Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 936
Filtrer
1.
Angew Chem Int Ed Engl ; : e202410893, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39105385

RÉSUMÉ

Combining high-voltage nickel-rich cathodes with lithium metal anodes is among the most promising approaches for achieving high-energy-density lithium batteries. However, most current electrolytes fail to simultaneously satisfy the compatibility requirements for the lithium metal anode and the tolerance for the ultra-high voltage NCM811 cathode. Here, we have designed an ultra-oxidation-resistant electrolyte by meticulously adjusting the composition of fluorinated carbonates. Our study reveals that a solid-electrolyte interphase (SEI) rich in LiF and Li2O is constructed on the lithium anode through the synergistic decomposition of the fluorinated solvents and PF6- anion, facilitating smooth lithium metal deposition. The superior oxidation resistance of our electrolyte enables the Li||NCM811 cell to deliver a capacity retention of 80% after 300 cycles at an ultrahigh cut-off voltage of 4.8 V. Additionally, a pioneering 4.8 V-class lithium metal pouch cell with an energy density of 462.2 Wh kg-1 stably cycles for 110 cycles under harsh conditions of high cathode loading (30 mg cm-2), low N/P ratio (1.18), and lean electrolytes (2.3 g Ah-1).

2.
Sci Rep ; 14(1): 17968, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39095527

RÉSUMÉ

As Europe integrates more renewable energy resources, notably offshore wind power, into its super meshed grid, the demand for reliable long-distance High Voltage Direct Current (HVDC) transmission systems has surged. This paper addresses the intricacies of HVDC systems built upon Modular Multi-Level Converters (MMCs), especially concerning the rapid rise of DC fault currents. We propose a novel fault identification and classification for DC transmission lines only by employing Long Short-Term Memory (LSTM) networks integrated with Discrete Wavelet Transform (DWT) for feature extraction. Our LSTM-based algorithm operates effectively under challenging environmental conditions, ensuring high fault resistance detection. A unique three-level relay system with multiple time windows (1 ms, 1.5 ms, and 2 ms) ensures accurate fault detection over large distances. Bayesian Optimization is employed for hyperparameter tuning, streamlining the model's training process. The study shows that our proposed framework exhibits 100% resilience against external faults and disturbances, achieving an average recognition accuracy rate of 99.04% in diverse testing scenarios. Unlike traditional schemes that rely on multiple manual thresholds, our approach utilizes a single intelligently tuned model to detect faults up to 480 ohms, enhancing the efficiency and robustness of DC grid protection.

3.
ACS Nano ; 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39109932

RÉSUMÉ

Lithium metal batteries (LMBs) with LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes have garnered significant interest as next-generation energy storage devices due to their high energy density. However, the instability of their electrode/electrolyte interfaces in regular carbonate electrolytes (RCEs) results in a rapid capacity decay. To address this, a colloid electrolyte consisting of Li3P nanoparticles uniformly dispersed in the RCE is developed by a one-step synthesis. This design concurrently creates stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) on both electrode surfaces. The cathode interface derived from this colloid electrolyte significantly facilitates the decomposition of Li salts (LiPF6 and LiDFOB) on the cathode surface by weakening the P-F and B-F bonds. This in situ formed P/LiF-rich CEI effectively protects the NCM811 cathode from side reactions. Furthermore, the Li3P embedded in the SEI optimizes and homogenizes the Li-ion transport, enabling dendrite-free Li deposition. Compared to the RCE, the designed colloid electrolyte enables robust cathode and anode interfaces in NCM811||Li full cells, minimizing gas and dendrite formation, and delivering a superior capacity retention of 82% over 120 cycles at a 4.7 V cutoff voltage. This approach offers different insights into electrolyte regulation and explores alternative electrolyte shapes and formulations.

4.
ACS Nano ; 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39145659

RÉSUMÉ

Solid polymer electrolytes (SPEs) represent a pivotal advance toward high-energy solid-state lithium metal batteries. However, inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Recent efforts have focused on transforming liquid/solid interfaces into solid/solid ones through in situ polymerization, which shows potential especially in reducing interface impedance. Here, we designed high-voltage SSLMBs with dual-reinforced stable interfaces by combining interface modification with an in situ polymerization technology inspired by targeted effects in medicine. Theoretical calculations and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis demonstrate that tetramethylene sulfone (TMS) and bis(2,2,2-trifluoromethyl) carbonate (TFEC) exhibit selective adsorption at the interface of the LiNi0.8Co0.1Mn0.1O2 (NCM) cathode and Li anode, respectively. These compounds further decompose to form a stable cathode-electrolyte interface (CEI) film and a solid electrolyte interface (SEI) film, thereby simultaneously achieving a superior interface between the SPE and both the Li anode and NCM cathode. The developed Li||SPE||Li cell sustained cycling for more than 1000 h at 0.3 mA cm-2, and the NCM||SPE||Li cell also demonstrated an excellent capacity retention of 86.8% after 1000 cycles at 1 °C. This work will provide valuable insights for the rational design of high-voltage SSLMBs with stable interfaces, leveraging in situ polymerization as a cornerstone technology.

5.
Adv Sci (Weinh) ; : e2404506, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39120001

RÉSUMÉ

In the development of lithium-ion batteries (LIBs), cheaper and safer solid polymer electrolytes are expected to replace combustible organic liquid electrolytes to meet the larger market demand. However, low ionic conductivity and inadequate cycling stability impede their commercial viability. Herein, a novel flexible conducting solid polymer electrolytes (CSPEs) based on polyvinyl alcohol (PVA) and ion-polarized diethylenetriaminepentaacetic acid (P-DETP) is developed for the first time and applied in LIBs. PVA and P-DETP form a compact polymer network through hydrogen bonding, enhancing the thermomechanical stability of CSPE while restricting the migration of larger anions. Furthermore, density functional theory calculations confirm that P-DETP can facilitate the dissociation of Li+-TFSI- via electrostatic attraction, resulting in increased mobility of lithium ions. Additionally, P-DETP contributes to the formation of a stable electrode-electrolyte interface layer, effectively suppressing the growth of lithium dendrites and improving antioxidant capacity. These synergistic effects enable CSPE to exhibit remarkable properties including high ionic conductivity (2.8 × 10-4 S cm-1), elevated electrochemical potential (5.1 V), and excellent lithium transference number (0.869). Notably, the P-DETP/LiTFSI CSPE demonstrates stable performance not only in LiFePO4 batteries but also adapts to high-nickel ternary LiNi0.88Co0.06Mn0.06O2 cathode, highlighting its immense potential for application in high energy density LIBs.

6.
ACS Appl Mater Interfaces ; 16(32): 42894-42904, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39093917

RÉSUMÉ

In this study, a nonflammable all-fluorinated electrolyte for lithium-ion cells with a Li(Ni0.8Mn0.1Co0.1)O2 cathode is investigated under high voltages. This electrolyte, named FT46, consists of fluoroethylene carbonate (FEC) and bis(2,2,2-trifluoroethyl) carbonate (TFEC) in a mass ratio of 4:6. Compared to a commercially available electrolyte and several other fluorinated electrolytes, cells containing FT46 demonstrate significantly better cycling performances under high voltage (3.0-4.5 V). This result may be ascribed to the generation of a stable, smooth, and thin passivation layer and the improved solvation structure formed by FT46. The LiF-rich passivation layer strengthens the electrode/electrolyte interface, inhibits the degradation of the electrode, and suppresses side reactions between the electrodes and electrolytes under high voltage. The solvation structure formed by FT46 is derived from anions, enabling an enhanced Li+ migration rate and inhibiting lithium plating generation. Additionally, due to the nonflammability of the electrolyte and the stable passivation layers, FT46 cells also demonstrate promising safety characteristics when exposed to typical abusive conditions, such as thermal abuse, mechanical abuse, and electrical abuse.

7.
ACS Appl Mater Interfaces ; 16(32): 42069-42079, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39102444

RÉSUMÉ

The structure-activity relationships of nonsolvating cosolvents for organosulfur-based electrolyte systems were revealed. The performance of nonsolvating dilutant fluorobenzene (FB) was compared to various fluorinated ether dilutants in high-voltage electrolytes containing a concentration of 1.2 M LiPF6 dissolved in fluoroethylene carbonate (FEC), ethyl methyl sulfone (EMS), and the dilutant. In a high-voltage and high-loading LiNi0.8Mn0.1Co0.1O2 (NMC811) full cell configuration, the organosulfur-based electrolyte containing FB dilutant enabled superior electrochemical performance compared to the electrolytes using other nonsolvating fluorinated ether formulations. Moreover, the FB-containing electrolyte exhibited the highest ionic conductivity and lowest viscosity among all organosulfur-based electrolytes containing nonsolvating dilutant. These improvements are attributed to the enhanced physical properties of electrolyte and lithium-ion mobility. Furthermore, by employing first-principles simulations, the observed suppression of side reactions at high voltage is linked to FB's lower reactivity toward singlet dioxygen, which is likely produced at the NMC interface. Overall, FB is considered an excellent diluent that does not impede cell operation by mass decomposition at the cathode.

8.
Adv Mater ; : e2406386, 2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-38973220

RÉSUMÉ

A majority of flexible and wearable electronics require high operational voltage that is conventionally achieved by serial connection of battery unit cells using external wires. However, this inevitably decreases the energy density of the battery module and may cause additional safety hazards. Herein, a bipolar textile composite electrode (BTCE) that enables internal tandem-stacking configuration to yield high-voltage (6 to 12 V class) solid-state lithium metal batteries (SSLMBs) is reported. BTCE is comprised of a nickel-coated poly(ethylene terephthalate) fabric (NiPET) core layer, a cathode coated on one side of the NiPET, and a Li metal anode coated on the other side of the NiPET. Stacking BTCEs with solid-state electrolytes alternatively leads to the extension of output voltage and decreased usage of inert package materials, which in turn significantly boosts the energy density of the battery. More importantly, the BTCE-based SSLMB possesses remarkable capacity retention per cycle of over 99.98% over cycling. The composite structure of BTCE also enables outstanding flexibility; the battery keeps stable charge/discharge characteristics over thousands of bending and folding. BTCE shows great promise for future safe, high-energy-density, and flexible SSLMBs for a wide range of flexible and wearable electronics.

9.
Case Reports Plast Surg Hand Surg ; 11(1): 2374549, 2024.
Article de Anglais | MEDLINE | ID: mdl-38993354

RÉSUMÉ

We report a rare case of vocal cord injury from an electrical burn, managed successfully with conservative, non-invasive treatment. This unique case illustrates potential complications of electrical trauma and underscores the need for vigilance and consideration of conservative management approaches.

10.
Nano Lett ; 24(29): 8872-8879, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-38989682

RÉSUMÉ

Parlous structure integrity of the cathode and erratic interfacial microdynamics under high potential take responsibility for the degradation of solid-state lithium metal batteries (LMBs). Here, high-voltage LMBs have been operated by modulating the polymer electrolyte intrinsic structure through an intermediate dielectric constant solvent and further inducing the gradient solid-state electrolyte interphase. Benefiting from the chemical adsorption between trimethyl phosphate (TMP) and the cathode, the gradient interphase rich in LiPFxOy and LiF is induced, thereby ensuring the structural integrity and interface compatibility of the commercial LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode even at the 4.9 V cutoff voltage. Eventually, the specific capacity of NCM811|Li full cell based on TMP-modulated polymer electrolyte increased by 27.7% from 4.5 to 4.9 V. Such a universal screening method of electrolyte solvents and its derived electrode interfacial manipulation strategy opens fresh avenues for quasi-solid-state LMBs with high specific energy.

11.
Small ; : e2404063, 2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-39004857

RÉSUMÉ

Gel polymer electrolytes (GPEs) present a promising alternative to standard liquid electrolytes (LE) for Lithium-ion Batteries (LIBs) and Lithium Metal Batteries bridging the advantages of both liquid and solid polymer electrolytes. However, their cycle life still lags behind that of standard LIBs, and their degradation mechanisms remain poorly understood. A significant challenge is the need for specific diagnostic protocols to systematically study the degradation mechanisms of GPE-based cells. Challenges include the separation of cell components and effective washing, as well as the study of the solid electrolyte interfaces, all complicated by the semi-solid nature of GPEs. This paper provides a brief review of existing literature and proposes a comprehensive set of diagnostic tools for dismantling and evaluating the degradation of GPE-based LIBs. Finally, these methods and recommendations are applied to LiNi0.5Mn1.5O4 (LNMO)-graphite cells, revealing electrolyte oxidation as a major source of cell degradation.

12.
Adv Mater ; : e2407029, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39007243

RÉSUMÉ

Facing the resource and environmental pressures brought by the retiring wave of lithium-ion batteries (LIBs), direct recycling methods are considered to be the next generation's solution. However, the contradiction between limited battery life and the demand for rapidly iterating technology forces the direct recovery paradigm to shift toward "direct upcycling." Herein, a closed-loop direct upcycling strategy that converts waste current collector debris into dopants is proposed, and a highly inclusive eutectic molten salt system is utilized to repair structural defects in degraded polycrystalline LiNi0.83Co0.12Mn0.05O2 cathodes while achieving single-crystallization transformation and introducing Al/Cu dual-doping. Upcycled materials can effectively overcome the two key challenges at high voltages: strain accumulation and lattice oxygen evolution. It exhibits comprehensive electrochemical performance far superior to commercial materials at 4.6 V, especially its fast charging capability at 15 C, and an impressive 91.1% capacity retention after 200 cycles in a 1.2 Ah pouch cell. Importantly, this approach demonstrates broad applicability to various spent layered cathodes, particularly showcasing its value in the recycling of mixed spent cathodes. This work effectively bridges the gap between waste management and material performance enhancement, offering a sustainable path for the recycling of spent LIBs and the production of next-generation high-voltage cathodes.

13.
Data Brief ; 55: 110688, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39071967

RÉSUMÉ

High-voltage power line insulators are crucial for safe and efficient electricity transmission. However, real-world image limitations, particularly regarding dirty insulator strings, delay the development of robust algorithms for insulator inspection. This dataset addresses this challenge by creating a novel synthetic high-voltage power line insulator image database. The database was created using computer-aided design softwares and a game development engine. Publicly available CAD models of high-voltage towers with the most common insulator types (polymer, glass, and porcelain) were imported into the game engine. This virtual environment allowed for the generation of a diverse dataset by manipulating virtual cameras, simulating various lighting conditions, and incorporating different backgrounds such as mountains, forests, plantation, rivers, city and deserts. The database comprises two main sets: The Image Segmentation Set, which includes 47,286 images categorized by insulator material (ceramic, polymeric, and glass) and landscape type (mountains, forests, plantation, rivers, city and deserts). Moreover, the Image Classification Set that contains 14,424 images simulating common insulator string contaminants: salt, soot, bird excrement, and clean insulators. Each contaminant category has 3,606 images divided into 1,202 images per insulator type. This synthetic database offers a valuable resource for training and evaluating machine learning algorithms for high-voltage power line insulator inspection, ultimately contributing to enhanced power grid maintenance and reliability.

14.
Angew Chem Int Ed Engl ; : e202410392, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39078407

RÉSUMÉ

The poor electrochemical stability window and low ionic conductivity in solid-state electrolytes hinder the development of safe, high-voltage, and energy-dense lithium metal batteries. Herein, taking advantage of the unique electronic effect of nitrile groups, we designed a novel azanide-based single-ion covalent organic framework (CN-iCOF) structure that possesses effective Li+ transport and high-voltage stability in lithium metal batteries. Density functional theory (DFT) calculations and molecular dynamics (MD) revealed that electron-withdrawing nitrile groups not only resulted in an ultralow HOMO energy orbital but also enhanced Li+ dissociation through charge delocalization, leading to a high tLi+ of 0.93 and remarkable oxidative stability up to 5.6 V (vs. Li+/Li) simultaneously. Moreover, cyanation leveraging Strecker reaction transformed reversible imine-linkage to a stable sp3-carbon-containing azanide anion, which facilitated contorted alignment of transport "ladders" along the one-dimensional anionic channels and the ionic conductivity could reach 1.33 × 10-5 S cm-1 at ambient temperature without any additives. As a result, CN-iCOF allowed operation of solid-state lithium metal batteries with high-voltage cathodes such as LiNi0.8Mn0.1Co0.1O2 (NCM811), demonstrating stable lithium deposition up to 1,100 h and reversible battery cycling at ambient temperature up to 4.5 V, shedding light on the importance of discovering new functionality for forthcoming high-performance batteries.

15.
Sci Rep ; 14(1): 17506, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39080349

RÉSUMÉ

In this paper, a single stage buck-boost DC-AC converter based on coupled inductors is presented for renewable energy and electric vehicle applications. The proposed topology works with only three semiconductor switches, two diodes, and three coupled inductors to transfer input DC voltage to a high gain or low gain output AC voltage. A coupled inductor is used instead of normal inductors, which will reduce core and size requirements. The sinusoidal pulse width modulation strategy is used in this paper for controlling the main switch. There are many merits in the presented topology, like high gain up to five times of input voltage, compact size, less number of components, which results in reducing the overall cost, reducing switching loss, and increasing the converter efficiency. The simulation study is carried out using MATLAB/SIMULINK to simulate the operation of the proposed converter. Also, an experimental setup is built up to examine the actual operation of the proposed converter. There is a good agreement between simulation and experimental results which increases the validation and confidence of the model.

16.
Front Microbiol ; 15: 1410505, 2024.
Article de Anglais | MEDLINE | ID: mdl-39027092

RÉSUMÉ

Coenzyme Q10 (CoQ10) is an essential medicinal ingredient. In this study, we obtained a high-yielding mutant strain of CoQ10, VK-2-3, by subjecting R. sphaeroides V-0 (V-0) to a 12C6+ heavy ion beam and high-voltage prick electric field treatment. To investigate the mutation mechanism, the complete genomes of VK-2-3 and V-0 were sequenced. Collinearity analysis revealed that the nicotinamide adenine dinucleotide-dependent dehydrogenase (NAD) gene underwent rearrangement in the VK-2-3 genome. The NAD gene was overexpressed and silenced in V-0, and this construct was named RS.NAD and RS.ΔNAD. The results showed that the titers of CoQ10 in the RS.NAD and RS.ΔNAD increased and decreased by 16.00 and 33.92%, respectively, compared to those in V-0, and these differences were significant. Our results revealed the mechanism by which the VK-2-3 CoQ10 yield increases through reverse metabolic engineering, providing insights for genetic breeding and mechanistic analysis.

17.
Small ; : e2403993, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-39031746

RÉSUMÉ

Polyvinylidene fluoride (PVDF) has unique electrochemical oxidation resistance and is the only binder for high-voltage cathode materials in the battery industry for a long time. However, PVDF still has some drawbacks, such as environmental limitations on fluorine, strict requirements for environmental humidity, weak adhesion, and poor lithium ion conductivity. Herein, the long-standing issues associated with high-voltage lithium cobalt oxide (LiCoO2; LCO) are successfully addressed by incorporating phenolphthalein polyetherketone (PEK-C) and phenolphthalein polyethersulfone (PES-C) as binder materials. These binders have unexpected electrochemical oxidation resistance and robustness adhesion, ensure uniform coverage on the surface of LCO, and establish an effective and fast ion-conductive CEI/binder composite layer. By leveraging these favorable characteristics, electrodes based on polyarylether binders demonstrate significantly better cycling and rate performance than their counterparts using traditional PVDF binders. The fast ion-conductive CEI/binder composite layer effectively mitigates adverse reactions at the cathode-electrolyte interface. As anticipated, batteries utilizing phenolphthalein polyarylether binders exhibit capacity retention rates of 88.92% and 80.4% after 200 and 500 cycles at 4.5 and 4.6 V, respectively. The application of binders, such as polyarylether binders, offers a straightforward and inspiring approach for designing high-energy-density battery materials.

18.
ACS Appl Mater Interfaces ; 16(28): 37288-37297, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38953553

RÉSUMÉ

The incompatibility of ether electrolytes with a cathode dramatically limits its application in high-voltage Li metal batteries. Herein, we report a new highly concentrated binary salt ether-based electrolyte (HCBE, 1.25 M LiTFSI + 2.5 M LiFSI in DME) that enables stable cycling of high-voltage lithium metal batteries with the Ni-rich (NCM83, LiNi0.83Co0.12Mn0.05O2) cathode. Experimental characterizations and density functional theory (DFT) calculations reveal the special solvation structure in HCBE. A solvation structure rich in aggregates (AGGs) can effectively broaden the electrochemical window of the ether electrolyte. The anions in HCBE preferentially decompose under high voltage, forming a CEI film rich in inorganic components to protect the electrolyte from degradation. Thus, the high-energy-density Li||NCM83 cell has a capacity retention of ≈95% after 150 cycles. Significantly, the cells in HCBE have a high and stable average Coulombic efficiency of over 99.9%, much larger than that of 1 M LiPF6 + EC + EMC + DMC (99%). The result emphasizes that the anionic-driven formation of a cathode electrolyte interface (CEI) can reduce the number of interface side reactions and effectively protect the cathode. Furthermore, the Coulombic efficiency of Li||Cu using the HCBE is 98.5%, underscoring the advantages of using ether-based electrolytes. This work offers novel insights and approaches for the design of high-performance electrolytes for lithium metal batteries.

19.
ACS Nano ; 18(28): 18622-18634, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38946316

RÉSUMÉ

Advancing the high-voltage stability of the O3-type layered cathodes for sodium-ion batteries is critical to boost their progress in energy storage applications. However, this type of cathode often suffers from intricate phase transition and structural degradation at high voltages (i.e., >4.0 V vs Na+/Na), resulting in rapid capacity decay. Here, we present a Li/Ti cosubstitution strategy to modify the electronic configuration of oxygen elements in the O3-type layered oxide cathode. This deliberate modulation simultaneously mitigates the phase transitions and counteracts the weakening of the shielding effect resulting from the extraction of sodium ions, thus enhancing the electrostatic bonding within the TM layer and inducing and optimizing the O3-OP2 phase transition occurring in the voltage range of 2.0-4.3 V. Consequently, the cosubstituted NaLi1/9Ni1/3Mn4/9Ti1/9O2 exhibits an astounding capacity of 161.2 mAh g-1 in the voltage range of 2.0-4.3 V at 1C, and stable cycling up to 100 cycles has been achieved. This work shows the impact mechanism of element substitution on interlayer forces and phase transitions, providing a crucial reference for the optimization of O3-type materials.

20.
ACS Appl Mater Interfaces ; 16(30): 39942-39951, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39023134

RÉSUMÉ

There is an urgent need for lithium-ion batteries with high energy density to meet the increasing demand for advanced devices and ecofriendly electric vehicles. Spinel LiNi0.5Mn1.5O4 (LNMO) is the most promising cathode material for achieving high energy density due to its high operating voltage (4.75 V vs Li/Li+) and impressive capacity of 147 mAh g-1. However, the binders conventionally used are prone to high potential and oxidation at the cathode side, resulting in a loss of the ability to bond active material and conductive agent integrity. This can lead to severe capacity fading and irreversible battery failure. This study demonstrates that incorporating acrylic anhydride and methyl methacrylate into conventional acrylonitrile through solution polymerization improves the binding energy and voltage resistance. The results indicate that the triblock poly(acrylonitrile-methyl methacrylate-acrylic anhydride) (PAMA) binder has a much higher peeling strength (0.506 N cm-1) compared to its polyvinylidene fluoride (PVDF) counterpart (0.3 N cm-1), making it a more feasible strategy. When assembled with LiNi0.5Mn1.5O4, the PAMA based electrode maintains a capacity retention of 70.7% after 800 cycles at 0.1 C, which is significantly higher than the 33.9% retention of the PVDFbased electrode. This is due to the large number of polar groups, including ─C≡N and ─C═O, on PAMA, which are conducive to adsorbing lithium polysulfide. The S@PAMA electrode is tested and maintained a capacity value of 628.7 mAh g-1 after long-term cycling, confirming its ability to effectively suppress the shuttle effect.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE