduction
4.
J Mol Biol ; 436(20): 168750, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39173734

RÉSUMÉ

The final step in the de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by CTP synthase (CTPS), which can form cytoophidia in all three domains of life. Recently, we have discovered that CTPS binds to ribonucleotides (NTPs) to form filaments, and have successfully resolved the structures of Drosophila melanogaster CTPS bound with NTPs. Previous biochemical studies have shown that CTPS can bind to deoxyribonucleotides (dNTPs) to produce 2'-deoxycytidine-5'-triphosphate (dCTP). However, the structural basis of CTPS binding to dNTPs is still unclear. In this study, we find that Drosophila CTPS can also form filaments with dNTPs. Using cryo-electron microscopy, we are able to resolve the structure of Drosophila melanogaster CTPS bound to dNTPs with a resolution of up to 2.7 Å. By combining these structural findings with biochemical analysis, we compare the binding and reaction characteristics of NTPs and dNTPs with CTPS. Our results indicate that the same enzyme can act bifunctionally as CTP/dCTP synthase in vitro, and provide a structural basis for these activities.

5.
mBio ; 15(8): e0124924, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-38949302

RÉSUMÉ

Protein kinases are critical regulatory proteins in both prokaryotes and eukaryotes. Accordingly, protein kinases represent a common drug target for a wide range of human diseases. Therefore, understanding protein kinase function in human pathogens such as the fungus Candida albicans is likely to extend our knowledge of its pathobiology and identify new potential therapies. To facilitate the study of C. albicans protein kinases, we constructed a library of 99 non-essential protein kinase homozygous deletion mutants marked with barcodes in the widely used SN genetic background. Here, we describe the construction of this library and the characterization of the competitive fitness of the protein kinase mutants under 11 different growth and stress conditions. We also screened the library for protein kinase mutants with altered filamentation and biofilm formation, two critical virulence traits of C. albicans. An extensive network of protein kinases governs these virulence traits in a manner highly dependent on the specific environmental conditions. Studies on specific protein kinases revealed that (i) the cell wall integrity MAPK pathway plays a condition-dependent role in filament initiation and elongation; (ii) the hyper-osmolar glycerol MAPK pathway is required for both filamentation and biofilm formation, particularly in the setting of in vivo catheter infection; and (iii) Sok1 is dispensable for filamentation in hypoxic environments at the basal level of a biofilm but is required for filamentation in normoxia. In addition to providing a new genetic resource for the community, these observations emphasize the environmentally contingent function of C. albicans protein kinases.IMPORTANCECandida albicans is one of the most common causes of fungal disease in humans for which new therapies are needed. Protein kinases are key regulatory proteins and are increasingly targeted by drugs for the treatment of a wide range of diseases. Understanding protein kinase function in C. albicans pathogenesis may facilitate the development of new antifungal drugs. Here, we describe a new library of 99 protein kinase deletion mutants to facilitate the study of protein kinases. Furthermore, we show that the function of protein kinases in two virulence-related processes, filamentation and biofilm formation, is dependent on the specific environmental conditions.


Sujet(s)
Biofilms , Candida albicans , Protein kinases , Candida albicans/génétique , Candida albicans/enzymologie , Candida albicans/pathogénicité , Candida albicans/physiologie , Biofilms/croissance et développement , Protein kinases/génétique , Protein kinases/métabolisme , Virulence , Animaux , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Candidose/microbiologie , Régulation de l'expression des gènes fongiques , Souris , Hyphae/croissance et développement , Hyphae/génétique
6.
mBio ; 15(8): e0153524, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-38980041

RÉSUMÉ

At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperatures remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild type and displayed globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.IMPORTANCEFungal pathogens such as Candida albicans can cause serious infections with high mortality rates in immunocompromised individuals. When C. albicans is grown at temperatures encountered during human febrile episodes, yeast cells undergo a transition to filamentous cells, and this process is key to its virulence. Here, we expanded our understanding of how C. albicans undergoes filamentation in response to elevated temperature and identified many genes involved in mRNA splicing that positively regulate filamentation. Through transcriptome analyses, we found that intron retention is a mechanism for fine-tuning gene expression in filaments, and perturbation of the spliceosome exacerbates intron retention and alters gene expression substantially, causing a block in filamentation. This work adds to the growing body of knowledge on the role of introns in fungi and provides new insights into the cellular processes that regulate a key virulence trait in C. albicans.


Sujet(s)
Candida albicans , Protéines fongiques , Régulation de l'expression des gènes fongiques , Splicéosomes , Candida albicans/génétique , Candida albicans/pathogénicité , Candida albicans/croissance et développement , Candida albicans/physiologie , Candida albicans/métabolisme , Splicéosomes/génétique , Splicéosomes/métabolisme , Humains , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Morphogenèse/génétique , Épissage des ARN , Virulence , Hyphae/croissance et développement , Hyphae/génétique , Introns/génétique
7.
J Photochem Photobiol B ; 258: 112994, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39059070

RÉSUMÉ

We investigated the deoxyribonucleic acid (DNA) damage induced by laser filamentation, which was generated by focusing femtosecond near-infrared Ti:Sapphire laser light in water at several repetition rates ranging from 1000 Hz to 10 Hz. Using plasmid DNA (pUC19), the single-strand break, double-strand break, nucleobase lesions, and the fragmented DNA were analyzed and quantified by agarose gel electrophoresis. Additionally, the H2O2 concentration after irradiation was determined. We observed that (1) the DNA damage per laser shot and (2) the enzyme-sensitive base lesions per total DNA damage decreased as the laser repetition rate increased. Furthermore, (3) extraordinarily short DNA fragments were likely to be produced, compared with those produced using X-rays, and (4) most OH radicals could be eliminated by recombination to generate H2O2, preventing them from damaging the DNA. The Monte-Carlo simulation of the strand break formation implies that the observed dependency of strand break efficiency on the laser repetition rate is mainly due to diffusion of DNA molecules. These findings quantitatively and qualitatively revealed that an intense laser pulse induces a specific DNA damage profile that is not induced by X-rays, a sparsely ionizing radiation source.


Sujet(s)
Altération de l'ADN , ADN , Peroxyde d'hydrogène , Lasers , Eau , Altération de l'ADN/effets des radiations , Eau/composition chimique , Peroxyde d'hydrogène/composition chimique , ADN/effets des radiations , ADN/composition chimique , Rayons infrarouges , Méthode de Monte Carlo , Plasmides/métabolisme , Cassures double-brin de l'ADN/effets des radiations , Radical hydroxyle/composition chimique , Rayons X
8.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-38874344

RÉSUMÉ

Candida albicans is a major fungal pathogen of humans that can cause serious systemic infections in vulnerable immunocompromised populations. One of its virulence attributes is its capacity to transition between yeast and filamentous morphologies, but our understanding of this process remains incomplete. Here, we analyzed data from a functional genomic screen performed with the C. albicans Gene Replacement And Conditional Expression collection to identify genes crucial for morphogenesis in host-relevant conditions. Through manual scoring of microscopy images coupled with analysis of each image using a deep learning-based method termed Candescence, we identified 307 genes important for filamentation in tissue culture medium at 37°C with 5% CO2. One such factor was orf19.5963, which is predicted to encode the prenyltransferase Nus1 based on sequence homology to Saccharomyces cerevisiae. We further showed that Nus1 and its predicted interacting partner Rer2 are important for filamentation in multiple liquid filament-inducing conditions as well as for wrinkly colony formation on solid agar. Finally, we highlight that Nus1 and Rer2 likely govern C. albicans morphogenesis due to their importance in intracellular trafficking, as well as maintaining lipid homeostasis. Overall, this work identifies Nus1 and Rer2 as important regulators of C. albicans filamentation and highlights the power of functional genomic screens in advancing our understanding of gene function in human fungal pathogens.


Sujet(s)
Candida albicans , Protéines fongiques , Candida albicans/génétique , Candida albicans/pathogénicité , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Humains , Dimethylallyltransferase/génétique , Dimethylallyltransferase/métabolisme , Hyphae/croissance et développement
9.
Colloids Surf B Biointerfaces ; 239: 113932, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38749165

RÉSUMÉ

Quaternary ammonium salts (QAS) are widely used in medicine, industry and agriculture as disinfectants, biocides, and fungicides. QAS have the ability to coat various surfaces, prevent adhesion of microorganisms to them and inhibit the formation of biofilm. A group of surfactants derived from benzoic acid with different chemical structures was tested: monomeric QAS with different alkyl chain lengths (C12, C14, C16), gemini QAS containing 12-carbon alkyl chains and linkers of various lengths (3,4,6 methylene groups), as well as multifunctional QAS. Among the tested surfactants, monomeric QAS showed the highest bactericidal and fungicidal activity. All three groups of tested compounds inhibited the filamentation of C. albicans. The best antimicrobial activity was demonstrated by the monomeric surfactant C12AA, while the multifunctional equivalent (2xC12AA) was characterized by good anti-adhesive activity. All tested compounds are non-mutagenic and cause low hemolysis of sheep erythrocytes. Multifunctional and gemini surfactants are also non-toxic.


Sujet(s)
Candida albicans , Hémolyse , Tests de sensibilité microbienne , Tensioactifs , Tensioactifs/pharmacologie , Tensioactifs/composition chimique , Tensioactifs/synthèse chimique , Ovis , Animaux , Candida albicans/effets des médicaments et des substances chimiques , Hémolyse/effets des médicaments et des substances chimiques , Érythrocytes/effets des médicaments et des substances chimiques , Biofilms/effets des médicaments et des substances chimiques , Anti-infectieux/pharmacologie , Anti-infectieux/composition chimique , Anti-infectieux/synthèse chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique , Antibactériens/synthèse chimique , Composés d'ammonium quaternaire/composition chimique , Composés d'ammonium quaternaire/pharmacologie , Composés d'ammonium quaternaire/synthèse chimique , Antifongiques/pharmacologie , Antifongiques/synthèse chimique , Antifongiques/composition chimique
10.
J Struct Biol ; 216(2): 108093, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38615726

RÉSUMÉ

Many enzymes can self-assemble into higher-order structures with helical symmetry. A particularly noteworthy example is that of nitrilases, enzymes in which oligomerization of dimers into spiral homo-oligomers is a requirement for their enzymatic function. Nitrilases are widespread in nature where they catalyze the hydrolysis of nitriles into the corresponding carboxylic acid and ammonia. Here, we present the Cryo-EM structure, at 3 Å resolution, of a C-terminal truncate nitrilase from Rhodococcus sp. V51B that assembles in helical filaments. The model comprises a complete turn of the helical arrangement with a substrate-intermediate bound to the catalytic cysteine. The structure was solved having added the substrate to the protein. The length and stability of filaments was made more substantial in the presence of the aromatic substrate, benzonitrile, but not for aliphatic nitriles or dinitriles. The overall structure maintains the topology of the nitrilase family, and the filament is formed by the association of dimers in a chain-like mechanism that stabilizes the spiral. The active site is completely buried inside each monomer, while the substrate binding pocket was observed within the oligomerization interfaces. The present structure is in a closed configuration, judging by the position of the lid, suggesting that the intermediate is one of the covalent adducts. The proximity of the active site to the dimerization and oligomerization interfaces, allows the dimer to sense structural changes once the benzonitrile was bound, and translated to the rest of the filament, stabilizing the helical structure.


Sujet(s)
Aminohydrolases , Cryomicroscopie électronique , Nitriles , Multimérisation de protéines , Rhodococcus , Aminohydrolases/composition chimique , Aminohydrolases/métabolisme , Aminohydrolases/ultrastructure , Cryomicroscopie électronique/méthodes , Rhodococcus/enzymologie , Nitriles/composition chimique , Nitriles/métabolisme , Spécificité du substrat , Modèles moléculaires , Domaine catalytique , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Protéines bactériennes/ultrastructure , Catalyse
11.
G3 (Bethesda) ; 14(5)2024 05 07.
Article de Anglais | MEDLINE | ID: mdl-38470537

RÉSUMÉ

Candida albicans is a prominent fungal pathogen that can infect the bloodstream and deep tissues. One key pathogenicity trait is the ability to transition between yeast and hyphal growth. Hyphae are critical for the formation of biofilms, which in turn enable device-associated infection. Among signals that drive hypha formation is the presence of hemin, an oxidized Fe(III)-containing heme derivative found in blood. In this study, we asked 4 questions. First, how uniform is the filamentation response to hemin among C. albicans strains? We tested 26 diverse isolates and found that the strength of a strain's filamentation response to hemin reflected its filamentation level in the absence of hemin. Second, does hemin induce biofilm formation? Hemin biofilm induction was evident in 5 out of 10 isolates tested, including most of the weaker biofilm formers tested. Third, what is the gene expression response to hemin? We compared RNA-seq data for type strain SC5314 grown in pH 5.5 minimal media with or without hemin. We also compared that response to SC5314 grown in pH 7.0 minimal media, where it undergoes well-studied pH-dependent filamentation. We found a common set of 72 genes with upregulated RNA levels in response to both signals, including many known hypha-associated genes. Surprisingly, overlap among those 72 genes with 2 recent consensus definitions of hypha-associated genes was limited to only 16 genes. Fourth, which regulators govern hemin-induced filamentation? A mutant survey indicated that the response depends upon filamentation regulators Efg1, Brg1, and Rim101, but not upon heme acquisition regulator Hap1 or its target genes HMX1, RBT5, PGA10, PGA7, and CSA2. These findings argue that hemin induces hypha formation independently of its utilization.


Sujet(s)
Biofilms , Candida albicans , Protéines fongiques , Régulation de l'expression des gènes fongiques , Hémine , Hyphae , Hémine/pharmacologie , Candida albicans/génétique , Candida albicans/effets des médicaments et des substances chimiques , Biofilms/effets des médicaments et des substances chimiques , Biofilms/croissance et développement , Hyphae/effets des médicaments et des substances chimiques , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique
12.
Front Cell Infect Microbiol ; 14: 1367656, 2024.
Article de Anglais | MEDLINE | ID: mdl-38550616

RÉSUMÉ

Amoebae are micropredators that play an important role in controlling fungal populations in ecosystems. However, the interaction between fungi and their amoebic predators suggests that the pressure from predatory selection can significantly influence the development of fungal virulence and evolutionary processes. Thus, the purpose of this study was to investigate the adaptation of saprotrophic Candida albicans strains during their interactions with Acanthamoeba castellanii. We conducted a comprehensive analysis of survival after co-culture by colony counting of the yeast cells and examining yeast cell phenotypic and genetic characteristics. Our results indicated that exposure to amoebae enhanced the survival capacity of environmental C. albicans and induced visible morphological alterations in C. albicans, particularly by an increase in filamentation. These observed phenotypic changes were closely related to concurrent genetic variations. Notably, mutations in genes encoding transcriptional repressors (TUP1 and SSN6), recognized for their negative regulation of filamentous growth, were exclusively identified in amoeba-passaged isolates, and absent in unexposed isolates. Furthermore, these adaptations increased the exposed isolates' fitness against various stressors, simultaneously enhancing virulence factors and demonstrating an increased ability to invade A549 lung human epithelial cells. These observations indicate that the sustained survival of C. albicans under ongoing amoebic predation involved a key role of mutation events in microevolution to modulate the ability of these isolates to change phenotype and increase their virulence factors, demonstrating an enhanced potential to survive in diverse environmental niches.


Sujet(s)
Amoeba , Candida albicans , Humains , Virulence/génétique , Écosystème , Facteurs de virulence , Mutation , Phénotype
13.
J Agric Food Chem ; 72(5): 2624-2633, 2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38277222

RÉSUMÉ

Pseudomonas syringae pv. actinidiae (Psa) is a significant pathogenic bacterium affecting the kiwifruit industry. This study investigated the target sites of streptothricin-F (ST-F), produced by Streptomyces lavendulae gCLA4. The inhibition of ST-F on Psa was examined by the microscopic structural differences of Psa before and after treatment with ST-F, as well as the interaction between ST-F and cell division-related proteins. The results revealed filamentation of Psa after ST-F treatment, and fluorescence microscopy showed that ST-F inhibited the formation of the Z-ring composed of FtsZ protein. In vitro experiments and molecular docking demonstrated that ST-F can bind to FtsZ with a binding energy of 0.4 µM and inhibit FtsZ's GTP-dependent polymerization reaction. In addition, ST-F does not exert inhibitory effects on cell division in Psa strains overexpressing ftsZ. In conclusion, FtsZ is one of the target sites for ST-F inhibition of Psa, highlighting its potential as a therapeutic target for controlling Psa-induced kiwifruit bacterial canker.


Sujet(s)
Actinidia , Streptothricine , Streptothricine/pharmacologie , Pseudomonas syringae , Simulation de docking moléculaire , Maladies des plantes/microbiologie , Actinidia/microbiologie
14.
Mol Plant Pathol ; 25(1): e13393, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37814404

RÉSUMÉ

Sugarcane smut caused by Sporisorium scitamineum seriously impairs sugarcane production and quality. Sexual mating/filamentation is a critical step of S. scitamineum pathogenesis, yet the regulatory mechanisms are not fully understood. In this study, we identified the SsAGA, SsODC, and SsSAMDC genes, which are involved in polyamine biosynthesis in S. scitamineum. Deletion of SsODC led to complete loss of filamentous growth after sexual mating, and deletion of SsAGA or SsSAMDC caused reduced filamentation. Double deletion of SsODC and SsSAMDC resulted in auxotrophy for putrescine (PUT) and spermidine (SPD) when grown on minimal medium (MM), indicating that these two genes encode enzymes that are critical for PUT and SPD biosynthesis. We further showed that low PUT concentrations promoted S. scitamineum filamentation, while high PUT concentrations suppressed filamentation. Disrupted fungal polyamine biosynthesis also resulted in a loss of pathogenicity and reduced fungal biomass within infected plants at the early infection stage. SPD formed a gradient from the diseased part to nonsymptom parts of the cane stem, suggesting that SPD is probably favourable for fungal virulence. Mutants of the cAMP-PKA (SsGPA3-SsUAC1-SsADR1) signalling pathway displayed up-regulation of the SsODC gene and elevated intracellular levels of PUT. SsODC directly interacted with SsGPA3, and sporidia of the ss1uac1ΔodcΔ mutant displayed abundant pseudohyphae. Furthermore, we found that elevated PUT levels caused accumulation of intracellular reactive oxygen species (ROS), probably by suppressing transcription of ROS-scavenging enzymes, while SPD played the opposite role. Overall, our work proves that polyamines play important roles in the pathogenic development of sugarcane smut fungus, probably by collaboratively regulating intracellular redox homeostasis with the cAMP-PKA signalling pathway.


Sujet(s)
Basidiomycota , Saccharum , Ustilaginales , Virulence , Polyamines/métabolisme , Espèces réactives de l'oxygène/métabolisme , Oxydoréduction , Putrescine/métabolisme , Spermidine/métabolisme , Homéostasie , Saccharum/génétique , Saccharum/métabolisme , Saccharum/microbiologie
15.
Appl Spectrosc ; 78(1): 9-55, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38116788

RÉSUMÉ

The development of measurement methodologies to detect and monitor nuclear-relevant materials remains a consistent and significant interest across the nuclear energy, nonproliferation, safeguards, and forensics communities. Optical spectroscopy of laser-produced plasmas is becoming an increasingly popular diagnostic technique to measure radiological and nuclear materials in the field without sample preparation, where current capabilities encompass the standoff, isotopically resolved and phase-identifiable (e.g., UO and UO2) detection of elements across the periodic table. These methods rely on the process of laser ablation (LA), where a high-powered pulsed laser is used to excite a sample (solid, liquid, or gas) into a luminous microplasma that rapidly undergoes de-excitation through the emission of electromagnetic radiation, which serves as a spectroscopic fingerprint for that sample. This review focuses on LA plasmas and spectroscopy for nuclear applications, covering topics from the wide-area environmental sampling and atmospheric sensing of radionuclides to recent implementations of multivariate machine learning methods that work to enable the real-time analysis of spectrochemical measurements with an emphasis on fundamental research and development activities over the past two decades. Background on the physical breakdown mechanisms and interactions of matter with nanosecond and ultrafast laser pulses that lead to the generation of laser-produced microplasmas is provided, followed by a description of the transient spatiotemporal plasma conditions that control the behavior of spectroscopic signatures recorded by analytical methods in atomic and molecular spectroscopy. High-temperature chemical and thermodynamic processes governing reactive LA plasmas are also examined alongside investigations into the condensation pathways of the plasma, which are believed to serve as chemical surrogates for fallout particles formed in nuclear fireballs. Laser-supported absorption waves and laser-induced shockwaves that accompany LA plasmas are also discussed, which could provide insights into atmospheric ionization phenomena from strong shocks following nuclear detonations. Furthermore, the standoff detection of trace radioactive aerosols and fission gases is reviewed in the context of monitoring atmospheric radiation plumes and off-gas streams of molten salt reactors. Finally, concluding remarks will present future outlooks on the role of LA plasma spectroscopy in the nuclear community.

16.
Antibiotics (Basel) ; 12(12)2023 Nov 28.
Article de Anglais | MEDLINE | ID: mdl-38136708

RÉSUMÉ

Candida albicans filamentation plays a significant role in developing both mucosal and invasive candidiasis, making it a crucial virulence factor. Consequently, exploring and identifying inhibitors that impede fungal hyphal formation presents an intriguing approach toward antifungal strategies. In line with this anti-filamentation strategy, we conducted a comprehensive screening of a library of FDA-approved drugs to identify compounds that possess inhibitory properties against hyphal growth. The compound octenidine dihydrochloride (OCT) exhibits potent inhibition of hyphal growth in C. albicans across different hyphae-inducing media at concentrations below or equal to 3.125 µM. This remarkable inhibitory effect extends to biofilm formation and the disruption of mature biofilm. The mechanism underlying OCT's inhibition of hyphal growth is likely attributed to its capacity to impede ergosterol biosynthesis and induce the generation of reactive oxygen species (ROS), compromising the integrity of the cell membrane. Furthermore, it has been observed that OCT demonstrates protective attributes against invasive candidiasis in Galleria mellonella larvae through its proficient eradication of C. albicans colonization in infected G. mellonella larvae by impeding hyphal formation. Although additional investigation is required to mitigate the toxicity of OCT in mammals, it possesses considerable promise as a potent filamentation inhibitor against invasive candidiasis.

17.
Front Cell Infect Microbiol ; 13: 1207083, 2023.
Article de Anglais | MEDLINE | ID: mdl-37928181

RÉSUMÉ

Introduction: Candida albicans is an opportunistic human pathogen that typically resides as part of the microbiome in the gastrointestinal and genitourinary tracts of a large portion of the human population. This fungus lacks a true sexual cycle and evolves in a largely clonal pattern. The ability to cause disease is consistent across the species as strains causing systemic infections appear across the known C. albicans intra-species clades. Methods: In this work, strains collected from patients with systemic C. albicans infections isolated at the Nebraska Medicine clinical laboratory were typed by MLST analysis. Since the ability to form filaments has been linked to pathogenesis in C. albicans, these clinical strains, as well as a previously genotyped set of clinical strains, were tested for their ability to filament across a variety of inducing conditions. Results: Genotyping of the clinical strains demonstrated that the strains isolated at one of the major medical centers in our region were as diverse as strains collected across the United States. We demonstrated that clinical strains exhibit a variety of filamentation patterns across differing inducing conditions. The only consistent pattern observed in the entire set of clinical strains tested was an almost universal inability to filament in standard solid inducing conditions used throughout the C. albicans field. A different solid filamentation assay that produces more robust filamentation profiles from clinical strains is proposed in this study, although not all strains expected to filament in vivo were filamentous in this assay. Discussion: Our data supports growing evidence that broad phenotypic diversity exists between the C. albicans type strain and clinical strains, suggesting that the type strain poorly represents filamentation patterns observed in most clinical isolates. These data further highlight the need to use diverse clinical strains in pathogenesis assays.


Sujet(s)
Candida albicans , Hyphae , Humains , Candida albicans/génétique , Typage par séquençage multilocus , Hyphae/génétique , Tube digestif , Phénotype
18.
Sensors (Basel) ; 23(22)2023 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-38005548

RÉSUMÉ

We experimentally studied the supercontinuum induced by femtosecond filamentation in different liquid media. Using a Mach-Zehnder interferometer, we determined the relative filamentation thresholds (Pth) of these media. Research has shown that the value of the filamentation threshold is greater than that of Pcr (critical power for self-focusing), which can mainly be attributed to the strong dispersion effect. Changing the focal length of the focusing lens affects filamentation dynamics, thereby affecting the measured results regarding the filamentation threshold. With shorter focal lengths, the linear focusing (i.e., geometrical focusing) regime dominates, and the measured values of Pth for different liquid media are almost the same; as the focal length becomes larger, self-focusing starts to play a role, making the values of Pth for different media different from each other. This study presents an efficient method for investigating the femtosecond filamentation phenomenon in liquid media, helpful to provide further insights into the physical mechanism of supercontinuum generation via femtosecond filamentation in liquid media.

19.
Bio Protoc ; 13(20): e4848, 2023 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-37900111

RÉSUMÉ

The cell cycle is a vital process of cell division that is required to sustain life. Since faithful cell division is critical for the proper growth and development of an organism, the study of the cell cycle becomes a fundamental research objective. Saccharomyces cerevisiae has been an excellent unicellular system for unraveling the secrets of cell division, and the process of synchronization in budding yeast has been standardized. Cell synchronization is a crucial step of cell cycle analysis, where cells in a culture at different stages of the cell cycle are arrested to the same phase and, upon release, they progress synchronously. The cellular synchronization of S. cerevisiae is easily achieved by a pheromone or other chemicals like hydroxyurea treatment; however, such methodologies seem to be ineffective in synchronizing cells of multimorphic fungi such as Candida albicans. C. albicans is a human pathogen that can grow in yeast, pseudohyphal, and hyphal forms; these forms differ in morphology as well as cell cycle progression. More importantly, upon subjecting to DNA replication inhibitors for synchronization, C. albicans develops hyphal structures and grows asynchronously. Therefore, here we describe a simple and easy method to synchronize C. albicans cells in the G1 phase and the subsequent analysis of cell cycle progression by using flow cytometry.

20.
Microbiol Spectr ; 11(6): e0205723, 2023 Dec 12.
Article de Anglais | MEDLINE | ID: mdl-37819114

RÉSUMÉ

IMPORTANCE: Reactive oxygen species play an important role in pathogen-plant interactions. In fungi, cytochrome c-peroxidase maintains intracellular ROS homeostasis by utilizing H2O2 as an electron acceptor to oxidize ferrocytochrome c, thereby contributing to disease pathogenesis. In this study, our investigation reveals that the cytochrome c-peroxidase encoding gene, SsCCP1, not only plays a key role in resisting H2O2 toxicity but is also essential for the mating/filamentation and pathogenicity of S. scitamineum. We further uncover that SsCcp1 mediates the expression of SsPrf1 by maintaining intracellular ROS homeostasis to regulate S. scitamineum mating/filamentation. Our findings provide novel insights into how cytochrome c-peroxidase regulates sexual reproduction in phytopathogenic fungi, presenting a theoretical foundation for designing new disease control strategies.


Sujet(s)
Cytochromes c , Peroxyde d'hydrogène , Espèces réactives de l'oxygène/métabolisme , Reproduction , Homéostasie , Peroxidases , Maladies des plantes/microbiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE