Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.115
Filtrer
1.
Sci Total Environ ; 952: 175940, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39218083

RÉSUMÉ

Microplastics are heterogeneously distributed in soils. However, it is unknown whether soil microplastic heterogeneity affects plant growth and root foraging responses and whether such effects vary with plant species and microplastic types. We grew each of seven herbaceous species (Platycodon grandiflorus, Trifolium repens, Portulaca oleracea, Medicago sativa, Taraxacum mongolicum, Perilla frutescenst, and Paspalum notatum) in heterogeneous soil (patches without microplastics and patches with 0.2 % microplastics) and homogeneous soil (patches with 0.1 % microplastics). Three microplastic types were tested: polypropylene (PP), polyacrylonitrile (PAN), and polyester (PET). P. frutescens showed no response to soil microplastic heterogeneity. For P. grandiflora, microplastic heterogeneity tended to decrease its biomass (total, shoot and root) when the microplastic was PAN and also shoot biomass when it was PET, but had no effect when it was PP. For T. repens, microplastic heterogeneity promoted biomass when PAN was used, decreased total and root biomass when PET was used, but showed no effect when PP was used. Microplastic heterogeneity increased biomass of P. oleracea and decreased that of M. sativa when PET was used, but had no effect when PP or PAN was used. For T. mongolicum, microplastic heterogeneity reduced biomass when the microplastic was PAN, tended to increase total and root biomass when it was PP, but showed no effect when it was PET. For P. notatum, microplastic heterogeneity increased biomass when the microplastic was PP, decreased it when PET was used, but had no effect when PAN was used. However, biomass of none of the seven species showed root foraging responses at the patch level. Therefore, soil microplastic heterogeneity can influence plant growth, but such effects depend on species and microplastic types and are not associated with root foraging. Our findings highlight the roles of soil microplastic heterogeneity, which may influence species interactions and community structure and productivity.

2.
Sci Total Environ ; 952: 175892, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39218107

RÉSUMÉ

The global decline of pollinators has become a major concern for the scientific community, policymakers, and the general public. Among the main drivers of diminishing bee populations is the widespread use of agrochemicals. To gain a comprehensive understanding of the foraging dynamics of bees at agrochemical-contaminated areas, it is essential to consider both environmental conditions and the specific foraging ecology of bee species. For the first time, we conducted a semi-field study to investigate whether stingless bees exhibit a preference for food contaminated with agrochemicals compared to non- contaminated food, under natural weather conditions. Colonies of Plebeia lucii Moure, 2004 were placed in a greenhouse and subjected to a preference test, where bees were given the freedom to choose between contaminated or non-contaminated food sources following a preliminary training period. Within the greenhouse, we placed feeders containing realistic concentrations of an insecticide (acephate: 2 mg a.i./L), a herbicide (glyphosate: 31.3 mg a.i./L), or a mixture of both, alongside non-contaminated food. Environmental variables (temperature, humidity, and light intensity) were monitored throughout the experiment. At higher temperatures, the foragers preferred food containing the mixture of both agrochemicals or uncontaminated food over the other treatments. At lower temperatures, by contrast, the bees preferred food laced with a single agrochemical (acephate or glyphosate) over uncontaminated food or the agrochemical mixture. Our findings indicate that agrochemical residues in nectar pose a significant threat to P. lucii colonies, as foragers do not actively avoid contaminated food, despite the detrimental effects of acephate and glyphosate on bees. Furthermore, we demonstrate that even minor, natural fluctuations in environmental conditions can alter the colony exposure risk. Despite the interplay between temperature and bees' preference for contaminated food, foragers consistently collected contaminated food containing both agrochemicals, whether isolated or in combination, throughout the whole experiment.

3.
Sci Total Environ ; 952: 175935, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39218110

RÉSUMÉ

Wild bees pollinate crops and wildflowers where they are frequently exposed to pesticides. Neonicotinoids are the most commonly used insecticide globally, but restrictions on their use and rising pest resistance have increased the demand for alternative pesticides. Flupyradifurone is a novel insecticide that has been licenced globally for use on bee-visited crops. Here, in a semi-field experiment, we exposed solitary bees (Osmia lignaria) to a commercial pesticide formulation (Sivanto Prime) containing flupyradifurone at label-recommended rates. We originally designed the experiment to examine sublethal effects, but contrary to our expectations, 100 % of bees released into pesticide-treated cages died within 3 days of exposure, compared to 0 % in control plots. Bees exposed to flupyradifurone a few days after the initial application survived but endured prolonged sublethal effects, including lower nesting success, impairment to foraging efficiency, and higher mortality. These results demonstrate that exposure to this novel insecticide poses significant threats to solitary bees and add to a growing body of evidence indicating that this pesticide can have negative impacts on wild bees at field-realistic concentrations. In the short-term, we recommend that commercial formulations containing flupyradifurone should be restricted to non-flowering crops while a reassessment of its safety can be conducted. In the long-term, environmental risk assessors should continue to develop risk assessments that are truly holistic and incorporate the ecological and life history traits of multiple pollinator species.

4.
R Soc Open Sci ; 11(9): 240136, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39263453

RÉSUMÉ

Prevailing theories about animal foraging behaviours and the food webs they occupy offer divergent predictions about whether seasonally limited food availability promotes dietary diversification or specialization. Emphasis on how animals compete for food predominates in work on the foraging ecology of large mammalian herbivores, whereas emphasis on how the diversity of available foods generally constrains dietary opportunity predominates work on entire food webs. Reconciling predictions about what promotes dietary diversification is challenging because species' different body sizes and mobilities modulate how they seek and compete for resources-the mechanistic bases of common predictions may not pertain to all species equally. We evaluated predictions about five large-herbivore species that differ in body size and mobility in Yellowstone National Park using GPS tracking and dietary DNA. The data illuminated remarkably strong and significant correlations between body size and five key indicators of diet seasonality (R 2 = 0.71-0.80). Compared to smaller species, bison and elk showed muted diet seasonality and maintained access to more unique foods when winter conditions constrained food availability. Evidence from GPS collars revealed size-based differences in species' seasonal movements and habitat-use patterns, suggesting that better accounting for the allometry of foraging behaviours may help reconcile disparate ideas about the ecological drivers of seasonal diet switching.

5.
Ecol Evol ; 14(9): e70137, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39263462

RÉSUMÉ

Feeding ecology is an essential component of an organism's life, but foraging comes with risks and energetic costs. Species in which populations exhibit more than one feeding strategy, such as sea turtles, are good systems for investigating how feeding ecology impacts life-history traits, reproduction and carried over effects across generations. Here, we investigated how the feeding ecology of loggerhead sea turtles (Caretta caretta) nesting at the Cabo Verde archipelago correlates with reproductive outputs and offspring quality. We determined the feeding ecology of female turtles before and during the breeding season from stable isotope analysis of carbon and nitrogen and correlated isotopic ratio with female and offspring traits. We found that female turtles feeding at higher trophic positions produced larger clutches. We also found that females with higher δ13C values, typical of productive foraging areas, had greater fat reserves, were less likely to be infected by leech parasites and produced heavier offspring. The offspring of infected mothers with higher δ13C values performed best in crawling and self-righting trials than those of non-infected mothers with higher δ13C values. This study shows adult female loggerheads that exploit productive areas build capital reserves that impact their reproductive success and multiple proxies for offspring quality. Overall, our findings provide valuable insights into the complex interplay between feeding ecology and reproductive success, and reveal the transgenerational carry-over effects of both feeding ecology and health on offspring quality in sea turtles.

6.
R Soc Open Sci ; 11(9): 240708, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39233718

RÉSUMÉ

Density-dependent competition for food influences the foraging behaviour and demography of colonial animals, but how this influence varies across a species' latitudinal range is poorly understood. Here we used satellite tracking from 21 Northern Gannet Morus bassanus colonies (39% of colonies worldwide, supporting 73% of the global population) during chick-rearing to test how foraging trip characteristics (distance and duration) covary with colony size (138-60 953 breeding pairs) and latitude across 89% of their latitudinal range (46.81-71.23° N). Tracking data for 1118 individuals showed that foraging trip duration and maximum distance both increased with square-root colony size. Foraging effort also varied between years for the same colony, consistent with a link to environmental variability. Trip duration and maximum distance also decreased with latitude, after controlling for colony size. Our results are consistent with density-dependent reduction in prey availability influencing colony size and reveal reduced competition at the poleward range margin. This provides a mechanism for rapid population growth at northern colonies and, therefore, a poleward shift in response to environmental change. Further work is required to understand when and how colonial animals deplete nearby prey, along with the positive and negative effects of social foraging behaviour.

7.
Ultrason Imaging ; : 1617346241271240, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39257166

RÉSUMÉ

In this research work, Semantic-Preserved Generative Adversarial Network optimized by Piranha Foraging Optimization for Thyroid Nodule Classification in Ultrasound Images (SPGAN-PFO-TNC-UI) is proposed. Initially, ultrasound images are gathered from the DDTI dataset. Then the input image is sent to the pre-processing step. During pre-processing stage, the Multi-Window Savitzky-Golay Filter (MWSGF) is employed to reduce the noise and improve the quality of the ultrasound (US) images. The pre-processed output is supplied to the Generalized Intuitionistic Fuzzy C-Means Clustering (GIFCMC). Here, the ultrasound image's Region of Interest (ROI) is segmented. The segmentation output is supplied to the Fully Numerical Laplace Transform (FNLT) to extract the features, such as geometric features like solidity, orientation, roundness, main axis length, minor axis length, bounding box, convex area, and morphological features, like area, perimeter, aspect ratio, and AP ratio. The Semantic-Preserved Generative Adversarial Network (SPGAN) separates the image as benign or malignant nodules. Generally, SPGAN does not express any optimization adaptation methodologies for determining the best parameters to ensure the accurate classification of thyroid nodules. Therefore, the Piranha Foraging Optimization (PFO) algorithm is proposed to improve the SPGAN classifier and accurately identify the thyroid nodules. The metrics, like F-score, accuracy, error rate, precision, sensitivity, specificity, ROC, computing time is examined. The proposed SPGAN-PFO-TNC-UI method attains 30.54%, 21.30%, 27.40%, and 18.92% higher precision and 26.97%, 20.41%, 15.09%, and 18.27% lower error rate compared with existing techniques, like Thyroid detection and classification using DNN with Hybrid Meta-Heuristic and LSTM (TD-DL-HMH-LSTM), Quantum-Inspired convolutional neural networks for optimized thyroid nodule categorization (QCNN-OTNC), Thyroid nodules classification under Follow the Regularized Leader Optimization based Deep Neural Networks (CTN-FRL-DNN), Automatic classification of ultrasound thyroids images using vision transformers and generative adversarial networks (ACUTI-VT-GAN) respectively.

9.
Conserv Physiol ; 12(1): coae057, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247178

RÉSUMÉ

Declining sea ice and increased variability in sea ice dynamics are altering Arctic marine food webs. Changes in sea ice dynamics and prey availability are likely to impact pagophilic (ice-dependent and ice-associated) species, such as thick-billed murres (Uria lomvia), through changes in foraging behaviour and foraging success. At the same time, extrinsic factors, such as chick demand, and intrinsic factors, such as sex, are also likely to influence foraging behaviour and foraging success of adult murres. Here, we use 3 years of data (2017-2019) to examine the impacts of environmental conditions (sea ice concentration and sea surface temperature), sex and chick age (as a proxy for chick demand) on foraging and diving behaviour (measured via biologgers), energy expenditure (estimated from activity budgets) and foraging success (measured via nutritional biomarkers) of thick-billed murres during the incubation and chick-rearing stages at Coats Island, Nunavut. Murres only exhibited foraging flexibility to environmental conditions during incubation, which is also the only stage when ice was present. When more ice was present, foraging effort increased, murres foraged farther and made deeper dives, where murres making deeper dives had higher foraging success (greater relative change in mass). During incubation, murre behaviour was also influenced by sex of the individual, where males made more and shorter trips and more dives. During chick-rearing, murre behaviour was influenced primarily by the sex of the individual and chick age. Males made shallower dives and fewer dive bouts per day, and more dives. Birds made longer, deeper dives as chicks aged, likely representing increased intra-specific competition for prey throughout the season. Our results suggest variation in sea ice concentration does impact foraging success of murres; however, sex-specific foraging strategies may help buffer colony breeding success from variability in sea ice concentration.

10.
Glob Chang Biol ; 30(9): e17490, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39254237

RÉSUMÉ

Understanding how the environment mediates an organism's ability to meet basic survival requirements is a fundamental goal of ecology. Vessel noise is a global threat to marine ecosystems and is increasing in intensity and spatiotemporal extent due to growth in shipping coupled with physical changes to ocean soundscapes from ocean warming and acidification. Odontocetes rely on biosonar to forage, yet determining the consequences of vessel noise on foraging has been limited by the challenges of observing underwater foraging outcomes and measuring noise levels received by individuals. To address these challenges, we leveraged a unique acoustic and movement dataset from 25 animal-borne biologging tags temporarily attached to individuals from two populations of fish-eating killer whales (Orcinus orca) in highly transited coastal waters to (1) test for the effects of vessel noise on foraging behaviors-searching (slow-click echolocation), pursuit (buzzes), and capture and (2) investigate the mechanism of interference. For every 1 dB increase in maximum noise level, there was a 4% increase in the odds of searching for prey by both sexes, a 58% decrease in the odds of pursuit by females and a 12.5% decrease in the odds of prey capture by both sexes. Moreover, all but one deep (≥75 m) foraging attempt with noise ≥110 dB re 1 µPa (15-45 kHz band; n = 6 dives by n = 4 whales) resulted in failed prey capture. These responses are consistent with an auditory masking mechanism. Our findings demonstrate the effects of vessel noise across multiple phases of odontocete foraging, underscoring the importance of managing anthropogenic inputs into soundscapes to achieve conservation objectives for acoustically sensitive species. While the timescales for recovering depleted prey species may span decades, these findings suggest that complementary actions to reduce ocean noise in the short term offer a critical pathway for recovering odontocete foraging opportunities.


Sujet(s)
Orque épaulard , Animaux , Femelle , Orque épaulard/physiologie , Mâle , Navires , Bruit/effets indésirables , Comportement alimentaire , Écholocalisation/physiologie , Bruit des transports/effets indésirables , Comportement prédateur
11.
Article de Anglais | MEDLINE | ID: mdl-39262094

RÉSUMÉ

Through killing and instilling fear in their prey, large terrestrial carnivores shape the structure and function of ecosystems globally. Most large carnivore species have experienced severe range and population declines due to human activities, and many are now threatened with extinction. Consequently, the impacts of these predators on food webs have been diminished or lost completely from many ecosystems. Kill rates provide a fundamental metric for understanding large carnivore ecology and assessing and comparing predation within and across ecological communities. Our systematic review of large terrestrial mammalian carnivore kill rates reveals significant positive geographic (North America, Europe, and Africa) and taxonomic (grey wolf Canis lupus, puma Puma concolor, lion Panthera leo, and Eurasian lynx Lynx lynx) bias, with most studies apparently motivated by human-carnivore conflict over access to ungulate prey and wildlife management objectives. Our current understanding of the behaviour and functional roles of many large carnivore species and populations thus remains limited. By synthesising and comparing kill rates, we show that solitary carnivores (e.g. brown bears Ursus arctos and most felids) exhibit higher per capita kill rates than social carnivores. However, ungulate predation by bears is typically limited to predation of neonates during a short period. Lower per capita kill rates by social carnivores suggests group living significantly reduces energetic demands, or, alternatively, that group-living carnivores defend and consume a greater proportion of large prey carcasses, or may acquire more food through other means (e.g. scavenging, kleptoparasitism) than solitary hunters. Kill and consumption rates for Canidae - measured as kilograms of prey per kilogram of carnivore per day - are positively correlated with body mass, consistent with increasing energy costs associated with a cursorial hunting strategy. By contrast, ambush predators such as felids show an opposite trend, and thus the potential energetic advantage of an ambush hunting strategy for carnivores as body mass increases. Additionally, ungulate kill rates remain relatively constant across solitary felid body sizes, indicative of energetic constraints and optimal foraging. Kill rate estimates also reveal potential insights into trophic structuring within carnivore guilds, with subordinate carnivores often killing more than their larger counterparts, which may be indicative of having to cope with food losses to scavengers and dominant competitors. Subordinate carnivores may thus serve an important role in provisioning food to other trophic levels within their respective ecosystems. Importantly, kill rates also clarify misconceptions around the predatory behaviour of carnivores (e.g. spotted hyaenas Crocuta crocuta and wolverines Gulo gulo are often considered scavengers rather than the capable hunters that they are) and thus the potential impacts of various carnivore species on their ecological communities. Despite the importance of kill rates in understanding predator-prey interactions, their utility is not widely recognised, and insufficient research limits our ability to fully appreciate and predict the consequences of modified predation regimes, justify current management actions affecting carnivores, or inform effective conservation measures. Together with other important research on predator-prey interactions, robust kill rate studies that address the research deficiencies we highlight will provide a deeper understanding of the foraging behaviours and potential ecosystem impacts of many of the world's carnivores, thus aiding effective conservation and management actions.

12.
R Soc Open Sci ; 11(7): 240558, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39086824

RÉSUMÉ

Social deep-diving odontocetes face the challenge of balancing near-surface proximity to oxygen and group members with foraging in the deep sea. Individuals rely on conspecifics for critical life functions, such as predator defence, but disperse during foraging to feed individually. To understand the role of social acoustic mediation during foraging in deep-diving toothed whales, we investigated the context of social burst-pulse call production in Risso's dolphin (Grampus griseus) using biologgers. Dolphins produced context-specific burst pulses predominantly during daytime foraging, preceding or following foraging dives and in the early descent of daytime deep dives. Individuals applied differential short and long burst-pulse calls intended for either near-surface receivers (horizontal transmission) or deep-foraging receivers (vertical transmission). Our results show that deep-diving toothed whales are reliant on acoustic communication during certain foraging contexts, to relay information including foraging conditions or an individual's location. Moreover, they accentuate the importance of maintaining acoustic contact with conspecifics, specifically when dispersed during deeper foraging. It also signifies that our oceanic top predators may be specifically vulnerable to the current strong increase in anthropogenic noise. Potential masking of the signals from group members communicating at a distance could undermine their social cohesion, and hence their capacity to maintain vital life functions.

13.
R Soc Open Sci ; 11(6): 240271, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-39100157

RÉSUMÉ

Marine predators are integral to the functioning of marine ecosystems, and their consumption requirements should be integrated into ecosystem-based management policies. However, estimating prey consumption in diving marine predators requires innovative methods as predator-prey interactions are rarely observable. We developed a novel method, validated by animal-borne video, that uses tri-axial acceleration and depth data to quantify prey capture rates in chinstrap penguins (Pygoscelis antarctica). These penguins are important consumers of Antarctic krill (Euphausia superba), a commercially harvested crustacean central to the Southern Ocean food web. We collected a large data set (n = 41 individuals) comprising overlapping video, accelerometer and depth data from foraging penguins. Prey captures were manually identified in videos, and those observations were used in supervised training of two deep learning neural networks (convolutional neural network (CNN) and V-Net). Although the CNN and V-Net architectures and input data pipelines differed, both trained models were able to predict prey captures from new acceleration and depth data (linear regression slope of predictions against video-observed prey captures = 1.13; R 2 ≈ 0.86). Our results illustrate that deep learning algorithms offer a means to process the large quantities of data generated by contemporary bio-logging sensors to robustly estimate prey capture events in diving marine predators.

14.
Environ Entomol ; 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39105609

RÉSUMÉ

Using a selection of native grass and forb seeds commonly seeded in local restoration projects, we conducted a field experiment to evaluate the effects of seed species, distance of seed patches from nests, and distance between patches on patterns of seed removal by Owyhee harvester ants, Pogonomyrmex salinus (Olsen) (Hymenoptera: Formicidae). To provide context for ants' seed preferences, we evaluated differences in handling time among seed species. In addition, we assessed the influences of cheatgrass, Bromus tectorum (L.) (Poales: Poaceae), and Sandberg bluegrass, Poa secunda (J. Presl) (Poales: Poaceae), cover on seed removal. We found significant differences in removal rates among seed species. In general, seeds placed closer to nests were more vulnerable to predation than those placed farther away, and seeds in closely spaced patches were more vulnerable than seeds in widely spaced patches. However, the strength of these effects differed by seed species. Differences in handling time among seed species may help to explain these findings; the protective effect of from-nest distance was weaker for species that required less time to transport. For 2 of the seed species, there was an interaction between the distance of seed patches from nests and the distance between patches such that the protective effect of distance between patches decreased as the distance from nests increased. Cheatgrass and bluegrass cover both had small protective effects on seeds. Taken together, these results offer insight into the spatial ecology of harvester ant foraging and may provide context for the successful implementation of restoration efforts where harvester ants are present.

15.
Ecol Evol ; 14(8): e70136, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39108567

RÉSUMÉ

The Eurasian woodcock prefers habitats where its main prey, earthworms, can be found in higher densities. Although they are forest-dwelling birds, they regularly visit pastures and natural grasslands at night, where earthworm abundance is generally higher. However, there is little information on fine-scale habitat use in relation to variation in habitat characteristics and prey availability, particularly beyond the breeding season. In our study, we investigated if the nocturnal occurrence of woodcocks during migratory stopover periods differed between two neighbouring fields, or management units, with similar vegetation structure, and if within-field variation in the spatial patterns of woodcock sightings were associated with fine-scale earthworm densities and soil parameters. Specifically, we used GPS tracking data of two tagged woodcocks and direct observation data to study patterns of occurrence of birds in a mixed forest-pasture landscape in Hungary during pre- and post-breeding periods. We compared these patterns with fine-scale soil characteristics and earthworm abundance, acquired by field sampling. We found that the field with higher earthworm abundance was visited by woodcocks more frequently, and this correlation was similarly observed at the intra-field level. Our results demonstrate that woodcocks select foraging sites with higher earthworm densities at multiple spatial scales, both between fields (coarse scale), and within fields (fine-scale). Considering that woodcocks tended to return to the same field to forage at night, the strong associations between occupancy and resources provide a basis for developing habitat management strategies at the field level for conservation. As earthworm densities and soil parameters are good indicators of woodcock foraging habitat, measuring those variables, at least at a coarse scale, could aid in predicting important habitats for the species across the landscape.

16.
Insect Mol Biol ; 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39115320

RÉSUMÉ

The molecular bases of animal behaviour are intricate due to the pleiotropic nature of behaviour-modulating genes, which are often expressed across multiple tissues. The foraging gene (for) encodes a cGMP-dependent protein kinase (PKG), pivotal in regulating downstream target proteins through phosphorylation. In insects, for has been implicated in various behavioural contexts and physiological processes regarding searching for food. Rhodnius prolixus, a hematophagous bug that transmits Trypanosoma cruzi, the causative agent of Chagas disease, exhibits specific activity patterns associated with its hematophagous behaviour. Our previous work demonstrated a correlation between locomotor activity profiles and the expression of Rpfor, suggesting its involvement in modulating triatomine locomotion. In this study, we investigated the impact of Rpfor knockdown on locomotory activity, host-seeking behaviour, feeding performance and lipid metabolism in R. prolixus nymphs. Using RNA interference, we achieved a significant reduction of Rpfor expression in both the brain and fat body of R. prolixus nymphs. Knocked-down nymphs exhibited diminished non-oriented locomotory activity compared with controls, without altering the characteristic bimodal pattern of activity. Additionally, they displayed an increased tendency to approach a host, suggesting a role for Rpfor in modulating host-seeking behaviour. Feeding performance and lipid metabolism remained unaffected by Rpfor knockdown. Our findings underscore the multifaceted role of Rpfor in modulating locomotor activity and host-seeking behaviour in R. prolixus nymphs, shedding light on the molecular mechanisms underlying their hematophagous behaviour and potential implications for disease transmission. Further research is necessary to elucidate the intricate interplay between Rpfor expression, behaviour and physiological processes in triatomine bugs.


As bases moleculares do comportamento animal são complexas devido à natureza pleiotrópica dos genes envolvidos na sua modulação, normalmente expressos em múltiplos tecidos. O gene foraging (for) codifica para uma proteína quinase dependente de cGMP, fundamental para a regulação de proteínas alvo via fosforilação. Em insetos, o gene for tem sido associado a vários contextos comportamentais e processos fisiológicos relacionados com forrageamento. Rhodnius prolixus, um inseto hematófago que transmite Trypanosoma cruzi, o agente causativo da doença de Chagas, exibe padrões de atividade específicos associados com o seu comportamento hematófago. Em um estudo anterior, demonstramos uma correlação entre os perfis de atividade locomotora e a expressão de Rpfor, sugerindo o seu envolvimento na modulação da locomoção de triatomíneos. No presente estudo, investigamos o impacto do silenciamento de Rpfor na atividade locomotora, no comportamento de busca por hospedeiro, na performance alimentar, e no metabolismo de lipídeos em ninfas de R. prolixus. Através da técnica de RNA de interferência, obtivemos uma redução significativa da expressão do gene Rpfor no cérebro e no corpo gorduroso de R. prolixus. Insetos silenciados exibiram uma redução da atividade locomotora não orientada em comparação com controles, sem alterações no padrão bimodal da atividade. Adicionalmente, os insetos apresentaram um aumento no comportamento de busca por hospedeiro, sugerindo um papel para o Rpfor na sua modulação. A performance alimentar e o metabolismo de lipídeos não foram alterados pelo silenciamento do gene. Nossas descobertas ressaltam o papel multifuncional do gene Rpfor na modulação da atividade locomotora e no comportamento de busca por hospedeiro em R. prolixus, ampliando o conhecimento sobre os mecanismos moleculares relacionados ao seu comportamento hematófago e potenciais implicações para a transmissão de doenças. Estudos adicionais são necessários para elucidar a intrincada interação entre expressão, comportamento e processos fisiológicos de Rpfor em insetos triatomíneos.

17.
Front Plant Sci ; 15: 1421998, 2024.
Article de Anglais | MEDLINE | ID: mdl-39129765

RÉSUMÉ

Introduction: Strategically managing livestock grazing in arid regions optimizes land use and reduces the damage caused by overgrazing. Controlled grazing preserves the grassland ecosystem and fosters sustainability despite resource limitations. However, uneven resource distribution can lead to diverse grazing patterns and land degradation, particularly in undulating terrains. Methods: In this study, we developed a herbivore foraging algorithm based on a resource selection function model to analyze foraging distribution patterns, predict the probability of foraging, and identify the determinants of foraging probability in cattle. The study area was a complex desert landscape encompassing dunes and interdunes. Data on cattle movements and resource distribution were collected and analyzed to model and predict foraging behavior. Results: Our findings revealed that cattle prefer areas with abundant vegetation in proximity to water sources and avoid higher elevations. However, abundant resource availability mitigated these impacts and enhanced the role of water points, particularly during late grazing periods. The analysis showed that available resources primarily determine foraging distribution patterns and lessen the effects of landforms and water distance on patch foraging. Discussion: The results suggest that thoughtful water source placement and the subdivision of pastures into areas with varied terrain are crucial for sustainable grazing management. By strategically managing these factors, land degradation can be minimized, and the ecological balance of grassland ecosystems can be maintained. Further research is needed to refine the model and explore its applicability in other arid regions.

18.
J Anim Ecol ; 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39205404

RÉSUMÉ

It is widely recognized that predators can influence prey through both direct consumption and by inducing costly antipredator behaviours, the latter of which can produce nonconsumptive effects that cascade through trophic systems. Yet, determining how particular prey manage risk in natural settings remains challenging as empirical studies disproportionately focus on single predator-prey dyads. Here, we contrast foraging strategies within the context of a primary and secondary prey to explore how antipredator behaviours emerge as a product of predation intensity as well as the setting in which an encounter takes place. We studied the effects of spotted owls (Strix occidentalis) on two species experiencing asymmetrical risk: dusky-footed woodrats (Neotoma fuscipes; primary prey) and deer mice (Peromyscus spp.; alternative prey). Woodrats are most abundant within young forests, but predominantly captured by owls foraging within mature forests; in contrast, deer mice occur in high densities across forest types and seral stages and are consumed at lower per-capita rates overall. We deployed experimental foraging patches within areas of high and low spotted owl activity, created artificial risky and safe refuge treatments, and monitored behaviour throughout the entirety of prey foraging bouts. Woodrats were more vigilant and foraged less within mature forests and at riskier patches, although the effect of refuge treatment was contingent upon forest type. In contrast, deer mice only demonstrated consistent behavioural responses to riskier refuge treatments; forest type had little effect on perceived risk or the relative importance of refuge treatment. Thus, habitat can interact with predator activity to structure antipredator responses differently for primary versus secondary prey. Our findings show that asymmetrical predation can modulate both the magnitude of perceived risk and the strategies used to manage it, thus highlighting an important and understudied contingency in risk effects research. Evaluating the direct and indirect effects of predation through the paradigm of primary and secondary prey may improve our understanding of how nonconsumptive effects can extend to population- and community-level responses.

19.
Mov Ecol ; 12(1): 57, 2024 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-39187857

RÉSUMÉ

BACKGROUND: Animal movement arises from complex interactions between animals and their heterogeneous environment. To better understand the movement process, it can be divided into behavioural, temporal and spatial components. Although methods exist to address those various components, it remains challenging to integrate them in a single movement analysis. METHODS: We present an analytic workflow that integrates the behavioural, temporal and spatial components of the movement process and their interactions, which also allows for the assessment of the relative importance of those components. We construct a daily cyclic covariate to represent temporally cyclic movement patterns, such as diel variation in activity, and combine the three components in a multi-modal Hidden Markov Model framework using existing methods and R functions. We compare the trends and statistical fits of models that include or exclude any of the behavioural, spatial and temporal components, and perform variance partitioning on the model predictions that included all components to assess their relative importance to the movement process, both in isolation and in interaction. RESULTS: We apply our workflow to a case study on the movements of plains zebra, blue wildebeest and eland antelope in a South African reserve. Behavioural modes impacted movement the most, followed by diel rhythms and then the spatial environment (viz. tree cover and terrain slope). Interactions between the components often explained more of the movement variation than the marginal effect of the spatial environment did on its own. Omitting components from the analysis led either to the inability to detect relationships between input and response variables, resulting in overgeneralisations when drawing conclusions about the movement process, or to detections of questionable relationships that appeared to be spurious. CONCLUSIONS: Our analytic workflow can be used to integrate the behavioural, temporal and spatial components of the movement process and quantify their relative contributions, thereby preventing incomplete or overly generic ecological interpretations. We demonstrate that understanding the drivers of animal movement, and ultimately the ecological phenomena that emerge from it, critically depends on considering the various components of the movement process, and especially the interactions between them.

20.
Curr Res Insect Sci ; 6: 100091, 2024.
Article de Anglais | MEDLINE | ID: mdl-39193177

RÉSUMÉ

Foraging behavior of pollinators is shaped by, among other factors, the conflict between maximizing resource intake and minimizing predation risk; yet, empirical studies quantifying variation in both forces are rare, compared to those investigating each separately. Here, we discuss the importance of simultaneously assessing bottom-up and top-down forces in the study of plant-pollinator interactions, and propose a conceptual and testable graphical hypothesis for pollinator foraging behavior and plant fitness outcomes as a function of varying floral rewards and predation risk. In low predation risk scenarios, no noticeable changes in pollinator foraging behavior are expected, with reward levels affecting only the activity threshold. However, as predation risk increases we propose that there is a decrease in foraging behavior, with a steeper decline as plants are more rewarding and profitable. Lastly, in high predation risk scenarios, we expect foraging to approach zero, regardless of floral rewards. Thus, we propose that pollinator foraging behavior follows an inverse S-shape curve, with more pronounced changes in foraging activity at intermediate levels of predation risk, especially in high reward systems. We present empirical evidence that is consistent with this hypothesis. In terms of the consequences for plant fitness, we propose that specialized plant-pollinator systems should be more vulnerable to increased predation risk, with a steeper and faster decline in plant fitness, compared with generalist systems, in which pollinator redundancy can delay or buffer the effect of predators. Moreover, whereas we expect that specialist systems follows a similar inverse S-shape curve, in generalist systems we propose three different scenarios as a function not only of reward level but also compatibility, mating-system, and the interplay between growth form and floral display. The incorporation of trade-offs in pollinator behavior balancing the conflicting demands between feeding and predation risk has a promising future as a key feature enabling the development of more complex foraging models.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE