Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 92
Filtrer
1.
Sci Rep ; 14(1): 16747, 2024 07 20.
Article de Anglais | MEDLINE | ID: mdl-39033233

RÉSUMÉ

In Argentina, migratory activity in search of floral diversity has become a common approach to maximizing honey production. The Entre Ríos province possesses a floral diversity that allows beekeepers to perform migratory or stationary management. Beyond the impact caused by transhumance, migratory colonies in this province start and end the season in monoculture areas. To study the effect of these practices on viral infection, we assayed for the presence, abundance and genetic characterization of the Deformed Wing Virus (DWV) in honey bees from apiaries with both types of management. In migratory apiaries, DWV was detectable in 86.2% of the colonies at the beginning of the season (September 2018), and 66% at the end of the season (March 2019). On the other hand, DWV was detected in 44.11% and 53.12% of stationary samples, at the beginning and the end of the season, respectively. Sequence analysis from migratory and stationary colonies revealed that all samples belonged to DWV-A type. The highest viral loads were detected in migratory samples collected in September. Higher DWV presence and abundance were associated with migratory management and the sampling time. Based on our findings we propose that the benefit of migration to wild flowering areas can be dissipated when the bee colonies end the season with monoculture.


Sujet(s)
Virus à ARN , Animaux , Abeilles/virologie , Argentine , Virus à ARN/génétique , Virus à ARN/isolement et purification , Migration animale , Saisons , Phylogenèse , Apiculture , Charge virale
2.
J Exp Biol ; 227(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38873739

RÉSUMÉ

Social insects live in communities where cooperative actions heavily rely on the individual cognitive abilities of their members. In the honey bee (Apis mellifera), the specialization in nectar or pollen collection is associated with variations in gustatory sensitivity, affecting both associative and non-associative learning. Gustatory sensitivity fluctuates as a function of changes in motivation for the specific floral resource throughout the foraging cycle, yet differences in learning between nectar and pollen foragers at the onset of food collection remain unexplored. Here, we examined nectar and pollen foragers captured upon arrival at food sources. We subjected them to an olfactory proboscis extension reflex (PER) conditioning using a 10% sucrose solution paired (S10%+P) or unpaired (S10%) with pollen as a co-reinforcement. For non-associative learning, we habituated foragers with S10%+P or S10%, followed by dishabituation tests with either a 50% sucrose solution paired (S50%+P) or unpaired (S50%) with pollen. Our results indicate that pollen foragers show lower performance than nectar foragers when conditioned with S10%. Interestingly, performance improves to levels similar to those of nectar foragers when pollen is included as a rewarding stimulus (S10%+P). In non-associative learning, pollen foragers tested with S10%+P displayed a lower degree of habituation than nectar foragers and a higher degree of dishabituation when pollen was used as the dishabituating stimulus (S10%+P). Altogether, our results support the idea that pollen and nectar honey bee foragers differ in their responsiveness to rewards, leading to inter-individual differences in learning that contribute to foraging specialization.


Sujet(s)
Comportement alimentaire , Apprentissage , Nectar des plantes , Pollen , Récompense , Animaux , Abeilles/physiologie , Pollen/physiologie , Comportement alimentaire/physiologie , Apprentissage/physiologie , Fleurs/physiologie , Saccharose/métabolisme
3.
Arch Insect Biochem Physiol ; 116(1): e22120, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38739744

RÉSUMÉ

The vitellogenin receptor (VgR) is essential for the uptake and transport of the yolk precursor, vitellogenin (Vg). Vg is synthesized in the fat body, released in the hemolymph, and absorbed in the ovaries, via receptor-mediated endocytosis. Besides its important role in the reproductive pathway, Vg occurs in nonreproductive worker honey bee, suggesting its participation in other pathways. The objective was to verify if the VgR occurs in the hypopharyngeal glands of Apis mellifera workers and how Vg is internalized by these cells. VgR occurrence in the hypopharyngeal glands was evaluated by qPCR analyses of VgR and immunohistochemistry in workers with different tasks. The VgR gene is expressed in the hypopharyngeal glands of workers with higher transcript levels in nurse honey bees. VgR is more expressed in 11-day-old workers from queenright colonies, compared to orphan ones. Nurse workers with developed hypopharyngeal glands present higher VgR transcripts than those with poorly developed glands. The immunohistochemistry results showed the co-localization of Vg, VgR and clathrin (protein that plays a major role in the formation of coated vesicles in endocytosis) in the hypopharyngeal glands, suggesting receptor-mediated endocytosis. The results demonstrate that VgR performs the transport of Vg to the hypopharyngeal glands, supporting the Ovary Ground Plan Hypothesis and contributing to the understanding of the role of this gland in the social context of honey bees.


Sujet(s)
Protéines d'oeuf , Partie laryngée du pharynx , Protéines d'insecte , Récepteurs de surface cellulaire , Animaux , Abeilles/métabolisme , Abeilles/génétique , Récepteurs de surface cellulaire/métabolisme , Récepteurs de surface cellulaire/génétique , Protéines d'insecte/métabolisme , Protéines d'insecte/génétique , Protéines d'oeuf/métabolisme , Protéines d'oeuf/génétique , Partie laryngée du pharynx/métabolisme , Femelle , Vitellogénines/métabolisme , Vitellogénines/génétique , Clathrine/métabolisme
4.
Rev Argent Microbiol ; 56(3): 265-269, 2024.
Article de Espagnol | MEDLINE | ID: mdl-38762351

RÉSUMÉ

The microbial communities within honey bee colonies contribute to the defense against pathogens. The goal of this study was to isolate, identify, and lyophilize lactic acid bacteria and bifidobacteria from the gut of nurse bees and bee bread in Apis mellifera colonies. Bacterial cultures from the intestinal content were conducted, and subsequently identified, sequenced, and lyophilized. Cross-antagonism among them was also assessed. Studies based on 16 S rRNA gene Sanger sequencing revealed that the MC3 strain had 100% identity with Bifidobacterium choladohabitans, the PP2B strain showed 99.16% similarity with Enterococcus faecium, while the PP1 strain exhibited 99.49% similarity with Lacticaseibacillus sp. and the PP1B strain showed 99.32% similarity with Lacticaseibacillus sp. There was no evidence of cross-antagonism among the strains, and the lyophilization process showed good stability and conservation. This is the first report of the isolation of B. choladohabitans from honey bee gut in Argentina, and also associates the presence of E. faecium with bee bread.


Sujet(s)
Bifidobacterium , Animaux , Abeilles/microbiologie , Bifidobacterium/isolement et purification , Bifidobacterium/génétique , Microbiote , Argentine , Microbiome gastro-intestinal , Lyophilisation
5.
Environ Res ; 249: 118306, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38307184

RÉSUMÉ

Argentina is a leading honey producer and honey bees are also critical for pollination services and wild plants. At the same time, it is a major crop producer with significant use of insecticides, posing risks to bees. Therefore, the presence of the highly toxic insecticide chlorpyrifos, and forbidden contaminants (organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)) was investigated in honey bee, beebread, wax and honey samples in apiaries from three contrasting regions of Argentina. Chlorpyrifos was detected in all samples with higher levels during period 1 (spring) in contrast to period 2 (fall), agreeing with its season-wise use in different crops, reaching 3.05 ng/g in honey bees. A subsequent first-tier pesticide hazard analysis revealed that it was relevant to honey bee health, mainly due to the high concentrations found in wax samples from two sites, reaching 132.4 ng/g. In addition, wax was found to be the most contaminated matrix with a prevalence of OCPs (∑OCPs 58.23-172.99 ng/g). Beebread samples showed the highest concentrations and diversity of pesticide residues during period 1 (higher temperatures). A predominance of the endosulfan group was registered in most samples, consistent with its intensive past use, especially in Central Patagonia before its prohibition. Among the industrial compounds, lighter PCB congeners dominated, suggesting the importance of atmospheric transport. The spatio-temporal distribution of pesticides shows a congruence with the environmental characteristics of the areas where the fields are located (i.e., land use, type of productive activities and climatic conditions). Sustained monitoring of different pollutants in beekeeping matrices is recommended to characterize chemical risks, assess the health status of honey bee hives and the pollution levels of different agroecosystems. This knowledge will set a precedent for South America and be helpful for actions focused on the conservation of pollination services, apiculture and ecosystems in Argentina.


Sujet(s)
Surveillance de l'environnement , Polluants environnementaux , Miel , Abeilles , Argentine , Animaux , Miel/analyse , Polluants environnementaux/analyse , Polychlorobiphényles/analyse , Cires/analyse , Cires/composition chimique , Éthers de polyhalogénophényle/analyse , Pesticides/analyse , Saisons , Chlorpyriphos/analyse
6.
Animals (Basel) ; 13(11)2023 May 24.
Article de Anglais | MEDLINE | ID: mdl-37889652

RÉSUMÉ

Mexico is a major honey producer, but not much information exists about the health status of honey bees (Apis mellifera L.) in the country. This study was conducted to determine the sanitary status of adult honey bees in Mexico's five beekeeping regions. Samples from 369 apiaries were diagnosed to identify pathogens such as Varroa destructor, which was quantified, Acarapis woodi, Nosema spp., and five viruses. Colonies were also inspected for the presence of the small hive beetle (SHB), Aethina tumida. Varroa destructor was found in 83.5% of the apiaries, with the Pacific Coast region having the highest prevalence (>95%) and rates (4.5% ± 0.6). Acarapis woodi was detected in only one apiary from the Pacific Coast, whereas Nosema spp. were prevalent in 48.5% of the apiaries, with the highest and lowest frequencies in the Yucatan Peninsula and North regions (64.6% and 10.2%, respectively). For viruses, deformed wing virus (DWV) was detected in 26.1% of the apiaries, with the highest frequency in the Pacific Coast region (44.7%). Israeli acute paralysis virus (IAPV) was diagnosed in 3.2% of the samples and sacbrood bee virus (SBV) in 23.3% of them, with the highest frequency in the High Plateau region (36.4%). Chronic bee paralysis and Kashmir bee viruses were not detected. SHB prevalence was 25.2% nationwide, with the highest frequency in the Yucatan Peninsula (39.2%). This study shows that the most common parasites of adult honey bees in Mexico are V. destructor and Nosema spp., and that the most prevalent virus is DWV, whereas SHB is highly prevalent in the Yucatan Peninsula. This information could be useful to design disease control strategies for honey bee colonies in different regions of Mexico.

7.
Sci Total Environ ; 905: 167278, 2023 Dec 20.
Article de Anglais | MEDLINE | ID: mdl-37741377

RÉSUMÉ

The widespread use of pesticides in agriculture has been linked to declines in bee populations worldwide. Imidacloprid is a widely used systemic insecticide that can be found in the pollen and nectar of plants and has the potential to negatively impact the development of bee larvae. We investigated the effects of oral exposure to a realistic field concentration (20.5 ng g-1) of imidacloprid on the midgut and fat body of Apis mellifera worker larvae. Our results showed that larvae exposed to imidacloprid exhibited changes in the midgut epithelium, including disorganization of the brush border, nuclear chromatin condensation, cytoplasm vacuolization, and release of cell fragments indication cell death. Additionally, histochemical analysis revealed that the midgut brush border glycocalyx was disorganized in exposed larvae. The fat body cells of imidacloprid-exposed larvae had a decrease in the size of lipid droplets from 50 to 8 µm and increase of 100 % of protein content, suggesting possible responses to the stress caused by the insecticide. However, the expression of de cdc20 gene, which plays a role in cell proliferation, was not affected in the midgut and fat body of treated larvae. These results suggest that imidacloprid negatively affects non-target organs during the larval development of A. mellifera potentially impacting this important pollinator species.


Sujet(s)
Hymenoptera , Insecticides , Abeilles , Animaux , Insecticides/toxicité , Néonicotinoïdes/toxicité , Composés nitrés/toxicité , Larve , Développement embryonnaire
8.
Braz J Microbiol ; 54(3): 1447-1458, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37531005

RÉSUMÉ

The decline in honey bee colonies in different parts of the world in recent years is due to different reasons, such as agricultural practices, climate changes, the use of chemical insecticides, and pests and diseases. Viral infections are one of the main causes leading to honey bee population declines, which have a major economic impact due to honey production and pollination. To investigate the presence of viruses in bees in southern Brazil, we used a metagenomic approach to sequence adults' samples of concentrated extracts from Apis mellifera collected in fifteen apiaries of six municipalities in the Rio Grande do Sul state, Brazil, between 2016 and 2017. High-throughput sequencing (HTS) of these samples resulted in the identification of eight previously known viruses (Apis rhabdovirus 1 (ARV-1), Acute bee paralysis virus (ABPV), Aphid lethal paralysis virus (ALPV), Black queen cell virus (BQCV), Bee Macula-like virus (BeeMLV), Deformed wing virus (DWV), Lake Sinai Virus NE (LSV), and Varroa destructor virus 3 (VDV-3)) and a thogotovirus isolate. This thogotovirus shares high amino acid identities in five of the six segments with Varroa orthomyxovirus 1, VOV-1 (98.36 to 99.34% identity). In contrast, segment 4, which codes for the main glycoprotein (GP), has no identity with VOV-1, as observed for the other segments, but shares an amino acid identity of 34-38% with other glycoproteins of viruses from the Orthomyxoviridae family. In addition, the putative thogotovirus GP also shows amino acid identities ranging from 33 to 41% with the major glycoprotein (GP64) of insect viruses of the Baculoviridae family. To our knowledge, this is the second report of a thogotovirus found in bees and given this information, this thogotovirus isolate was tentatively named Apis thogotovirus 1 (ATHOV-1). The detection of multiple viruses in bees is important to better understand the complex interactions between viruses and their hosts. By understanding these interactions, better strategies for managing viral infections in bees and protecting their populations can be developed.


Sujet(s)
Abeilles , Virus des insectes , Abeilles/virologie , Métagénomique , Séquençage nucléotidique à haut débit , Brésil , Virus des insectes/classification , Virus des insectes/génétique , Virus des insectes/isolement et purification , Phylogenèse , Protéines virales/composition chimique , Protéines virales/génétique
9.
Genome Biol Evol ; 15(9)2023 09 01.
Article de Anglais | MEDLINE | ID: mdl-37625795

RÉSUMÉ

A range of different genetic architectures underpin local adaptation in nature. Honey bees (Apis mellifera) in the Eastern African Mountains harbor high frequencies of two chromosomal inversions that likely govern adaptation to this high-elevation habitat. In the Americas, honey bees are hybrids of European and African ancestries and adaptation to latitudinal variation in climate correlates with the proportion of these ancestries across the genome. It is unknown which, if either, of these forms of genetic variation governs adaptation in honey bees living at high elevations in the Americas. Here, we performed whole-genome sequencing of 29 honey bees from both high- and low-elevation populations in Colombia. Analysis of genetic ancestry indicated that both populations were predominantly of African ancestry, but the East African inversions were not detected. However, individuals in the higher elevation population had significantly higher proportions of European ancestry, likely reflecting local adaptation. Several genomic regions exhibited particularly high differentiation between highland and lowland bees, containing candidate loci for local adaptation. Genes that were highly differentiated between highland and lowland populations were enriched for functions related to reproduction and sperm competition. Furthermore, variation in levels of European ancestry across the genome was correlated between populations of honey bees in the highland population and populations at higher latitudes in South America. The results are consistent with the hypothesis that adaptation to both latitude and elevation in these hybrid honey bees are mediated by variation in ancestry at many loci across the genome.


Sujet(s)
Abeilles , Chimère , Animaux , Mâle , Acclimatation/génétique , Acclimatation/physiologie , Afrique , Altitude , Abeilles/génétique , Abeilles/physiologie , Chimère/génétique , Chimère/physiologie , Climat , Europe , Génomique , Sperme , Amérique du Sud , Colombie
10.
J Imaging ; 9(7)2023 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-37504821

RÉSUMÉ

Bees play a critical role in pollination and food production, so their preservation is essential, particularly highlighting the importance of detecting diseases in bees early. The Varroa destructor mite is the primary factor contributing to increased viral infections that can lead to hive mortality. This study presents an innovative method for identifying Varroa destructors in honey bees using multichannel Legendre-Fourier moments. The descriptors derived from this approach possess distinctive characteristics, such as rotation and scale invariance, and noise resistance, allowing the representation of digital images with minimal descriptors. This characteristic is advantageous when analyzing images of living organisms that are not in a static posture. The proposal evaluates the algorithm's efficiency using different color models, and to enhance its capacity, a subdivision of the VarroaDataset is used. This enhancement allows the algorithm to process additional information about the color and shape of the bee's legs, wings, eyes, and mouth. To demonstrate the advantages of our approach, we compare it with other deep learning methods, in semantic segmentation techniques, such as DeepLabV3, and object detection techniques, such as YOLOv5. The results suggest that our proposal offers a promising means for the early detection of the Varroa destructor mite, which could be an essential pillar in the preservation of bees and, therefore, in food production.

11.
Environ Sci Pollut Res Int ; 30(25): 66923-66935, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37099096

RÉSUMÉ

There are multifactorial causes for the recent decline in bee populations, which has resulted in compromised pollination and reduced biodiversity. Bees are considered one of the most important non-target insects affected by insecticides used in crop production. In the present study, we investigated the effects of acute oral exposure to spinosad on the survival, food consumption, flight behavior, respiration rate, activity of detoxification enzymes, total antioxidant capacity (TAC), brain morphology, and hemocyte count of Apis mellifera foragers. We tested six different concentrations of spinosad for the first two analyses, followed by LC50 (7.7 mg L-1) for other assays. Spinosad ingestion decreased survival and food consumption. Exposure to spinosad LC50 reduced flight capacity, respiration rate, and superoxide dismutase activity. Furthermore, this concentration increased glutathione S-transferase activity and the TAC of the brain. Notably, exposure to LC50 damaged mushroom bodies, reduced the total hemocyte count and granulocyte number, and increased the number of prohemocytes. These findings imply that the neurotoxin spinosad affects various crucial functions and tissues important for bee performance and that the toxic effects are complex and detrimental to individual homeostasis.


Sujet(s)
Insecticides , Abeilles , Animaux , Insecticides/toxicité , Macrolides , Association médicamenteuse , Dose létale 50
12.
Microb Ecol ; 85(4): 1485-1497, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-35460373

RÉSUMÉ

Large-scale honey bee colony losses reported around the world have been associated with intoxication with pesticides, as with the presence of pests and pathogens. Among pesticides, neonicotinoid insecticides are the biggest threat. Due to their extensive use, they can be found in all agricultural environments, including soil, water, and air, are persistent in the environment, and are highly toxic for honey bees. In addition, infection by different pests and pathogens can act synergistically, weakening bees. In this study, we investigated the effects of chronic exposure to sublethal doses of imidacloprid alone or combined with the microsporidia Nosema ceranae on the immune response, deformed wing virus infection (DWV), gut microbiota, and survival of Africanized honey bees. We found that imidacloprid affected the expression of some genes associated with immunity generating an altered physiological state, although it did not favor DWV or N. ceranae infection. The pesticide alone did not affect honey bee gut microbiota, as previously suggested, but when administered to N. ceranae infected bees, it generated significant changes. Finally, both stress factors caused high mortality rates. Those results illustrate the negative impact of imidacloprid alone or combined with N. ceranae on Africanized honey bees and are useful to understand colony losses in Latin America.


Sujet(s)
Microbiome gastro-intestinal , Nosema , Pesticides , Abeilles , Animaux , Néonicotinoïdes/toxicité , Pesticides/pharmacologie , Nosema/physiologie
13.
Front Insect Sci ; 3: 1175760, 2023.
Article de Anglais | MEDLINE | ID: mdl-38469487

RÉSUMÉ

Africanized Apis mellifera colonies with promising characteristics for beekeeping have been detected in northern Argentina (subtropical climate) and are considered of interest for breeding programs. Integral evaluation of this feral material revealed high colony strength and resistance/tolerance to brood diseases. However, these Africanized honeybees (AHB) also showed variable negative behavioral traits for beekeeping, such as defensiveness, tendency to swarm and avoidance behavior. We developed a protocol for the selection of AHB stocks based on defensive behavior and characterized contrasting colonies for this trait using NGS technologies. For this purpose, population and behavioral parameters were surveyed throughout a beekeeping season in nine daughter colonies obtained from a mother colony (A1 mitochondrial haplotype) with valuable characteristics (tolerance to the mite Varroa destructor, high colony strength and low defensiveness). A Defensive Behavior Index was developed and tested in the colonies under study. Mother and two daughter colonies displaying contrasting defensive behavior were analyzed by ddRADseq. High-quality DNA samples were obtained from 16 workers of each colony. Six pooled samples, including two replicates of each of the three colonies, were processed. A total of 12,971 SNPs were detected against the reference genome of A. mellifera, 142 of which showed significant differences between colonies. We detected SNPs in coding regions, lncRNA, miRNA, rRNA, tRNA, among others. From the original data set, we also identified 647 SNPs located in protein-coding regions, 128 of which are related to 21 genes previously associated with defensive behavior, such as dop3 and dopR2, CaMKII and ADAR, obp9 and obp10, and members of the 5-HT family. We discuss the obtained results by considering the influence of polyandry and paternal lineages on the defensive behavior in AHB and provide baseline information to use this innovative molecular approach, ddRADseq, to assist in the selection and evaluation of honey bee stocks showing low defensive behavior for commercial uses.

14.
Insects ; 13(7)2022 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-35886747

RÉSUMÉ

Royal jelly is an essential substance for the development of bees from larval to adult stages. Studies have identified a group of key proteins in royal jelly, denominated major royal jelly proteins (MRJPs). The group currently consists of nine proteins (MRJP1-MRJP9), with MRJP1 being the most abundant and MRJP3 being used as a microsatellite marker for the selection of queens with a greater production of royal jelly. The diet of bees is mostly composed of proteins, and supplementing this intake to encourage a higher production of their primary product is important for producers. It is estimated that, by adding probiotic and prebiotic organisms to their diets, the benefits to bees will be even greater, both for their immune systems and primary responses to stress. Circumstances that are adverse compared to those of the natural habitat of bees eventually substantially interfere with bee behavior. Stress situations are modulated by proteins termed heat shock proteins (HSPs). Among these, HSP70 has been shown to exhibit abundance changes whenever bees experience unusual situations of stress. Thus, we sought to supplement A. mellifera bee colony diets with proteins and prebiotic and probiotic components, and to evaluate the expression levels of MRJP3 and HSP70 mRNAs using qRT-PCR. The results revealed that differences in the expression of MRJP3 can be attributed to the different types of feed offered. Significant differences were evident when comparing the expression levels of MRJP3 and HSP70, suggesting that protein supplementation with pre/probiotics promotes positive results in royal jelly synthesis carried out by honey bee nurses.

15.
Article de Anglais | MEDLINE | ID: mdl-35805859

RÉSUMÉ

This is a preliminary study conducted to analyze the presence and concentration of pesticides in honey obtained from honey bee colonies located in two regions with managed ecosystems that differ in the intensity and technification of agricultural practices. Fourteen pesticides at variable concentrations were detected in 63% of the samples analyzed. The pesticides most frequently found at higher concentrations were insecticides (neonicotinoids, followed by organophosphates), herbicides, and fungicides. The number, frequency, and concentration of pesticides were higher in samples collected from hives located where intensive and highly-technified agriculture is practiced. Forty-three percent of the samples from that zone had residues of imidacloprid, compared with only 13% of the samples from the less-technified zone. Furthermore, 87.5% of those samples had imidacloprid concentrations that were above sublethal doses for honey bees (>0.25 ng/g) but that are not considered hazardous to human health by the European Commission. The results of this study suggest that honey can be used as a bioindicator of environmental contamination by pesticides, which highlights the need to continue monitoring contaminants in this product to determine the risks of pesticide impacts on pollinator health, on ecosystems, and on their potential implications to human health and other non-target organisms.


Sujet(s)
Insecticides , Pesticides , Agriculture , Animaux , Abeilles , Écosystème , Humains , Insecticides/analyse , Insecticides/toxicité , Néonicotinoïdes
16.
J Invertebr Pathol ; 193: 107801, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35863438

RÉSUMÉ

Nosema ceranae is a microsporidium parasite that silently affects honey bees, causing a disease called nosemosis. This parasite produces resistant spores and germinates in the midgut of honey bees, extrudes a polar tubule that injects an infective sporoplasm in the host cell epithelium, proliferates, and produces intestinal disorders that shorten honey bee lifespan. The rapid extension of this disease has been reported to be widespread among adult bees, and treatments are less effective and counterproductive weakening colonies. This work aimed to evaluate the antifungal activity of a prototype formulation based on a non-toxic plant extract (HO21-F) against N. ceranae. In laboratory, honey bees were infected artificially, kept in cages for 17 days and samples were taken at 7 and 14 days post infection (dpi). At the same time, in field conditions we evaluated the therapeutic effect of HO21-F for 28 days in naturally infected colonies. The effectiveness of the treatment has been demonstrated by a reduction of 83.6 % of the infection levels observed in laboratory conditions at concentrations of 0.5 and 1 g/L without affecting the survival rate. Besides, in-field conditions we reported a reduction of 88 % of the infection level at a concentration of 2.5 g/L, obtaining better antifungal effectiveness in comparison to other commercially available treatments. As a result, we observed that the use of HO21-F led to an increase in population size and honey production, both parameters associated with colony strength. The reported antifungal activity of HO21-F against N. ceranae, with a significant control of spore proliferation in worker bees, suggests the promising commercial application use of this product against nosemosis, and it will encourage new research studies to understand the mechanism of action, whether related to the spore-inhibition effect and/or a stimulating effect in natural response of colonies to counteract the disease.


Sujet(s)
Microsporidiose , Nosema , Olea , Animaux , Antifongiques/pharmacologie , Abeilles , Nosema/physiologie , Extraits de plantes/pharmacologie
17.
Neotrop Entomol ; 51(4): 583-592, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35708899

RÉSUMÉ

Nutritional stress is the major factor contributing to decline in the honey bee (Apis mellifera L.) populations given the high degree of dependence on floral resources, and due to the habitat loss. In this sense, monocultures of maize and avocado have great extensions in Mexico, but their impact on the physiology and morphology of A. mellifera is unknown. This research evaluated the effect of total protein content in monofloral (maize or avocado pollen diets) and polyfloral (using five types of pollen: Persea americana Mill., Zea mays L., Melampodium perfoliatum Cav., Drymaria villosa Cham Schltdl., and Lopezia racemosa Cav.) on their survival, body condition (controlled density, head mass, and development of hypopharyngeal glands; protein content in hemolymph), and immune response [lytic activity and activity of prophenoloxidase in the hemolymph (proPO)]. Corbicular pollen of P. americana had the highest protein content, followed by the corbicular pollen of Z. mays, M. perfoliatum, D. villosa, and L. racemosa. Polyfloral diet seems to be better for A. mellifera than the monofloral maize and avocado. Bees fed polyfloral pollen diet showed a high content of protein in the hemolymph in comparison with that fed maize or avocado pollen diets. Bees fed polyfloral and avocado pollen diet had the highest lytic activity but showed a decrease in proPO activity. In conclusion, polyfloral diets seem to be better for A. mellifera than the monofloral maize and avocado.


Sujet(s)
Persea , Zea mays , Animaux , Abeilles , Régime alimentaire/médecine vétérinaire , Système immunitaire , Pollen/composition chimique
18.
J Insect Sci ; 22(2)2022 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-35389490

RÉSUMÉ

Honey bees, as many species of social insects, display a division of labor among colony members based on behavioral specializations related to age. Adult worker honey bees perform a series of tasks in the hive when they are young (such as brood care or nursing) and at ca. 2-3 wk of age, shift to foraging for nectar and pollen outside the hive. The transition to foraging involves changes in metabolism and neuroendocrine activities. These changes are associated with a suite of developmental genes. It was recently demonstrated that antibiotics influence behavioral development by accelerating or delaying the onset of foraging depending on timing of antibiotic exposure. To understand the mechanisms of these changes, we conducted a study on the effects of antibiotics on expression of candidate genes known to regulate behavioral development. We demonstrate a delay in the typical changes in gene expression over the lifetime of the individuals that were exposed to antibiotics during immature stage and adulthood. Additionally, we show an acceleration in the typical changes in gene expression on individuals that were expose to antibiotics only during immature stage. These results show that timing of antibiotic exposure alter the typical regulation of behavioral development by metabolic and neuroendocrine processes.


Sujet(s)
Antibactériens , Abeilles , Comportement animal , Animaux , Antibactériens/effets indésirables , Abeilles/génétique , Comportement animal/effets des médicaments et des substances chimiques , Pollen
19.
Microb Ecol ; 83(2): 492-500, 2022 Feb.
Article de Anglais | MEDLINE | ID: mdl-33973059

RÉSUMÉ

Honey bees (Apis mellifera) provide invaluable benefits for food production and maintenance of biodiversity of natural environments through pollination. They are widely spread across the world, being adapted to different climatic conditions. To survive the winter in cold temperate regions, honey bees developed different strategies including storage of honey and pollen, confinement of individuals during the winter, and an annual cycle of colony growth and reproduction. Under these conditions, winter honey bees experience physiological changes, including changes in immunity and the composition of honey bee gut microbiota. However, under tropical or subtropical climates, the life cycle can experience alterations, i.e., queens lay eggs during almost all the year and new honey bees emerge constantly. In the present study, we characterized nurses' honey bee gut microbiota in colonies under subtropical region through a year, combining qPCR, PCR-DGGE, and 16S rDNA high-throughput sequencing. We also identified environmental variables involved in those changes. Our results showed that under the mentioned conditions, the number of bacteria is stable throughout the year. Diversity of gut microbiota is higher in spring and lower in summer and winter. Gradual changes in compositions occur between seasons: Lactobacillus spp. predominate in spring while Gilliamella apicola and Snodgrasella alvi predominate in summer and winter. Environmental variables (mainly precipitations) affected the composition of the honey bee gut microbiota. Our findings provide new insights into the dynamics of honey bee gut microbiota and may be useful to understand the adaptation of bees to different environmental conditions.


Sujet(s)
Microbiome gastro-intestinal , Animaux , Bactéries/génétique , Abeilles , Biodiversité , Microbiome gastro-intestinal/génétique , Pollinisation , Saisons
20.
Genetica ; 149(5-6): 343-350, 2021 Dec.
Article de Anglais | MEDLINE | ID: mdl-34698977

RÉSUMÉ

Analysis of the mtDNA variation in Apis mellifera L. has allowed distinguishing subspecies and evolutionary lineages by means of different molecular methods; from RFLP, to PCR-RFLP and direct sequencing. Likewise, geometric morphometrics (GM) has been used to distinguish Africanized honey bees with a high degree of consistency with studies using molecular information. High-resolution fusion analysis (HRM) allows one to quickly identify sequence polymorphisms by comparing DNA melting curves in short amplicons generated by real-time PCR (qPCR). The objective of this work was to implement the HRM technique in the diagnosis of Africanization of colonies of A. mellifera from Argentina, using GM as a validation method. DNA was extracted from 60 A. mellifera colonies for mitotype identification. Samples were initially analyzed by HRM, through qPCRs of two regions (485 bp/385 bp) of the mitochondrial cytochrome b gene (cytb). This technique was then optimizing to amplify a smaller PCR product (207 bp) for the HRM diagnosis for the Africanization of colonies. Of the 60 colony samples analyzed, 41 were classified as colonies of European origin whereas 19 revealed African origin. All the samples classified by HRM were correctly validated by GM, demonstrating that this technique could be implemented for a rapid identification of African mitotypes in Apis mellifera samples.


Sujet(s)
Abeilles/classification , Abeilles/génétique , ADN mitochondrial/génétique , Phylogenèse , Animaux , Cytochromes b/génétique , Évolution moléculaire , Gènes de mitochondrie/génétique , Dénaturation d'acide nucléique , Reproductibilité des résultats
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE