Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 10.034
Filtrer
1.
Small ; : e2403133, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39221667

RÉSUMÉ

Due to its small hole-effective mass, flexibility, and transparency, copper iodide (CuI) has emerged as a promising p-type alternative to the predominantly used n-type metal oxide semiconductors. However, the lack of effective doping methods hinders the utility of CuI in various applications. Sulfur (S)-doping through liquid iodination is previously reported to significantly enhance electrical conductivity up to 511 S cm-1. In this paper, the underlying doping mechanism with various S-dopants is explored, and suggested a method for controlling electrical conductivity, which is important to various applications, especially thermoelectric (TE) materials. Subsequently, electric and TE properties are systematically controlled by adjusting the carrier concentration from 3.0 × 1019 to 4.5 × 1020 cm-3, and accurately measured thermal conductivity with respect to carrier concentration and film thickness. Sulfur-doped CuI (CuI:S) thin films exhibited a maximum power factor of 5.76 µW cm-1 K-2 at a carrier concentration of 1.3 × 1020 cm-3, and a TE figure of merit (ZT) of 0.25. Furthermore, a transparent and flexible TE power generator is developed, with an impressive output power density of 43 nW cm-2 at a temperature differential of 30 K. Mechanical durability tests validated the potential of CuI:S films in transparent and flexible TE applications.

2.
Small ; : e2405719, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39221679

RÉSUMÉ

Na3V2(PO4)3(NVP), as a representative sodium superionic conductor with a stable polyanion framework, is considered a cathode candidate for aqueous zinc-ion batteries attributed to their high discharge platform and open 3D structure. Nevertheless, the structural stability of NVP and the cathode-electrolyte interphase (CEI) layer formed on NVP can be deteriorated by the aqueous electrolyte to a certain extent, which will result in slow Zn2+ migration. To solve these problems, doping Si elements to NVP and adding sodium acetate (NaAc) to the electrolyte are utilized as a synergistic regulation route to enable a highly stable  CEI with rapid Zn2+ migration. In this regard, Ac- competitively takes part in the solvation structure of Zn2+ in aqueous electrolyte, weakening the interaction between water and Zn2+, and meanwhile a highly stable CEI is formed to avoid structural damage and enable rapid Zn2+ migration. The NVPS/C@rGO electrode exhibits a notable capacity of 115.5 mAh g-1 at a current density of 50 mA g-1 in the mixed electrolyte (3 M ZnOTF2+3 M NaAc). Eventually, a collapsible "sandwich" soft pack battery is designed and fabricated and can be used to power small fans and LEDs, which proves the practical application of aqueous zinc-ion batteries in flexible batteries.

3.
BMC Urol ; 24(1): 190, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39223599

RÉSUMÉ

BACKGROUND: To compare the operative effect and clinical efficacy of the Moses laser mode and the Raykeen holmium laser energy platform powder mode under flexible ureteroscopic lithotripsy in patients with impacted upper ureteral stones. METHODS: From March 2022 to September 2022, 72 patients were divided into a Moses laser group and a Raykeen laser group according to surgical method, with 36 patients in each group. CT and ureteroscopy confirmed that all patients had isolated impacted upper ureteral stones. The stone volume (mm3), stone density (Hu) and severity of hydronephrosis were measured by CT. Postoperative complications were evaluated using the Clavien-Dindo score. RESULTS: There were no complications of ureteral stenosis related to the laser treatment. The operative time and lithotripsy time were lower in the Moses laser group than in the Raykeen laser group (P < 0.05). The stone-free survival rate did not differ significantly between the two groups (P = 0.722). Stone volume was found to be positively correlated with laser energy and lithotripsy time in both groups (P < 0.01). There was no significant correlation between laser energy and lithotripsy time or ureteral stone density (Hu) in the Moses laser group (P > 0.05) or the Raykeen laser group (P > 0.05). CONCLUSIONS: The contact mode of Moses technology and the powder mode of Raykeen laser lithotripsy can be used for the ablation of a single impacted upper ureteral stone. The ablation speed was related to the stone volume and the severity of polyp hyperplasia, not the stone density. We recommend the use of the powdered mode as a therapeutic measure for the treatment of impacted upper ureteral stones in flexible ureteroscopic lithotripsy.


Sujet(s)
Lasers à solide , Lithotritie par laser , Calculs urétéraux , Urétéroscopie , Humains , Calculs urétéraux/chirurgie , Calculs urétéraux/thérapie , Lasers à solide/usage thérapeutique , Lithotritie par laser/méthodes , Urétéroscopie/méthodes , Mâle , Femelle , Adulte d'âge moyen , Adulte , Résultat thérapeutique , Études rétrospectives , Sujet âgé , Urétéroscopes
4.
Article de Anglais | MEDLINE | ID: mdl-39230598

RÉSUMÉ

Hydrogel, as a promising material for a wide range of applications, has demonstrated considerable potential for use in flexible wearable devices and engineering technologies. However, simultaneously realizing the ultrastretchability, low hysteresis, and high toughness of hydrogels is still a great challenge. Here, we present a dual physically cross-linked polyacrylamide (PAM)/sodium hyaluronate (HA)/montmorillonite (MMT) hydrogel. The introduction of HA increases the degree of chain entanglement, and the addition of MMT acts as a stress dissipation center and cross-linking agent, resulting in a hydrogel with high toughness and low hysteretic properties. This hydrogel synthesized by a simple strategy exhibited ultrahigh stretchability (3165%), high breaking stress (228 kPa), high toughness (4.149 MJ/m3), and ultralow hysteresis (≈2% at 100% of strain). The fabricated hydrogel flexible strain sensors possessed fast response and recovery times (62.5:75 ms), a wide strain detection range (2000%), a strain detection limit of 1%, and excellent cycling stability over 500 cycles. Furthermore, the hydrogel flexible strain sensor can be used for human motion monitoring, gesture recognition, and pressure recognition assisted by deep learning algorithms, showing enormous promise for applications.

5.
Article de Anglais | MEDLINE | ID: mdl-39230937

RÉSUMÉ

As a noncontact target recognition technique, radio-frequency identification (RFID) technology demonstrates attractive potential in constructing human-machine interaction (HMI) systems. However, the current development of RFID technologies in HMI systems is hampered by critical challenges in manufacturing high-performance RFID readers with superior flexibility and wearing comfort. Hence, we propose a multilevel printing strategy to overcome the difficulties in manufacturing high-performance large-scale microwave systems. Compared to traditional processes, the RFID system fabricated by the hybrid additive manufacturing technique exhibits equivalent electromagnetic performance and has obvious advantages in terms of manufacturing cost and environmental friendliness. A printed reconfigurable antenna with intelligent radiation mode is seamlessly integrated with the reader circuit via a "one-step" printing technology. Additionally, through chemical doping and artificial intelligence (AI) prediction, we have developed a modified polydimethylsiloxane (PDMS) encapsulation to miniaturize the system volume and enhance reliability. Electromagnetic and mechanical measurements demonstrated that our flexible RFID platform offers superior reliability and stability during long-term daily use. The RFID platform possesses exceptional capabilities in target positioning and accurate identification, demonstrating unique potential in noncontact sensing and recognition, which are highly demanded by flexible and wearable HMI systems.

6.
Nano Lett ; 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39225661

RÉSUMÉ

The utilization of perovskite materials in flexible optoelectronics is experiencing distinct diversification including X-ray detection applications. Here, we report the oriented alignment of cesium lead bromide (CsPbBr3) single-crystal arrays on flexible polydimethylsiloxane (PDMS) substrates. By precisely confining the crystallization process within spatially delimited precursor droplets, we achieve a well-oriented crystal alignment through the spontaneous rotation of the CsPbBr3 microcuboids. This approach allows for precise control over the microcuboid morphologies by varying the growth temperature. We design flexible X-ray detector arrays by seamlessly integrating CsPbBr3 microcuboids with electrode arrays. The flexible X-ray detector can output a high sensitivity of 1.97 × 105 µC·Gyair-1·cm-2 and a low detection limit of 89 nGyair·s-1 after the surface passivation process. The excellent mechanical properties, outstanding X-ray detection capabilities, and high pixel uniformity are also demonstrated in conformal X-ray imaging of curved surfaces.

7.
J Colloid Interface Sci ; 678(Pt B): 497-505, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39260298

RÉSUMÉ

Aqueous zinc-ion batteries are attracting extensive attention due to the long-term service life and credible safety as well as the superior price performance between the low cost of manufacture and high energy density. The fabrication of inexpensive, high-performance flexible solid-state zinc-ion batteries, thus, are urgently need for the blooming wearable electronics. Herein, as a proof-of-concept study of waste into wealth, cellulose flakes derived from waste pomelo peel are utilized as the substrate for electrodes and hydrogel electrolytes into a flexible rocking-chair zinc-ion battery. The unique sandwich-type structure holding the flake-like cellulose substrate and linear carbon nanotubes endows the flexible cathode and anode with fast ion and electron transportation. The obtained cellulose-based hydrogel electrolytes on account of special affinity with aqueous ZnSO4 electrolyte output an excellent ionic conductivity. The assembled flexible rocking-chair zinc-ion battery benefitting from the synergistic effect of sandwich-type electrodes and cellulose-based hydrogel electrolytes demonstrates outstanding electrochemical performance and mechanical properties. This work not only puts up an effective roadmap for flexible battery devices, but also reveals the great potential of waste biomass materials in energy storage applications.

8.
Data Brief ; 56: 110836, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39263230

RÉSUMÉ

Humans primarily understand the world around them through visual perception and touch. As a result, visual and tactile information play crucial roles in the interaction between humans and their environment. In order to establish a correlation between what is seen and what is felt on the same object, particularly on flexible objects (such as textile, leather, skin etc.) which humans often access by touch to cooperatively determine their quality, the need for a new dataset that includes both visual and tactile information arises. This has motivated us to create a dataset that combines visual images and corresponding tactile data to explore the potential of cross-modal data fusion. We have chosen leather as our object of focus due to its widespread usage in everyday life. The dataset we propose consists of visual images depicting leather in various colours and displaying defects, alongside corresponding tactile data collected from the same region of the leather. Notably, the tactile data comprises components along the X, Y, and Z axes. To effectively demonstrate the relationship between visual and tactile data on the same object region, the tactile data is aligned with the visual data and visualized through interpolation. Considering the potential applications in computer vision, we have manually labelled the defect regions in each visual-tactile sample. Ultimately, the dataset comprises a total of 687 records. Each sample includes visual images, image representations of the tactile data (referred to as tactile images for simplicity), and segmentation images highlighting the defect regions, all with the same resolution.

9.
Article de Anglais | MEDLINE | ID: mdl-39264035

RÉSUMÉ

The swift evolution of contemporary electronics products, such as flexible screens and wearable electronic devices, highlights the significance of flexible protective coatings, which combine superior mechanical and optical properties. Even though the recently developed polymer protective coatings can satisfy requirements for flexibility and transparency, their intrinsic nature often results in a hardness below 1 GPa, rendering them susceptible to scratches. On the other hand, traditional inorganic coatings, known for their high hardness and transparency, fall short of meeting flexibility requirements. In the present study, a SiNx/BN periodical nanolayered coatings (PNCs) structure has been tailored to achieve high mechanical durability, transparency, and flexibility. In SiNx/BN PNCs, the optical and mechanical properties of the single-layer SiNx film are crucial to the overall performance of the PNCs. Therefore, pulse direct current (DC) magnetron sputtering was optimized first to enhance the ionization efficiency of Si and N, thereby promoting their reaction and diminishing the presence of elemental silicon in SiNx. The effects of the pulse frequency and duty cycle on SiNx were evaluated. Additionally, the influence of the thickness ratio and modulation periods on the overall performance of the SiNx/BN PNCs was investigated. As a result, a SiNx/BN coating with sapphire-grade hardness, almost no optical absorption in the visible-near-infrared (vis-NIR) range, high wear resistance, and exceptional flexibility was demonstrated.

10.
Adv Sci (Weinh) ; : e2405051, 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39264248

RÉSUMÉ

Soft robots spark a revolution in human-machine interaction. However, developing high-performance soft actuators remains challenging due to trade-offs among output force, driving distance, control precision, safety, and compliance. Here, addressing the lack of long-distance, high-precision flexible linear actuators, an innovative pneumatic flexible linear actuator (PFLA) is introduced, inspired by the smooth and controlled process observed in snakes ingesting sizable food, such as eggs. This PFLA combines a soft tube, emulating the snake's body cavity, with a pneumatically driven piston. Through the joint modulation of moving resistance and driving force by pneumatic pressure, the PFLA exhibits exceptional motion control capabilities, including self-holding without pressure supply, smooth low-speed motion (down to 0.004 m s-1), high-speed motion (up to 5.6 m s-1) with low air pressure demand, and a self-protection mechanism. Highlighting its adaptability and versatility, the PFLA finds applications in various settings, including a wearable assistive devices, a manipulator capable of precise path tracking and positioning, and rapid transportation in diverse environments for pipeline inspection and firefighting. This PFLA combines biomimetic principles with sophisticated fluidic actuation to achieve long-distance, flexible, precise, and safe actuation, offering a more adaptive solution for force/motion transmission, particularly in challenging environments.

11.
Heliyon ; 10(16): e36318, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39253156

RÉSUMÉ

Production and distribution are critical components of the furniture supply chain, and achieving optimal performance through their integration has become a vital focus for both the academic and business communities. Moreover, as economic globalization progresses, distributed manufacturing has become a pioneering production technique. Via leveraging a distributed flexible manufacturing system, mass flexible production at lower costs can be achieved. To this end, this study presents an integrated distributed flexible job shop and distribution problem to minimize makespan and total tardiness. In our research, a set of custom furniture orders from different customers are processed among flexible job shops and then delivered by vehicles to customers as the due date. To distinctly show the presented problem, a mixed integer mathematical programming model is created, and a multi-objective brain storm optimization method is introduced considering the problem's features. In comparison to the other three advanced methods, the superiority of the algorithm created is showcased. The findings of the experiments demonstrate that the constructed model and the introduced algorithm have remarkable competitiveness in addressing the problem being examined.

12.
Int J Biol Macromol ; : 135286, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39245100

RÉSUMÉ

Benefiting from the good electromechanical performance, ionic conductive hydrogel can easily convert the deformation into electrical signals, showing great potential in wearable electronic devices. However, due to the high water content, icing and water evaporation problems seriously limit their development. Although additives can ease these disadvantages, the accompanying performance degradation and complex preparation processes couldn't meet application needs. In this work, a convenient method was provided to prepare ionic conductive hydrogels with sensitive electromechanical performance, harsh environmental tolerance, and long-term stability without additives. Based on the hydratability between metal ions and water molecules resulting in spatial condensation of the hydrogel framework, the hydrogel exhibits good flexibility and ionic conductivity (70.3 mS/cm). Furthermore, the metal salt can bind with water molecules to reduce the vapor pressure, thus endowing the hydrogel with good freezing resistance (-40 °C) and long-term stability over a wide temperature range (-20 °C-50 °C). Based on these unique advantages, the hydrogel shows good sensitivity. Even in a harsh environment, it still maintained excellent stability (-20 °C-50 °C, GF = 2.2, R2 > 0.99). Assembled with a Wi-Fi device, the hydrogel sensor demonstrates good health activity and physiological state detection performance, demonstrating great potential for wearable medical devices.

13.
Eur J Pediatr ; 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39245659

RÉSUMÉ

Bronchopulmonary dysplasia (BPD) poses a significant challenge as the most common late morbidity of preterm infants. This study aimed to evaluate airway abnormalities in infants with BPD who underwent flexible bronchoscopy (FB) to gain insights into the prevalence of upper airway obstruction and associated complications. A retrospective case-control study was conducted on BPD patients who underwent FB at a tertiary center between 2013 and 2023. BPD patients were matched (1:3) with a reference group based on age, gender, and ethnicity, who also had undergone FB. Demographic data, comorbidities, indications for FB, findings, and complications during and after FB were collected. The study included 50 BPD patients (mean age 1.26 ± 0.9 years, 58% males), and 150 controls. As expected, BPD patients had a lower gestational age, lower birth weight, and longer hospitalizations and were treated with more medications. Abnormal bronchoscopy findings were significantly more common in the BPD group compared to the reference group, with an increased rate of turbinate hypertrophy (OR [95% CI]: 3.44 [1.27-9.37], P = 0.014), adenoid hypertrophy (OR: 2.7 [1.38-5.29], P = 0.004), lingual tonsils (OR: 5.44 [1.29-27.4], P = 0.0024), subglottic stenosis (OR: 6.95 [2.08-27.1], P = 0.002), and tracheomalacia (OR: 2.98 [1.06-8.19], P = 0.034). Complications including desaturation (OR: 3.89 [1.32-11.7], P = 0.013) and PICU admission (OR: 16.6 [2.58-322], P = 0.011) were more frequent in the BPD than in the reference group. CONCLUSION: The study revealed a high prevalence of structural anomalies leading to upper airway obstruction and complications in infants with BPD undergoing FB. These findings emphasize the importance of careful consideration and preparation for bronchoscopic procedures in this vulnerable population. WHAT IS KNOWN: • Bronchopulmonary dysplasia (BPD) represents the most prevalent late morbidity among preterm infants. • Preterm infants diagnosed with BPD frequently undergo diagnostic procedures, including flexible and rigid bronchoscopies, to identify structural pathologies within the respiratory tract. WHAT IS NEW: • A significantly higher prevalence of structural anomalies leading to upper airway obstruction was observed in the BPD group compared to controls. • The incidence of complications during flexible bronchoscopy was higher in the BPD group than in controls.

14.
Philos Trans A Math Phys Eng Sci ; 382(2281): 20230323, 2024 Oct 23.
Article de Anglais | MEDLINE | ID: mdl-39246081

RÉSUMÉ

The growing demand for wearable healthcare devices has led to an urgent need for cost-effective, wireless and portable breath monitoring systems. However, it is essential to explore novel nanomaterials that combine state-of-the-art flexible sensors with high performance and sensing capabilities along with scalability and industrially acceptable processing. In this study, we demonstrate a highly efficient NiS2-based flexible capacitive sensor fabricated via a solution-processible route using a novel single-source precursor [Ni{S2P(OPr)2}2]. The developed sensor could precisely detect the human respiration rate and exhibit rapid responsiveness, exceptional sensitivity and selectivity at ambient temperatures, with an ultra-fast response and recovery. The device effectively differentiates the exhaled breath patterns including slow, fast, oral and nasal breath, as well as post-exercise breath rates. Moreover, the sensor shows outstanding bending stability, repeatability, reliable and robust sensing performance and is capable of contactless sensing. The sensor was further employed with a user-friendly wireless interface to facilitate smartphone-enabled real-time breath monitoring systems. This work opens up numerous avenues for cost-effective, sustainable and versatile sensors with potential applications for Internet of Things-based flexible and wearable electronics.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.


Sujet(s)
Nanostructures , Dispositifs électroniques portables , Humains , Monitorage physiologique/instrumentation , Monitorage physiologique/méthodes , Nanostructures/composition chimique , Nickel/composition chimique , Respiration , Fréquence respiratoire , Technologie sans fil/instrumentation , Tests d'analyse de l'haleine/instrumentation , Tests d'analyse de l'haleine/méthodes , Conception d'appareillage , Ordiphone , Capacité électrique
15.
Small ; : e2403495, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39246203

RÉSUMÉ

As the demand for specialized and diversified pressure sensors continues to increase, excellent performance and multi-applicability have become necessary for pressure sensors. Currently, flexible pressure sensors are primarily utilized in fields such as health monitoring and human-computer interaction. However, numerous complex extreme environments in reality, including deep sea, corrosive conditions, extreme cold, and high temperatures, urgently require the services of flexible devices. Here, a piezoresistive flexible pressure sensor based on expanded polytetrafluoroethylene/functionalized carbon nanotubes (EPTFE/FCNT) is proposed. Benefiting from the unique fiber-segment architecture, chemical stability, and strong chemical binding force between EPTFE and FCNT, the fabricated sensor exhibits remarkable sensing capabilities and can be employed in multifarious extreme environments. It demonstrates a sensitivity of 862.28 kPa-1, a response time of 6-7 ms, and a detection limit below 1 Pa. Furthermore, it possesses a pressure resolution of 0.0018% under 111 kPa and can withstand over 10,000 loading and unloading cycles under 1 MPa. Additionally, the EPTFE/FCNT sensor retains its outstanding pressure response and work efficiency in extreme conditions such as an ultra-low temperature of -80 °C, high temperature (200 °C), acidic and alkaline corrosion, and underwater. These notable attributes enormously broaden the sensors' real-world application range.

16.
Article de Anglais | MEDLINE | ID: mdl-39226117

RÉSUMÉ

Flexible strain sensors have been widely used in wearable electronics. However, the fabrication of flexible strain sensors with a large strain detection range, high sensitivity, and negligible hysteresis remains a formidable challenge, even after enormous advancements in the field. Herein, a flexible microfluidic strain sensor was fabricated by filling poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-MXene-gold (PEDOT:PSS-MXene-Au) nanocomposites into microchannels in an elastic matrix. Owing to the unique properties of the nanofiller and Ecoflex elastomer microchannel, the microfluidic strain sensor detected a strain of 0%-500% with low hysteresis (2.4%), high sensitivity (guage factor = 25.4), short response times (∼86 ms), and good durability. Moreover, the flexible microfluidic sensor was used to detect various physiological signals and human activities, control a mechanical hand, and capture hand motions in real time. As demonstrated by its good performance, the proposed flexible microfluidic sensor holds great potential in applications such as wearable electronics, physiological signal monitoring and human-machine interactions.

17.
Article de Anglais | MEDLINE | ID: mdl-39226175

RÉSUMÉ

Monolayer transition metal dichalcogenides are intensely explored as active materials in 2D material-based devices due to their potential to overcome device size limitations, sub-nanometric thickness, and robust mechanical properties. Considering their large band gap sensitivity to mechanical strain, single-layered TMDs are well-suited for strain-engineered devices. While the impact of various types of mechanical strain on the properties of a variety of TMDs has been studied in the past, TMD-based devices have rarely been studied under mechanical deformations, with uniaxial strain being the most common one. Biaxial strain on the other hand, which is an important mode of deformation, remains scarcely studied as far as 2D material devices are concerned. Here, we study the strain transfer efficiency in MoS2- and WSe2-based flexible transistor structures under biaxial deformation. Utilizing Raman spectroscopy, we identify that strains as high as 0.55% can be efficiently and homogeneously transferred from the substrate to the material in the transistor channel. In particular, for the WSe2 transistors, we capture the strain dependence of the higher-order Raman modes and show that they are up to five times more sensitive compared to the first-order ones. Our work demonstrates Raman spectroscopy as a nondestructive probe for strain detection in 2D material-based flexible electronics and deepens our understanding of the strain transfer effects on 2D TMD devices.

18.
Carbohydr Polym ; 345: 122590, 2024 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-39227126

RÉSUMÉ

The development and application of flexible electrodes with extended cycle life have long been a focal point in the field of energy research. In this study, positively charged polyethylene imine (PEI) and conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with negative charge were alternately deposited onto a cellulose nanofiber (CNF) porous material utilizing pressure gradient-assisted layer-by-layer (LbL) self-assembly technology. The flexible substrate, characterized by a three-dimensional porous structure reinforced with stiff CNF, not only facilitated high charge storage but also enhanced the electrode's cycling life by reducing the volume changes of PEDOT:PSS. Furthermore, the exceptional wettability of PEI by the electrolyte could promote efficient charge transport within the electrode. The electrode with 10 PEI/PEDOT:PSS bilayer exhibits a capacitance of 63.71 F g-1 at the scan rate of 5 mV s-1 and a remarkable capacitance retention of 128 % after 3000 charge-discharge cycles. The investigation into the nanoscale layers of the LbL multilayer structure indicated that the exceptional cyclic performance was primarily attributed to the spatial constraints imposed by the rigid porous substrate layered structure on the deformation of PEDOT:PSS. This work is expected to make a significant contribution to the development of electrodes with high charge storage capacity and ultra-long cycling life.

19.
Res Rep Urol ; 16: 177-185, 2024.
Article de Anglais | MEDLINE | ID: mdl-39229592

RÉSUMÉ

Objective: Very limited data are available exploring the potential influence of gender on Retrograde Intrarenal Surgery outcomes. This study investigates the gender-specific influence of ShuoTongureteroscopy (ST-urs) and Flexible Ureteroscopy (F-urs) surgeries on operation efficacy and patient recovery in a sample of the Somali population. Materials and Methods: We enrolled 390 participants. Participants were stratified into four gender-specific subgroups based on ureteroscopy operation type: 27.7% males in S-urs (group1), 44.4% females in S-urs (group2), 18.7% males in F-urs (group3), and 9.2% females in F-urs (group4). Primary outcomes included operation time, postoperative hospital stay duration, and VAS Pain Score. Multivariate logistic regression was used to assess associations. Results: The mean age was 29.53 ± 7.61 years, 72.1% male and 27.9% female, with 46.4% of the patients undergoing ST-urs and 53.6% undergoing F-urs. Women had higher odds of prolonged hospital stays (OR = 2.62, 95% CI: 1.43-4.82, p < 0.001) and post-operation pain (OR = 5.06, 95% CI: 2.95-8.68, p = 0.002). Among men who underwent F-urs procedure, there was a significantly higher odds ratio (OR) of 6.14 (95% CI: 2.86-13.19, p < 0.001) for experiencing a long operation time. Conversely, for females, those who underwent S-urs surgery had a notably lower OR of 0.32 (95% CI: 0.13-0.79, p = 0.013) for long operation time, whereas those who underwent F-urs surgery exhibited a substantially elevated OR of 5.36 (95% CI: 1.85-15.53, p < 0.001). Both females undergoing F-urs surgery (OR: 5.16, 95% CI: 2.61-10.21, p < 0.001) and those undergoing F-urs surgery (OR: 5.25, 95% CI: 2.17-12.73, p < 0.001) experienced significantly higher post-operative pain. Conclusion: Our research reveals gender disparities in retrograde intrarenal surgery outcomes. Women experience longer hospital stays and higher postoperative pain levels compared to men. F-urs procedures are associated with longer operation times and hospital stays, particularly affecting women. Contrarily, ST-urs offers shorter operation times for women but leads to prolonged hospital stays and heightened postoperative pain.

20.
Int J Biol Macromol ; : 135509, 2024 Sep 08.
Article de Anglais | MEDLINE | ID: mdl-39255881

RÉSUMÉ

Hydrogel-based flexible sensors have garnered considerable interest in the fields of soft electronics, robotics, and human-machine interfaces. For better practical applications, integrating multiple properties-such as self-adhesive, anti-freeze, anti-volatile, self-healing, and antibacterial-into a single gel for flexible sensors remains a challenge. In this paper, a multifunctional lignin-based polyvinyl alcohol gel, containing dynamic covalent bonds, hydrogen bonds, and coordination bonds, is constructed by a simple one-pot method, in which ethylene glycol/water chosen as a binary solvent and KI as a conductive medium. The resulting organogel exhibits self-healing, long-lasting adhesion, UV shielding, antibacterial properties, excellent frost resistance (-20 °C), and volatile resistance properties. In addition, the organogel-based sensor demonstrates satisfactory sensitivity in detecting joint movements and facial expressions. This study provides a new strategy for developing a versatile flexible sensor through the introduction of renewable and bio-based lignin, promising applications in the fields of wearable electronics.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE