Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Ecol Evol ; 11(4): 1797-1813, 2021 Feb.
Article de Anglais | MEDLINE | ID: mdl-33614004

RÉSUMÉ

The investigation of ecological processes that maintain species coexistence is revealing in naturally disturbed environments such as the white-sand tropical forest, which is subject to periodic flooding that might pose strong habitat filtering to tree species. Congeneric species are a good model to investigate the relative importance of ecological processes that maintain high species diversity because they tend to exploit the same limiting resources and/or have similar tolerance limits to the same environmental conditions due to their close phylogenetic relationship. We aim to find evidence for the action and relative importance of different processes hypothesized to maintain species coexistence in a white-sand flooded forest in Brazil, taking advantage of data on the detailed spatial structure of populations of congeneric species. Individuals of three Myrcia species were tagged, mapped, and measured for diameter at soil height in a 1-ha plot. We also sampled seven environmental variables in the plot. We employed several spatial point process models to investigate the possible action of habitat filtering, interspecific competition, and dispersal limitation. Habitat filtering was the most important process driving the local distribution of the three Myrcia species, as they showed associations, albeit of different strength, to environmental variables related to flooding. We did not detect spatial patterns, such as spatial segregation and smaller size of nearby neighbors, that would be consistent with interspecific competition among the three congeneric species and other co-occurring species. Even though congeners were spatially independent, they responded to differences in the environment. Last, dispersal limitation only led to spatial associations of different size classes for one of the species. Given that white-sand flooded forests are highly threatened in Brazil, the preservation of their different habitats is of utmost importance to the maintenance of high species richness, as flooding drives the distribution of species in the community.

2.
Plants (Basel) ; 9(1)2020 Jan 07.
Article de Anglais | MEDLINE | ID: mdl-31936005

RÉSUMÉ

The establishments of new organisms that arrive naturally or with anthropogenic assistance depend primarily on local conditions, including biotic interactions. We hypothesized that plants that rely on fungal symbionts are less likely to successfully colonize remote environments such as oceanic islands, and this can shape subsequent island ecology. We analyzed the mycorrhizal status of Santa Cruz Island, Galapagos flora compared with the mainland Ecuador flora of origin. We experimentally determined plant responsiveness and plant-soil feedback of the island flora and assessed mycorrhizal density and soil aggregate stability of island sites. We found that a greater proportion of the native island flora species belongs to families that typically do not associate with mycorrhizal fungi than expected based upon the mainland flora of origin and the naturalized flora of the island. Native plants benefited significantly less from soil fungi and had weaker negative soil feedbacks than introduced species. This is consistent with the observation that field sites dominated by native plant species had lower arbuscular mycorrhizal (AM) fungal density and lower soil aggregate stability than invaded field sites at the island. We found support for a mycorrhizal filter to the initial colonization of the Galapagos.

3.
Oecologia ; 189(2): 501-513, 2019 Feb.
Article de Anglais | MEDLINE | ID: mdl-30701386

RÉSUMÉ

Determining assembly rules of co-occurring species persists as a fundamental goal in community ecology. At local scales, the relative importance of environmental filtering vs. competitive exclusion remains a subject of debate. In this study, we assessed the relative importance of habitat filtering and competition in structuring understory ant communities in tropical forests of French Guiana. Leaf-litter ants were collected using pitfall and Winkler traps across swamp, slope and plateau forests near Saül, French Guiana. We used a combination of univariate and multivariate analyses to evaluate trait response of ants to habitat characteristics. Null model analyses were used to investigate the effects of habitat filtering and competitive interactions on community assembly at the scale of assemblages and sampling points, respectively. Swamp forests presented a much lower taxonomic and functional richness compared to slope and plateau forests. Furthermore, marked differences in taxonomic and functional composition were observed between swamp forests and slope or plateau forests. We found weak evidence for competitive exclusion based on null models. Nevertheless, the contrasting trait composition observed between habitats revealed differences in the ecological attributes of the species in the different forest habitats. Our analyses suggest that competitive interactions may not play an important role in structuring leaf-litter ant assemblages locally. Rather, habitats are responsible for driving both taxonomic and functional composition of ant communities.


Sujet(s)
Fourmis , Animaux , Biodiversité , Écologie , Écosystème , Forêts , Guyane française
4.
Ecol Lett ; 20(4): 495-504, 2017 Apr.
Article de Anglais | MEDLINE | ID: mdl-28294532

RÉSUMÉ

Remote locations, such as oceanic islands, typically harbour relatively few species, some of which go on to generate endemic radiations. Species colonising these locations tend to be a non-random subset from source communities, which is thought to reflect dispersal limitation. However, non-random colonisation could also result from habitat filtering, whereby only a few continental species can become established. We evaluate the imprints of these processes on the Galápagos flora by analysing a comprehensive regional phylogeny for ~ 39 000 species alongside information on dispersal strategies and climatic suitability. We found that habitat filtering was more important than dispersal limitation in determining species composition. This finding may help explain why adaptive radiation is common on oceanic archipelagoes - because colonising species can be relatively poor dispersers with specific niche requirements. We suggest that the standard assumption that plant communities in remote locations are primarily shaped by dispersal limitation deserves reconsideration.


Sujet(s)
Écosystème , Dispersion des plantes , Plantes , Biote , Équateur , Iles , Phylogenèse
5.
Ann Bot ; 119(4): 659-670, 2017 03 01.
Article de Anglais | MEDLINE | ID: mdl-28087661

RÉSUMÉ

Background and Aims: Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Methods: Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus , measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel's lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. Key Results: The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Conclusions: Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be explained by high phenotypic and phylogenetic resemblance between exotic and native species. The use of continuous gradients when studying the effects of disturbance on community assembly is advocated.


Sujet(s)
Écosystème , Plantes , Rodentia , Animaux , Biodiversité , Climat désertique , Espèce introduite , Phylogenèse , Dynamique des populations
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE