Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 410
Filtrer
1.
BMC Microbiol ; 24(1): 234, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951769

RÉSUMÉ

BACKGROUND: Klebsiella aerogenes is an opportunistic pathogen that causes a wide variety of infections. Due to the rising problem of antibiotic resistance, novel antibiotics and strategies to combat bacterial infections are needed. Host-specific bacteriophages are natural enemies of bacteria and can be used in phage therapy as an alternative form of treatment against bacterial infections. Jumbo phages are defined as phages with genomes larger than 200 kb. Relatively few studies have been done on jumbo phages compared to smaller phages. RESULTS: A novel phage, fENko-Kae01, was isolated from a commercial phage cocktail. Genomic analysis revealed that fENko-Kae01 is a lytic jumbo phage with a 360 kb genome encoding 578 predicted genes. No highly similar phage genomes were identified and fENko-Kae01 may be a completely new genus representative. No known genes associated with lysogenic life cycle, bacterial virulence, or antibiotic resistance were identified. The phage had myovirus morphology and a narrow host range. Phage resistant bacterial mutants emerged under phage selection. Whole genome sequencing revealed that the biogenesis of the flagellum was affected in four mutants and the lack of functional flagellum was confirmed in motility assays. Furthermore, phage fENKo-Kae01 failed to adsorb on the non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSIONS: fENko-Kae01 is a novel jumbo bacteriophage that is considered safe for phage therapy. fENko-Kae01 uses the flagellum as the phage-binding receptor and may represent a completely novel genus.


Sujet(s)
Bactériophages , Enterobacter aerogenes , Flagelles , Génome viral , Spécificité d'hôte , Bactériophages/génétique , Bactériophages/classification , Bactériophages/isolement et purification , Bactériophages/physiologie , Flagelles/virologie , Flagelles/génétique , Enterobacter aerogenes/virologie , Enterobacter aerogenes/génétique , Séquençage du génome entier , Myoviridae/génétique , Myoviridae/isolement et purification , Myoviridae/classification , Myoviridae/physiologie
2.
Curr Biol ; 34(13): 2932-2947.e7, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38897200

RÉSUMÉ

Many bacteria glycosylate flagellin on serine or threonine residues using pseudaminic acid (Pse) or other sialic acid-like donor sugars. Successful reconstitution of Pse-dependent sialylation by the conserved Maf-type flagellin glycosyltransferase (fGT) may require (a) missing component(s). Here, we characterize both Maf paralogs in the Gram-negative bacterium Shewanella oneidensis MR-1 and reconstitute Pse-dependent glycosylation in heterologous hosts. Remarkably, we uncovered distinct acceptor determinants and target specificities for each Maf. Whereas Maf-1 uses its C-terminal tetratricopeptide repeat (TPR) domain to confer flagellin acceptor and O-glycosylation specificity, Maf-2 requires the newly identified conserved specificity factor, glycosylation factor for Maf (GlfM), to form a ternary complex with flagellin. GlfM orthologs are co-encoded with Maf-2 in Gram-negative and Gram-positive bacteria and require an invariant aspartate in their four-helix bundle to function with Maf-2. Thus, convergent fGT evolution underlies distinct flagellin-binding modes in tripartite versus bipartite systems and, consequently, distinct O-glycosylation preferences of acceptor serine residues with Pse.


Sujet(s)
Flagelline , Flagelline/métabolisme , Flagelline/génétique , Glycosylation , Shewanella/métabolisme , Shewanella/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/composition chimique , Glycosyltransferase/métabolisme , Glycosyltransferase/génétique , Bactéries à Gram positif/métabolisme , Bactéries à Gram positif/génétique , Évolution moléculaire
3.
mBio ; 15(6): e0071024, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38682908

RÉSUMÉ

The causative agent of Legionnaires' disease, Legionella pneumophila, is an environmental bacterium, that replicates in macrophages, parasitizes amoeba, and forms biofilms. L. pneumophila employs the Legionella quorum sensing (Lqs) system and the transcription factor LvbR to control various bacterial traits, including virulence and biofilm architecture. LvbR negatively regulates the nitric oxide (NO) receptor Hnox1, linking quorum sensing to NO signaling. Here, we assessed the response of L. pneumophila to NO and investigated bacterial receptors underlying this process. Chemical NO donors, such as dipropylenetriamine (DPTA) NONOate and sodium nitroprusside (SNP), delayed and reduced the expression of the promoters for flagellin (PflaA) and the 6S small regulatory RNA (P6SRNA). Marker-less L. pneumophila mutant strains lacking individual (Hnox1, Hnox2, or NosP) or all three NO receptors (triple knockout, TKO) grew like the parental strain in media. However, in the TKO strain, the reduction of PflaA expression by DPTA NONOate was less pronounced, suggesting that the NO receptors are implicated in NO signaling. In the ΔnosP mutant, the lvbR promoter was upregulated, indicating that NosP negatively regulates LvbR. The single and triple NO receptor mutant strains were impaired for growth in phagocytes, and phenotypic heterogeneity of non-growing/growing bacteria in amoebae was regulated by the NO receptors. The single NO receptor and TKO mutant strains showed altered biofilm architecture and lack of response of biofilms to NO. In summary, we provide evidence that L. pneumophila regulates virulence, intracellular phenotypic heterogeneity, and biofilm formation through NO and three functionally non-redundant NO receptors, Hnox1, Hnox2, and NosP. IMPORTANCE: The highly reactive diatomic gas molecule nitric oxide (NO) is produced by eukaryotes and bacteria to promote short-range and transient signaling within and between neighboring cells. Despite its importance as an inter-kingdom and intra-bacterial signaling molecule, the bacterial response and the underlying components of the signaling pathways are poorly characterized. The environmental bacterium Legionella pneumophila forms biofilms and replicates in protozoan and mammalian phagocytes. L. pneumophila harbors three putative NO receptors, one of which crosstalks with the Legionella quorum sensing (Lqs)-LvbR network to regulate various bacterial traits, including virulence and biofilm architecture. In this study, we used pharmacological, genetic, and cell biological approaches to assess the response of L. pneumophila to NO and to demonstrate that the putative NO receptors are implicated in NO detection, bacterial replication in phagocytes, intracellular phenotypic heterogeneity, and biofilm formation.


Sujet(s)
Protéines bactériennes , Biofilms , Régulation de l'expression des gènes bactériens , Legionella pneumophila , Monoxyde d'azote , Transduction du signal , Biofilms/croissance et développement , Legionella pneumophila/génétique , Legionella pneumophila/pathogénicité , Legionella pneumophila/physiologie , Legionella pneumophila/métabolisme , Monoxyde d'azote/métabolisme , Virulence , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Phénotype , Macrophages/microbiologie , Détection du quorum
4.
Microbiol Spectr ; 12(6): e0016624, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38687073

RÉSUMÉ

Swarming motility in pseudomonads typically requires both a functional flagellum and the production/secretion of a biosurfactant. Published work has shown that the wild-type Pseudomonas fluorescens Pf0-1 is swarming deficient due to a point mutation in the gacA gene, which until recently was thought to inactivate rather than attenuate the Gac/Rsm pathway. As a result, little is known about the underlying mechanisms that regulate swarming motility by P. fluorescens Pf0-1. Here, we demonstrate that a ΔrsmA ΔrsmE ΔrsmI mutant, which phenotypically mimics Gac/Rsm pathway overstimulation, is proficient at swarming motility. RsmA and RsmE appear to play a key role in this regulation. Transposon mutagenesis of the ΔrsmA ΔrsmE ΔrsmI mutant identified multiple factors that impact swarming motility, including pathways involved in flagellar synthesis and biosurfactant production/secretion. We find that loss of genes linked to biosurfactant Gacamide A biosynthesis or secretion impacts swarming motility, as does loss of the alternative sigma factor FliA, which results in a defect in flagellar function. Collectively, these findings provide evidence that P. fluorescens Pf0-1 can swarm if the Gac/Rsm pathway is activated, highlight the regulatory complexity of swarming motility in this strain, and demonstrate that the cyclic lipopeptide Gacamide A is utilized as a biosurfactant for swarming motility.IMPORTANCESwarming motility is a coordinated process that allows communities of bacteria to collectively move across a surface. For P. fluorescens Pf0-1, this phenotype is notably absent in the parental strain, and to date, little is known about the regulation of swarming in this strain. Here, we identify RsmA and RsmE as key repressors of swarming motility via modulating the levels of biosurfactant production/secretion. Using transposon mutagenesis and subsequent genetic analyses, we further identify potential regulatory mechanisms of swarming motility and link Gacamide A biosynthesis and transport machinery to swarming motility.


Sujet(s)
Protéines bactériennes , Pseudomonas fluorescens , Pseudomonas fluorescens/génétique , Pseudomonas fluorescens/métabolisme , Mouvement/physiologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Methyltransferases/génétique , Methyltransferases/métabolisme , Tensioactifs/métabolisme , Mutagenèse , Facteur sigma/génétique , Facteur sigma/métabolisme
5.
Int Immunopharmacol ; 133: 112119, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38648715

RÉSUMÉ

The bacterial flagellum is an elongated filament that protrudes from the cell and is responsible for bacterial motility. It can also be a pathogen-associated molecular pattern (PAMP) that regulates the host immune response and is involved in bacterial pathogenicity. In contrast to motile bacteria, the Brucella flagellum does not serve a motile purpose. Instead, it plays a role in regulating Brucella virulence and the host's immune response, similar to other non-motile bacteria. The flagellin protein, FliK, plays a key role in assembly of the flagellum and also as a potential virulence factor involved in the regulation of bacterial virulence and pathogenicity. In this study, we generated a Brucella suis S2 flik gene deletion strain and its complemented strain and found that deletion of the flik gene has no significant effect on the main biological properties of Brucella, but significantly enhanced the inflammatory response induced by Brucella infection of RAW264.7 macrophages. Further experiments demonstrated that the FliK protein was able to inhibit LPS-induced cellular inflammatory responses by down-regulating the expression of MyD88 and NF-κB, and by decreasing p65 phosphorylation in the NF-κB pathway; it also inhibited the expression of NLRP3 and caspase-1 in the NLRP3 inflammasome pathway. In conclusion, our study suggests that Brucella FliK may act as a virulence factor involved in the regulation of Brucella pathogenicity and modulation of the host immune response.


Sujet(s)
Brucellose , Flagelline , Macrophages , Facteurs de virulence , Animaux , Souris , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Brucella suis/pathogénicité , Brucella suis/immunologie , Brucellose/immunologie , Brucellose/microbiologie , Caspase-1/métabolisme , Flagelline/métabolisme , Inflammasomes/métabolisme , Inflammasomes/immunologie , Inflammation/immunologie , Lipopolysaccharides/immunologie , Macrophages/immunologie , Macrophages/microbiologie , Facteur de différenciation myéloïde-88/métabolisme , Facteur de différenciation myéloïde-88/génétique , Facteur de transcription NF-kappa B/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/génétique , Cellules RAW 264.7 , Virulence , Facteurs de virulence/métabolisme , Facteurs de virulence/génétique
6.
Elife ; 122024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38441556

RÉSUMÉ

From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.


Sujet(s)
Malformations multiples , Infertilité masculine , Animaux , Humains , Mâle , Souris , Centrioles , Infertilité masculine/génétique , Souris knockout , Protéines associées aux microtubules/génétique , Sperme
7.
MethodsX ; 12: 102622, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38425495

RÉSUMÉ

Swarming motility is a type of movement used by pathogenic flagellated bacteria as virulence factor to colonize surfaces and cause damage to the host. Vibrio parahaemolyticus is a pathogenic flagellated bacterium that increases its virulence by switching from swimmer to swarming cells. The hosts of pathogenic V. parahaemolyticus include farmed shrimp. Therefore, methods to detect and quantify this movement are important to control shrimp diseases caused by pathogenic V. parahaemolyticus strains. We developed an optimized swarming motility assay by identifying the most optimal type of agar, and drying time of the culture medium, agar concentration and volume of the bacterial culture to achieve the fastest swarming motility during the migration of V. parahaemolyticus on Petri dishes during a 24-hour incubation period. The method includes data analysis that could be used as a tool to identify potential anti-virulence products by comparing the slopes of the linearized diameters of the swarming halos of bacteria treated with the products, as they migrate on Petri dishes over a 24-hour incubation period. Here we report:•A simple method for detection and quantification of swarming motility halos of V. parahaemolyticus bacteria.•A method that could be used as a tool to identify potential anti-virulence products.

8.
Genes Cells ; 29(4): 282-289, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38351850

RÉSUMÉ

The flagellar components of Vibrio spp., PomA and PomB, form a complex that transduces sodium ion and contributes to rotate flagella. The transmembrane protein PomB is attached to the basal body T-ring by its periplasmic region and has a plug segment following the transmembrane helix to prevent ion flux. Previously we showed that PomB deleted from E41 to R120 (Δ41-120) was functionally comparable to the full-length PomB. In this study, three deletions after the plug region, PomB (Δ61-120), PomB (Δ61-140), and PomB (Δ71-150), were generated. PomB (Δ61-120) conferred motility, whereas the other two mutants showed almost no motility in soft agar plate; however, we observed some swimming cells with speed comparable for the wild-type cells. When the two PomB mutants were introduced into a wild-type strain, the swimming ability was not affected by the mutant PomBs. Then, we purified the mutant PomAB complexes to confirm the stator formation. When plug mutations were introduced into the PomB mutants, the reduced motility by the deletion was rescued, suggesting that the stator was activated. Our results indicate that the deletions prevent the stator activation and the linker and plug regions, from E41 to S150, are not essential for the motor function of PomB but are important for its regulation.


Sujet(s)
Protéines bactériennes , Peptidoglycane , Protéines bactériennes/métabolisme , Peptidoglycane/analyse , Peptidoglycane/génétique , Peptidoglycane/métabolisme , Vibrio alginolyticus/génétique , Vibrio alginolyticus/métabolisme , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Mutation , Flagelles/métabolisme , Moteurs moléculaires/génétique , Moteurs moléculaires/composition chimique , Moteurs moléculaires/métabolisme
9.
Int J Mol Sci ; 25(4)2024 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-38396876

RÉSUMÉ

Clostridioides difficile is an important pathogen for humans with a lead in nosocomial infection, but it is also more and more common in communities. Our knowledge of the pathology has historically been focused on the toxins produced by the bacteria that remain its major virulence factors. But the dysbiosis of the intestinal microbiota creating the conditions for the colonization appears to be fundamental for our understanding of the disease. Colonization implies several steps for the bacteria that do or do not use their capacity of motility with the synthesis of flagella. In this review, we focus on the current understanding of different topics on the C. difficile flagellum, ranging from its genetic organization to the vaccinal interest in it.


Sujet(s)
Clostridioides difficile , Microbiome gastro-intestinal , Humains , Clostridioides difficile/génétique , Flagelles/génétique
10.
Microbiology (Reading) ; 170(1)2024 01.
Article de Anglais | MEDLINE | ID: mdl-38226962

RÉSUMÉ

Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.


Sujet(s)
Cytosquelette , Flagelles
11.
bioRxiv ; 2024 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-38293239

RÉSUMÉ

Swarming motility in pseudomonads typically requires both a functional flagellum and production/secretion of a biosurfactant. Published work has shown that the wild-type Pseudomonas fluorescens Pf0-1 is swarming-deficient due to a point mutation in the gacA gene, which until recently, was thought to inactivate rather than attenuate the Gac/Rsm pathway. As a result, little is known about the underlying mechanisms that regulate swarming motility by P. fluorescens Pf0-1. Here, we demonstrate that a ΔrsmA ΔrsmE ΔrsmI mutant, which phenotypically mimics Gac/Rsm pathway overstimulation, is proficient at swarming motility. RsmA and RsmE appear to play a key role in this regulation. Transposon mutagenesis of the ΔrsmA ΔrsmE ΔrsmI mutant identified multiple factors that impact swarming motility, including pathways involved in flagellar synthesis and biosurfactant production/secretion. We find that loss of genes linked to biosurfactant Gacamide A biosynthesis or secretion impact swarming motility, as does loss of the alternative sigma factor FliA, which results in a defect in flagellar function. Collectively, these findings provide evidence that P. fluorescens Pf0-1 can swarm if the Gac/Rsm pathway is activated, highlight the regulatory complexity of swarming motility in this strain, and demonstrate that the cyclic lipopeptide Gacamide A is utilized as a biosurfactant for swarming motility.

12.
Protoplasma ; 261(4): 671-684, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38236420

RÉSUMÉ

Some mosquitoes, including species of the genus Toxorhynchites, are known for actively preying on other mosquito larvae, making these predators valuable allies in the fight against vector-borne diseases. A comprehensive understanding of the anatomy and physiology of these potential biological control agents is helpful for the development of effective strategies for controlling vector populations. This includes the antennae, a crucial component in the search for hosts, mating, and selection of oviposition sites. This study utilized scanning electron microscopy to characterize the sensilla on the antennae of adult mosquitoes from two species that are exclusively phytophagous, including Toxorhynchites theobaldi and Toxorhynchites violaceus, as well as Lutzia bigoti, which females are allegedly hematophagous. The types of sensilla in each species were compared, and five basic types of antennal sensilla were identified: trichoid, chaetic, coeloconic, basiconic, and ampullacea. The analysis also found that they were morphologically similar across the three species, regardless of feeding habits or sex. The identification and characterization of basic types of antennal sensilla in T. theobaldi, T. violaceus, and L. bigoti suggest that these structures, which play a crucial role in the behavior and ecology, have common functions across different mosquito species, despite differences in feeding habits or sex.


Sujet(s)
Culicidae , Microscopie électronique à balayage , Sensilles , Animaux , Sensilles/ultrastructure , Femelle , Culicidae/ultrastructure , Culicidae/anatomie et histologie , Mâle
13.
Small ; 20(10): e2306303, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-37919854

RÉSUMÉ

The combination of immunotherapy and chemotherapy to ablate tumors has attracted substantial attention due to the ability to simultaneously elicit antitumor immune responses and trigger direct tumor cell death. However, conventional combinational strategies mainly focus on the employment of drug carriers to deliver immunomodulators, chemotherapeutics, or their combinations, always suffering from complicated preparation and carrier-relevant side effects. Here, the fabrication of bacterial flagellum-drug nanoconjugates (FDNCs) for carrier-free immunochemotherapy is described. FDNCs are simply prepared by attaching chemotherapeutics to amine residues of flagellin through an acid-sensitive and traceless cis-aconityl linker. By virtue of native nanofibrous structure and immunogenicity, bacterial flagella not only show long-term tumor retention and highly efficient cell internalization, but also provoke robust systemic antitumor immune responses. Meanwhile, conjugated chemotherapeutics exhibit an acid-mediated release profile and durable intratumoral exposure, which can induce potent tumor cell inhibition via direct killing. More importantly, this combination is able to augment immunoactivation effects associated with chemotherapy-enabled immunogenic tumor cell death to further enhance antitumor efficacy. By leveraging the innate response of the immune system to pathogens, the conjugation of therapeutic agents with self-adjuvant bacterial flagella provides an alternative approach to develop carrier-free nanotherapeutics for tumor immunochemotherapy.


Sujet(s)
Nanoconjugués , Tumeurs , Humains , Nanoconjugués/composition chimique , Vecteurs de médicaments/composition chimique , Tumeurs/traitement médicamenteux , Adjuvants immunologiques , Flagelles , Immunothérapie , Lignée cellulaire tumorale
14.
Protein Sci ; 33(2): e4882, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38151822

RÉSUMÉ

In bacterial flagellum biogenesis, secretion of the hook-filament junction proteins FlgK and FlgL and completion of the flagellum requires the FlgN chaperone. Similarly, the related FliT chaperone is necessary for the secretion of the filament cap protein FliD and binds the flagellar export gate protein FlhA and the flagellum ATPase FliI. FlgN and FliT require FliJ for effective substrate secretion. In Helicobacter pylori, neither FlgN, FliT, nor FliJ have been annotated. We demonstrate that the genome location of HP1120 is identical to that of flgN in other flagellated bacteria and that HP1120 is the homolog of Campylobacter jejuni FlgN. A modeled HP1120 structure contains three α-helices and resembles the FliT chaperone, sharing a similar substrate-binding pocket. Using pulldowns and thermophoresis, we show that both HP1120 and a HP1120Δ126-144 deletion mutant bind to FlgK with nanomolar affinity, but not to the filament cap protein FliD, confirming that HP1120 is FlgN. Based on size-exclusion chromatography and multi-angle light scattering, H. pylori FlgN binds to FlgK with 1:1 stoichiometry. Overall structural similarities between FlgN and FliT suggest that substrate recognition on FlgN primarily involves an antiparallel coiled-coil interface between the third helix of FlgN and the C-terminal helix of the substrate. A FlgNΔ126-144 N100A, Y103A, S111I triple mutant targeting this interface significantly impairs the binding of FlgK. Finally, we demonstrate that FlgNΔ126-144 , like FliT, binds with sub-micromolar affinity to the flagellum ATPase FliI or its N-terminal domain. Hence FlgN and FliT likely couple delivery of low-abundance export substrates to the flagellum ATPase FliI.


Sujet(s)
Adenosine triphosphatases , Helicobacter pylori , Adenosine triphosphatases/métabolisme , Protéines bactériennes/composition chimique , Chaperons moléculaires/composition chimique , Flagelles/composition chimique , Flagelles/génétique , Flagelles/métabolisme
15.
Cell Mol Life Sci ; 81(1): 1, 2023 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-38038747

RÉSUMÉ

Multiple morphological abnormalities of the flagella (MMAF) is a severe disease of male infertility, while the pathogenetic mechanisms of MMAF are still incompletely understood. Previously, we found that the deficiency of Ccdc38 might be associated with MMAF. To understand the underlying mechanism of this disease, we identified the potential partner of this protein and found that the coiled-coil domain containing 146 (CCDC146) can interact with CCDC38. It is predominantly expressed in the testes, and the knockout of this gene resulted in complete infertility in male mice but not in females. The knockout of Ccdc146 impaired spermiogenesis, mainly due to flagellum and manchette organization defects, finally led to MMAF-like phenotype. Furthermore, we demonstrated that CCDC146 could interact with both CCDC38 and CCDC42. It also interacts with intraflagellar transport (IFT) complexes IFT88 and IFT20. The knockout of this gene led to the decrease of ODF2, IFT88, and IFT20 protein levels, but did not affect CCDC38, CCDC42, or ODF1 expression. Additionally, we predicted and validated the detailed interactions between CCDC146 and CCDC38 or CCDC42, and built the interaction models at the atomic level. Our results suggest that the testis predominantly expressed gene Ccdc146 is essential for sperm flagellum biogenesis and male fertility, and its mutations might be associated with MMAF in some patients.


Sujet(s)
Infertilité masculine , Protéines associées aux microtubules , Flagelle du spermatozoïde , Animaux , Mâle , Souris , Fécondité/génétique , Protéines du choc thermique/métabolisme , Infertilité masculine/métabolisme , Souris knockout , Sperme , Flagelle du spermatozoïde/métabolisme , Flagelle du spermatozoïde/anatomopathologie , Spermatozoïdes/métabolisme , Testicule/métabolisme , Protéines associées aux microtubules/génétique
16.
Front Microbiol ; 14: 1304874, 2023.
Article de Anglais | MEDLINE | ID: mdl-38116529

RÉSUMÉ

Myxococcus xanthus and Escherichia coli represent a well-studied microbial predator-prey pair frequently examined in laboratory settings. While significant progress has been made in comprehending the mechanisms governing M. xanthus predation, various aspects of the response and defensive mechanisms of E. coli as prey remain elusive. In this study, the E. coli MG1655 large-scale chromosome deletion library was screened, and a mutant designated as ME5012 was identified to possess significantly reduced susceptibility to predation by M. xanthus. Within the deleted region of ME5012 encompassing seven genes, the significance of dusB and fis genes in driving the observed phenotype became apparent. Specifically, the deletion of fis resulted in a notable reduction in flagellum production in E. coli, contributing to a certain level of resistance against predation by M. xanthus. Meanwhile, the removal of dusB in E. coli led to diminished inducibility of myxovirescin A production by M. xanthus, accompanied by a slight decrease in susceptibility to myxovirescin A. These findings shed light on the molecular mechanisms underlying the complex interaction between M. xanthus and E. coli in a predatory context.

17.
Elife ; 122023 11 07.
Article de Anglais | MEDLINE | ID: mdl-37934199

RÉSUMÉ

Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.


Sujet(s)
Asthénozoospermie , Infertilité masculine , Humains , Mâle , Animaux , Souris , Sperme , Flagelles , Fécondité , Protéines de liaison au calcium , Dynéines
18.
Basic Clin Androl ; 33(1): 32, 2023 Nov 23.
Article de Anglais | MEDLINE | ID: mdl-37993789

RÉSUMÉ

BACKGROUND: The sperm flagellum is an evolutionarily conserved specialized organelle responsible for sperm motility and male fertility. Deleterious mutations in genes involved in the sperm flagellum assembly can often cause sperm motility defects and male infertility. The murine Dnali1 gene encodes a protein that is known to interact with the cytoplasmic dynein heavy chain 1. RESULTS: A Dnali1-mutated mouse model was generated by inducing a nonsense mutation in the Dnali1 gene. The Dnali1-mutated male mice presented impaired sperm motility and were completely infertile. Although no obviously abnormal sperm morphology was observed in Dnali1-mutated male mice, the ultrastructural structure of sperm flagellum was disrupted, displaying as an asymmetrical distribution of the longitudinal columns (LCs). Notably, infertile Dnali1-mutated male mice were able to obtain offspring via ICSI. CONCLUSIONS: Our results uncover a role of DNALI1 in sperm motility and male fertility in mice, and demonstrate that ICSI overcomes Dnali1-associated male infertility, thus providing guidance for the diagnosis and genetic counseling of DNALI1-associated human infertility.


RéSUMé: CONTEXTE: Le flagelle des spermatozoïdes est un organite spécialisé conservé au cours de l'évolution, responsable de la mobilité des spermatozoïdes et de la fertilité mâle. Les mutations délétères des gènes impliqués dans l'assemblage du flagelle des spermatozoïdes peuvent souvent causer des défauts de mobilité des spermatozoïdes et une infertilité mâle. Le gène murin Dnali1 code pour une protéine flagellaire connue pour interagir avec la chaîne lourde 1 de la dynéine cytoplasmique. RéSULTATS: Un modèle murin muté au niveau de Dnali1 a été généré par induction d'une mutation non-sens dans le gène Dnali1. Les souris mâles mutées au niveau de Dnali1 présentaient une altération de la mobilité des spermatozoïdes et étaient complètement infertiles. Bien qu'aucune morphologie manifestement anormale des spermatozoïdes n'ait été observée chez les souris mâles mutées au niveau de Dnali1, l'ultrastructure du flagelle des spermatozoïdes est perturbée, se présentant avec une distribution asymétrique des colonnes longitudinales. En particulier, les souris mâles infertiles mutées au niveau de Dnali1 ont pu obtenir une progéniture au moyen de l'injection intracytoplasmique de spermatozoïdes. CONCLUSIONS: Nos résultats révèlent un rôle de DNALI1 dans la mobilité des spermatozoïdes et dans la fertilité mâle chez la souris; ils montrent que l'ICSI surmonte l'infertilité mâle associée à Dnali1, fournissant ainsi des conseils pour le diagnostic et le conseil génétique de l'infertilité masculine associée à DNALI1. MOTS-CLéS: Infertilité; Mobilité des Spermatozoïdes; Asthénozoospermie; Flagelle des Spermatozoïdes; ICSI.

19.
Mol Reprod Dev ; 90(12): 804-809, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37992210

RÉSUMÉ

In mammals, the generation of sperm cells capable of fertilization is a highly complex process including spermatogenesis in the testis and maturation in the epididymis. In our previous study, we have demonstrated that FAM71D (Family with sequence similarity 71, member D), which could interact with calmodulin, was highly expressed in human and mouse testis. To investigate the physiological role of FAM71D in spermatogenesis, we next generate Fam71d loss-of-function mouse model using CRISPR/Cas9 technology. We performed immunofluorescence and RT-qPCR to examine the protein and mRNA expression in testicular cells. We found that FAM71D was predominantly localized in the round and elongated spermatids. And FAM71D KO mice displayed normal development of germ cell and fertility. Furthermore, testicular histology and sperm concentration showed no significant difference between WT and KO mice. These data demonstrate that FAM71D is dispensable for mouse spermatogenesis and male fertility.


Sujet(s)
Sperme , Spermatogenèse , Mâle , Souris , Humains , Animaux , Sperme/métabolisme , Souris knockout , Spermatogenèse/génétique , Testicule/métabolisme , Spermatozoïdes/métabolisme , Spermatides/métabolisme , Fécondité/génétique , Calmoduline/métabolisme , Mammifères
20.
Biophys Physicobiol ; 20(2): e200024, 2023 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-37867560

RÉSUMÉ

Most motile bacteria use supramolecular motility machinery called bacterial flagellum, which converts the chemical energy gained from ion flux into mechanical rotation. Bacterial cells sense their external environment through a two-component regulatory system consisting of a histidine kinase and response regulator. Combining these systems allows the cells to move toward favorable environments and away from their repellents. A representative example of flagellar motility is run-and-tumble swimming in Escherichia coli, where the counter-clockwise (CCW) rotation of a flagellar bundle propels the cell forward, and the clockwise (CW) rotation undergoes cell re-orientation (tumbling) upon switching the direction of flagellar motor rotation from CCW to CW. In this mini review, we focus on several types of chemotactic behaviors that respond to changes in flagellar shape and direction of rotation. Moreover, our single-cell analysis demonstrated back-and-forth swimming motility of an original E. coli strain. We propose that polymorphic flagellar changes are required to enhance bacterial movement in a structured environment as a colony spread on an agar plate.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...