Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 143
Filtrer
1.
Biomedicines ; 12(6)2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38927370

RÉSUMÉ

A relevant challenge for the treatment of patients with neoplasia is the development of resistance to chemo-, immune-, and radiotherapies. Although the causes of therapy resistance are poorly understood, evidence suggests it relies on compensatory mechanisms that cells develop to replace specific intracellular signaling that should be inactive after pharmacological inhibition. One such mechanism involves integrins, membrane receptors that connect cells to the extracellular matrix and have a crucial role in cell migration. The blockage of one specific type of integrin is frequently compensated by the overexpression of another integrin dimer, generally supporting cell adhesion and migration. In particular, integrin αvß3 is a key receptor involved in tumor resistance to treatments with tyrosine kinase inhibitors, immune checkpoint inhibitors, and radiotherapy; however, the specific inhibition of the αvß3 integrin is not enough to avoid tumor relapse. Here, we review the role of integrin αvß3 in tumor resistance to therapy and the mechanisms that have been proposed thus far. Despite our focus on the αvß3 integrin, it is important to note that other integrins have also been implicated in drug resistance and that the collaborative action between these receptors should not be neglected.

2.
Biochem Biophys Rep ; 38: 101686, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38524278

RÉSUMÉ

Breast cancer is a relevant cause of mortality in women and its triple-negative subtype (TNBC) is usually associated with poor prognosis. During tumor progression to metastasis, angiogenesis is triggered by the sprouting of endothelial cells from pre-existing vessels by a dynamic chain of events including VE-cadherin downregulation, actin protrusion, and integrin-mediated adhesion, allowing for migration and proliferation. The binding of tumoral and tumor-associated stromal cells with the extracellular matrix through integrins mediates angiogenic processes and certain integrin subtypes, such as the αvß3 integrin, are upregulated in hypoxic TNBC models. Integrin αvß3 inhibition by the high-affinity binding disintegrin DisBa-01 was previously demonstrated to induce anti-tumoral and anti-angiogenic responses in traditional 2D cell assays. Here, we investigate the effects of integrin αvß3 blockage in endothelial and TNBC cells by DisBa-01 in 3D cultures under two oxygen conditions (1% and 20%). 3D cultures created using non-adhesive micromolds with Matrigel were submitted to migration assay in Boyden chambers and fluorescence analysis. DisBa-01 inhibited cell migration in normoxia and hypoxia in both MDA-MB-231 and HUVEC spheroids. Protein levels of integrin αvß3 were overexpressed in HUVEC spheroids compared to MDA-MB-231 spheroids. In HUVEC 3D cultures, sprouting assays in collagen type I were decreased in normoxia upon DisBa-01 treatment, and VE-cadherin levels were diminished in HUVEC spheroids in hypoxia and upon DisBa-01 treatment. In conclusion, the blockage of integrin αvß3 by DisBa-01 inhibits cell migration in 3D culture and interferes with tumor-derived responses in different oxygen settings, implicating its crucial role in angiogenesis and tumor progression.

3.
J Biomol Struct Dyn ; : 1-23, 2024 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-38345036

RÉSUMÉ

Matrikines are biologically active peptides generated from fragments fragmentation of extracellular matrix components (ECM) that are functionally distinct from the original full-length molecule. The active matricryptic sites can be unmasked by ECM components enzymatic degradation or multimerization, heterotypic binding, adsorption to other molecules, cell-mediated mechanical forces, exposure to reactive oxygen species, ECM denaturation, and others. Laminin α1-derived peptide (SIKVAV) is a bioactive peptide derived from laminin-111 that participates in tumor development, cell proliferation, angiogenesis in various cell types. SIKVAV has also a potential pharmaceutical activity that may be used for tissue regeneration and bioengineering in Alzheimer's disease and muscular dystrophies. In this work, we made computational analyzes of SIKVAV regarding the ADMET panel, that stands for Administration, Distribution, Metabolism, Excretion, and Toxicity. Docking analyzes using the α3ß1 and α6ß1 integrin receptors were performed to fill in the gaps in the SIKVAV's signaling pathway and coupling tests showed that SIKVAV can interact with both receptors. Moreover, there is no indication of cytotoxicity, mutagenic or carcinogenic activity, skin or oral sensitivity. Our analysis suggests that SIKVAV has a high probability of interacting with peroxisome proliferator-activated receptor-gamma (NR-PPAR-γ), which has anti-inflammatory activity. The results of bioinformatics can help understand the participation of SIKVAV in homeostasis and influence the understanding of how this peptide can act as a biological asset in the control of dystrophies, neurodegenerative diseases, and tissue engineering.Communicated by Ramaswamy H. Sarma.

4.
Ann Hepatol ; 29(2): 101279, 2024.
Article de Anglais | MEDLINE | ID: mdl-38123132

RÉSUMÉ

INTRODUCTION AND OBJECTIVES: Cholangiocarcinoma (CCA) is characterized by early distant invasion and metastasis, whereas the underlying mechanism is still obscure. Increasing evidence shows that collagen type Ι alpha 1 (COL1A1) is a gene associated with the progression of multiple diseases. Here, we attempted to investigate the role of COL1A1 in CCA. MATERIALS AND METHODS: The expression of COL1A1 between tumor tissues and adjacent normal tissues obtained from CCA patients was detected by Western blot and immunofluorescence, followed by analysis of its clinical significance. Then, the biological effects of COL1A1 overexpression or knockdown on CCA cells were evaluated in vitro and in vivo. Finally, molecular mechanism of COL1A1 in regulating the invasion and metastasis of CCA cells was determined by a series of experiments. RESULTS: COL1A1 expression was significantly higher in CCA pathological tissues than in corresponding adjacent normal tissues. Analysis of 83 CCA patients showed that higher expression of COL1A1 was correlated with poorer patient prognosis. Notably, overexpression or knockdown experiments revealed that COL1A1 contributed to the migration and invasion, as well as epithelial-to-mesenchymal transition (EMT), in CCA cells. Further investigations demonstrated that matrix metalloproteinase-2 (MMP2) promoted COL1A1 upregulation via the integrin alpha Ⅴ pathway, therefore affecting ECM remodelling and inducing EMT in CCA cells. Moreover, COL1A1 expression was positively related to PD-1 and PD-L1 in CCA, and COL1A1 increased PD-L1 expression by activating the NF-κB pathway. CONCLUSIONS: COL1A1 plays an important role in regulating CCA progression and may act as a promising biomarker and therapeutic target for CCA.


Sujet(s)
Tumeurs des canaux biliaires , Cholangiocarcinome , Humains , Antigène CD274/génétique , Antigène CD274/métabolisme , Tumeurs des canaux biliaires/anatomopathologie , Conduits biliaires intrahépatiques/anatomopathologie , Lignée cellulaire tumorale , Mouvement cellulaire/génétique , Prolifération cellulaire/génétique , Cholangiocarcinome/anatomopathologie , Régulation de l'expression des gènes tumoraux , Intégrine alphaV/génétique , Intégrine alphaV/métabolisme , Matrix metalloproteinase 2/génétique , Matrix metalloproteinase 2/métabolisme
5.
J Fungi (Basel) ; 9(9)2023 Sep 08.
Article de Anglais | MEDLINE | ID: mdl-37755020

RÉSUMÉ

Studies on the pathogen-host interaction are crucial for the understanding of the mechanisms involved in the establishment, maintenance, and spread of infection. In recent years, our research group has observed that the P. brasiliensis species interact with integrin family receptors and increase the expression of α3 integrin in lung epithelial cells within 5 h of infection. Interestingly, α3 integrin levels were reduced by approximately 99% after 24 h of infection with P. brasiliensis compared to non-infected cells. In this work, we show that, during infection with this fungus, α3 integrin is increased in the late endosomes of A549 lung epithelial cells. We also observed that the inhibitor of the lysosomal activity bafilomycin A1 was able to inhibit the decrease in α3 integrin levels. In addition, the silencing of the charged multivesicular body protein 3 (CHMP3) inhibited the reduction in α3 integrin levels induced by P. brasiliensis in A549 cells. Thus, together, these results indicate that this fungus induces the degradation of α3 integrin in A549 lung epithelial cells by hijacking the host cell endolysosomal pathway.

6.
Pathog Dis ; 812023 01 17.
Article de Anglais | MEDLINE | ID: mdl-37401145

RÉSUMÉ

Cutaneous leishmaniasis is an infectious disease that may lead to a single or multiple disseminated cutaneous lesions. The mechanisms involved in Leishmania dissemination to different areas of the skin and the internal organs remain poorly understood. Evidence shows that Very Late Antigen-4 (VLA-4)-dependent phagocyte adhesion is impaired by Leishmania infection, which may be related to the mechanisms of parasite dissemination. We investigated factors potentially associated with decreased VLA-4-mediated adhesion in Leishmania-infected macrophages, including lipid raft-mediated VLA-4 mobilization along the cellular membrane, integrin cluster formation at the cell base (adhesion site), and focal adhesion complex assembly. Phagocytes treated with Methyl-ß-Cyclodextrin (MßCD) demonstrated reduced adhesion, similarly to Leishmania amazonensis-infected J774 cells. Infected and MßCD-treated macrophages presented decreased VLA-4 mobilization to the adhesion plane, as well as reduced integrin clustering. Leishmania amazonensis-infected cells exhibited talin depletion, as well as a decreased mobilization of adhesion complex proteins, such as talin and viculin, which were associated with lower VLA-4 concentrations at the adhesion site and limited cell-spreading. Our results suggest that Leishmania infection may modulate the firm adhesion phase of the cell-spreading process, which could contribute to the bloodstream dissemination of infected cells.


Sujet(s)
Leishmania mexicana , Leishmania , Leishmaniose cutanée , Humains , Intégrine alpha4bêta1 , Taline , Leishmaniose cutanée/parasitologie , Analyse de regroupements
7.
Glycobiology ; 33(9): 715-731, 2023 10 29.
Article de Anglais | MEDLINE | ID: mdl-37289485

RÉSUMÉ

Hypercoagulability, a major complication of metastatic cancers, has usually been treated with heparins from natural sources, or with their synthetic derivatives, which are under intense investigation in clinical oncology. However, the use of heparin has been challenging for patients with risk of severe bleeding. While the systemic administration of heparins, in preclinical models, has shown primarily attenuating effects on metastasis, their direct effect on established solid tumors has generated contradictory outcomes. We investigated the direct antitumoral properties of two sulfated fucans isolated from marine echinoderms, FucSulf1 and FucSulf2, which exhibit anticoagulant activity with mild hemorrhagic potential. Unlike heparin, sulfated fucans significantly inhibited tumor cell proliferation (by ~30-50%), and inhibited tumor migration and invasion in vitro. We found that FucSulf1 and FucSulf2 interacted with fibronectin as efficiently as heparin, leading to loss of prostate cancer and melanoma cell spreading. The sulfated fucans increased the endocytosis of ß1 integrin and neuropilin-1 chains, two cell receptors implicated in fibronectin-dependent adhesion. The treatment of cancer cells with both sulfated fucans, but not with heparin, also triggered intracellular focal adhesion kinase (FAK) degradation, with a consequent overall decrease in activated focal adhesion kinase levels. Finally, only sulfated fucans inhibited the growth of B16-F10 melanoma cells implanted in the dermis of syngeneic C57/BL6 mice. FucSulf1 and FucSulf2 arise from this study as candidates for the design of possible alternatives to long-term treatments of cancer patients with heparins, with the advantage of also controlling local growth and invasion of malignant cells.


Sujet(s)
Antigènes CD29 , Mélanome , Mâle , Animaux , Humains , Souris , Focal adhesion protein-tyrosine kinases , Antigènes CD29/métabolisme , Fibronectines/métabolisme , Neuropiline 1 , Héparine/pharmacologie , Endocytose
9.
Oncol Lett ; 25(2): 86, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36760518

RÉSUMÉ

Bacteriophages effectively counteract diverse bacterial infections, and their ability to treat most types of cancer has been explored using phage engineering or phage-virus hybrid platforms. In the present study, it was demonstrated that the bacteriophage MS2 can affect the expression of genes associated with the proliferation and survival of LNCaP prostate epithelial cells. LNCaP cells were exposed to bacteriophage MS2 at a concentration of 1×107 plaque forming units/ml for 24-48 h. After exposure, various cellular parameters, including cell viability, morphology, and changes in gene expression, were examined. MS2 affected cell viability adversely, reducing viability by 25% in the first 4 h of treatment; however, cell viability recovered within 24-48 h. Similarly, the AKT, androgen receptor, integrin α5, integrin ß1, MAPK1, MAPK3, STAT3, and peroxisome proliferator-activated receptor-γ coactivator 1α genes, which are involved in various normal cellular processes and tumor progression, were significantly upregulated, whereas the expression levels of HSP90, ITGB5, ITGB3, HSP27, ITGAV, and PI3K genes were unchanged. Therefore, based on viability and gene expression changes, bacteriophage MS2 severely impaired LNCaP cells by reducing anchorage-dependent survival and androgen signaling. A caveolin-mediated endocytosis mechanism for MS2-mediated signaling in prostate cancer cells was proposed based on reports involving bacteriophages T4, M13, and MS2, and their interactions with LNCaP and PC3 cell lines.

10.
J Biomol Struct Dyn ; 41(20): 10546-10557, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-36476274

RÉSUMÉ

The interactions of the antiviral pentapeptide ATN-161 with the closed and open conformations of the α5ß1 integrin, the SARS-CoV-2 major protease, and the omicron variant spike protein complexed with hACE2 were studied using molecular docking and molecular dynamics simulation. Molecular docking was performed to obtain ATN-161 binding poses with these studied protein targets. Subsequently, molecular dynamics simulations were performed to verify the ligand stability at the binding site of each protein target. Pulling simulations, umbrella sampling, and weighted histogram analysis method were used to obtain the potential of mean force of each system and calculate the Gibbs free energy of binding for the ATN-161 peptide in each binding site of these protein targets. The results showed that ATN-161 binds to α5ß1 integrin in its active and inactive form, binds weakly to the omicron variant spike protein complexed with hACE2, and strongly binds to the main protease target.Communicated by Ramaswamy H. Sarma.


Sujet(s)
COVID-19 , SARS-CoV-2 , Humains , Simulation de docking moléculaire , Glycoprotéine de spicule des coronavirus , Peptides , Peptide hydrolases , Simulation de dynamique moléculaire , Antiviraux/pharmacologie , Intégrines , Inhibiteurs de protéases
11.
J. appl. oral sci ; J. appl. oral sci;31: e20230263, 2023. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1528883

RÉSUMÉ

Abstract Periodontal regeneration faces multiple challenges, the most important being cellular insufficiency. In an attempt to improve defect cellularity, we aimed to demonstrate enhancing cellular attraction using arginine-glycine-aspartic acid (RGD) adhesion molecule legend blended hydrogel within the intrabony defects. Methodology Forty-five intrabony defects were selected from patients with stage III or IV - grade A or B periodontitis and divided randomly into three equal groups of 15 each: group1 (G1): received minimally invasive surgical technique (MIST) alone, group2 (G2): received MIST and placebo hydrogel injection, and group3 (G3): were treated with MIST and RGD hydrogel injection. Primary outcomes 6 months following therapy were; defect base fill (DBF) and defect width measurement (DW); secondary outcomes were clinical attachment level (CAL), pocket depth (PD), plaque index (PI), gingival index (GI), and biochemical analysis of bone morphogenetic protein (BMP-2) evaluated at 1,7,14 and 21 days following therapy. Results Significant improvements in DBF, CAL, and PD were observed in the three studied groups 6 months following therapy compared to baseline (p<0.05). A significant improvement in DBF was reported in G3 compared to G1 and 2 (p=0.005). Additionally, a significantly higher CAL gain was reported in G3 compared to that of G1 (p=0.02). Group 3 was associated with a significantly higher level of BMP-2 compared to G1 and G2 in all reported periods. Conclusion RGD peptide carried on a hydrogel delivery agent and contained with a minimally invasive flap could be a reliable option in improving the outcomes of periodontal therapy.

12.
Cells ; 11(23)2022 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-36497137

RÉSUMÉ

The engagement of B cells with surface-tethered antigens triggers the formation of an immune synapse (IS), where the local secretion of lysosomes can facilitate antigen uptake. Lysosomes intersect with other intracellular processes, such as Toll-like Receptor (TLR) signaling and autophagy coordinating immune responses. However, the crosstalk between these processes and antigen presentation remains unclear. Here, we show that TLR stimulation induces autophagy in B cells and decreases their capacity to extract and present immobilized antigens. We reveal that TLR stimulation restricts lysosome repositioning to the IS by triggering autophagy-dependent degradation of GEF-H1, a Rho GTP exchange factor required for stable lysosome recruitment at the synaptic membrane. GEF-H1 degradation is not observed in B cells that lack αV integrins and are deficient in TLR-induced autophagy. Accordingly, these cells show efficient antigen extraction in the presence of TLR stimulation, confirming the role of TLR-induced autophagy in limiting antigen extraction. Overall, our results suggest that resources associated with autophagy regulate TLR and BCR-dependent functions, which can finetune antigen uptake by B cells. This work helps to understand the mechanisms by which B cells are activated by surface-tethered antigens in contexts of subjacent inflammation before antigen recognition, such as sepsis.


Sujet(s)
Lymphocytes B , Récepteurs pour l'antigène des lymphocytes B , Récepteurs pour l'antigène des lymphocytes B/métabolisme , Antigènes/métabolisme , Récepteurs de type Toll/métabolisme , Autophagie , Antigènes de surface/métabolisme , Rho guanine nucleotide exchange factors/métabolisme
13.
Int. j. morphol ; 40(6): 1587-1593, dic. 2022. ilus, tab, graf
Article de Anglais | LILACS | ID: biblio-1421824

RÉSUMÉ

SUMMARY: This study is to investigate the role and mechanism of RGD peptide in laryngeal cancer stem cells (CSCs). Laryngeal cancer CD133+Hep-2 CSCs were sorted by flow cytometry. RGD peptide was co-cultured with sorted laryngeal CSCs. Cell proliferation was detected with CCK-8 assay. The mRNA levels of VEGF/VEGFR2/STAT 3/HIF-1α were detected with RT-PCR. The proteins of VEGF/ VEGFR2/STAT 3/HIF-1α were detected with Western blot. The sorted CSCs were inoculated into nude mice. Tumor volume was measured. Integrin αvβ3 expression in tumor tissues was analyzed with immunohistochemistry. The results showed that the ratio of CD133+ CSCs to the total number of cells was 1.34±0.87 %, while CD133-non-tumor stem cells accounted for 95.0±5.76 %. The sorted cancer stem cells grew well. The RGD peptide significantly inhibited the proliferation of CD133+Hep-2 laryngeal CSCs in a dose-dependent manner. The RGD peptide significantly inhibited the mRNA of VEGFR2, STAT3 and HIF-1α in laryngeal CSCs in a concentration-dependent manner. Consistently, the RGD peptide significantly inhibited the protein expression of VEGFR2, STAT3 and HIF-1α in laryngeal CSCs in a dose-dependent manner. At the same time, in vivo tumor experiments showed that the RGD peptide significantly inhibited tumor volume but not the body weight. Furthermore, RGD peptide significantly inhibited the expression of tumor angiogenesis-related protein integrin αvβ3. Our findings demonstrate that RGD peptide inhibits tumor cell proliferation and tumor growth. The underlying mechanism may that RGD inhibits tumor angiogenesis-related signaling pathways, thus affecting the tumor angiogenesis, and decreasing the progression of human laryngeal CSCs.


Este estudio se realizó para investigar el papel y el mecanismo del péptido RGD en las células madre del cáncer de laringe (CSC). Las CSC CD133+Hep-2 de cáncer de laringe se clasificaron mediante citometría de flujo. El péptido RGD se cocultivó con CSC laríngeas clasificadas. La proliferación celular se detectó con el ensayo CCK-8. Los niveles de ARNm de VEGF/VEGFR2/ STAT 3/HIF-1α se detectaron con RT-PCR. Las proteínas de VEGF/ VEGFR2/STAT 3/HIF-1α se detectaron con Western blot. Las CSC clasificadas se inocularon en ratones nudos. Se midió el volumen del tumor. La expresión de integrina αvβ3 en tejidos tumorales se analizó con inmunohistoquímica. Los resultados mostraron que la proporción de CSC CD133+ con respecto al número total de células fue de 1,34 ± 0,87 %, mientras que las células madre no tumorales CD133 representaron el 95,0 ± 5,76 %. Las células madre cancerosas clasificadas crecieron bien. El péptido RGD inhibió significativamente la proliferación de CSC laríngeas CD133+Hep-2 de una manera dependiente de la dosis. El péptido RGD inhibió significativamente el ARNm de VEGFR2, STAT3 y HIF-1α en CSC laríngeas de manera dependiente de la concentración. De manera consistente, el péptido RGD inhibió significativamente la expresión proteica de VEGFR2, STAT3 y HIF-1α en CSC laríngeas, de manera dependiente de la dosis. Al mismo tiempo, los experimentos con tumores in vivo mostraron que el péptido RGD inhibía significativamente el volumen del tumor pero no el peso corporal. Además, el péptido RGD inhibió significativamente la expresión de la proteína integrina αvβ3 relacionada con la angiogénesis tumoral. Nuestros hallazgos demuestran que el péptido RGD inhibe la proliferación de células tumorales y el crecimiento tumoral. El mecanismo subyacente puede ser que RGD inhiba las vías de señalización relacionadas con la angiogénesis tumoral, afectando así la angiogénesis tumoral y disminuyendo la progresión de las CSC laríngeas humanas.


Sujet(s)
Animaux , Souris , Oligopeptides/métabolisme , Cellules souches tumorales , Tumeurs du larynx , ARN messager/antagonistes et inhibiteurs , Immunohistochimie , Technique de Western , Amorces ADN , RT-PCR , Intégrine alphaVbêta3/antagonistes et inhibiteurs , Facteur de croissance endothéliale vasculaire de type A/antagonistes et inhibiteurs , Facteur de croissance endothéliale vasculaire de type A/génétique , Prolifération cellulaire , Cytométrie en flux , Néovascularisation pathologique
14.
Front Cell Dev Biol ; 10: 1031262, 2022.
Article de Anglais | MEDLINE | ID: mdl-36438565

RÉSUMÉ

SALL2/Sall2 is a transcription factor associated with development, neuronal differentiation, and cancer. Interestingly, SALL2/Sall2 deficiency leads to failure of the optic fissure closure and neurite outgrowth, suggesting a positive role for SALL2/Sall2 in cell migration. However, in some cancer cells, SALL2 deficiency is associated with increased cell migration. To further investigate the role of Sall2 in the cell migration process, we used immortalized Sall2 knockout (Sall2 -/- ) and Sall2 wild-type (Sall2 +/+ ) mouse embryonic fibroblasts (iMEFs). Our results indicated that Sall2 positively regulates cell migration, promoting cell detachment and focal adhesions turnover. Sall2 deficiency decreased cell motility and altered focal adhesion dynamics. Accordingly, restoring Sall2 expression in the Sall2 -/- iMEFs by using a doxycycline-inducible Tet-On system recovered cell migratory capabilities and focal adhesion dynamics. In addition, Sall2 promoted the autophosphorylation of Focal Adhesion Kinase (FAK) at Y397 and increased integrin ß1 mRNA and its protein expression at the cell surface. We demonstrated that SALL2 increases ITGB1 promoter activity and binds to conserved SALL2-binding sites at the proximal region of the ITGB1 promoter, validated by ChIP experiments. Furthermore, the overexpression of integrin ß1 or its blockade generates a cell migration phenotype similar to that of Sall2 +/+ or Sall2 -/- cells, respectively. Altogether, our data showed that Sall2 promotes cell migration by modulating focal adhesion dynamics, and this phenotype is associated with SALL2/Sall2-transcriptional regulation of integrin ß1 expression and FAK autophosphorylation. Since deregulation of cell migration promotes congenital abnormalities, tumor formation, and spread to other tissues, our findings suggest that the SALL2/Sall2-integrin ß1 axis could be relevant for those processes.

15.
Front Immunol ; 13: 929552, 2022.
Article de Anglais | MEDLINE | ID: mdl-36263057

RÉSUMÉ

Schistosomiasis is a neglected tropical disease caused by worms of the genus Schistosoma spp. The progression of disease results in intense tissue fibrosis and high mortality rate. After egg deposition by adult worms, the inflammatory response is characterized by the robust activation of type 2 immunity. Monocytes and macrophages play critical roles during schistosomiasis. Inflammatory Ly6Chigh monocytes are recruited from the blood to the inflammatory foci and differentiate into alternatively activated macrophages (AAMs), which promote tissue repair. The common chain of ß2-integrins (CD18) regulates monocytopoiesis and mediates resistance to experimental schistosomiasis. There is still limited knowledge about mechanisms controlled by CD18 that impact monocyte development and effector cells such as macrophages during schistosomiasis. Here, we show that CD18low mice chronically infected with S. mansoni display monocyte progenitors with reduced proliferative capacity, resulting in the accumulation of the progenitor cell denominated proliferating-monocyte (pMo). Consequently, inflammatory Ly6Chigh and patrolling Ly6Clow monocytes are reduced in the bone marrow and blood. Mechanistically, low CD18 expression decreases Irf8 gene expression in pMo progenitor cells, whose encoded transcription factor regulates CSFR1 (CD115) expression on the cell surface. Furthermore, low CD18 expression affects the accumulation of inflammatory Ly6Chigh CD11b+ monocytes in the liver while the adoptive transference of these cells to infected-CD18low mice reduced the inflammatory infiltrate and fibrosis in the liver. Importantly, expression of Il4, Chil3l3 and Arg1 was downregulated, CD206+PD-L2+ AAMs were reduced and there were lower levels of IL-10 in the liver of CD18low mice chronically infected with S. mansoni. Overall, these findings suggest that CD18 controls the IRF8-CD115 axis on pMo progenitor cells, affecting their proliferation and maturation of monocytes. At the same time, CD18 is crucial for the appropriate polarization and function of AAMs and tissue repair during chronic schistosomiasis.


Sujet(s)
Antigènes CD18 , Schistosomiase , Animaux , Souris , Fibrose , Intégrines/métabolisme , Facteurs de régulation d'interféron/génétique , Facteurs de régulation d'interféron/métabolisme , Interleukine-10/métabolisme , Interleukine-4/métabolisme , Macrophages , Monocytes , Schistosomiase/immunologie , Antigènes CD18/métabolisme
16.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-36015142

RÉSUMÉ

Peptide-protein interactions are involved in various fundamental cellular functions, and their identification is crucial for designing efficacious peptide therapeutics. Drug-target interactions can be inferred by in silico prediction using bioinformatics and computational tools. We patented the TnP family of synthetic cyclic peptides, which is in the preclinical stage of developmental studies for chronic inflammatory diseases such as multiple sclerosis. In an experimental autoimmune enceph-alomyelitis model, we found that TnP controls neuroinflammation and prevents demyelination due to its capacity to cross the blood-brain barrier and to act in the central nervous system blocking the migration of inflammatory cells responsible for neuronal degeneration. Therefore, the identification of potential targets for TnP is the objective of this research. In this study, we used bioinformatics and computational approaches, as well as bioactivity databases, to evaluate TnP-target prediction for proteins that were not experimentally tested, specifically predicting the 3D structure of TnP and its biochemical characteristics, TnP-target protein binding and docking properties, and dynamics of TnP competition for the protein/receptor complex interaction, construction of a network of con-nectivity and interactions between molecules as a result of TnP blockade, and analysis of similarities with bioactive molecules. Based on our results, integrins were identified as important key proteins and considered responsible to regulate TnP-governed pharmacological effects. This comprehensive in silico study will help to understand how TnP induces its anti-inflammatory effects and will also facilitate the identification of possible side effects, as it shows its link with multiple biologically important targets in humans.

17.
Life (Basel) ; 12(7)2022 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-35888022

RÉSUMÉ

Integrins are transmembrane receptors that play a critical role in many biological processes which can be therapeutically modulated using integrin blockers, such as peptidomimetic ligands. This work aimed to develop new potential ß1 integrin antagonists using modeled receptors based on the aligned crystallographic structures and docked with three lead compounds (BIO1211, BIO5192, and TCS2314), widely known as α4ß1 antagonists. Lead-compound complex optimization was performed by keeping intact the carboxylate moiety of the ligand, adding substituents in two other regions of the molecule to increase the affinity with the target. Additionally, pharmacokinetic predictions were performed for the ten best ligands generated, with the lowest docking interaction energy obtained for α4ß1 and BIO5192. Results revealed an essential salt bridge between the BIO5192 carboxylate group and the Mg2+ MIDAS ion of the integrin. We then generated more than 200 new BIO5192 derivatives, some with a greater predicted affinity to α4ß1. Furthermore, the significance of retaining the pyrrolidine core of the ligand and increasing the therapeutic potential of the new compounds is emphasized. Finally, one novel molecule (1592) was identified as a potential drug candidate, with appropriate pharmacokinetic profiles, similar dynamic behavior at the integrin interaction site compared with BIO5192, and a higher predicted affinity to VLA-4.

18.
JBRA Assist Reprod ; 26(4): 589-593, 2022 11 09.
Article de Anglais | MEDLINE | ID: mdl-35322952

RÉSUMÉ

OBJECTIVE: The first aim of this study was to investigate the effect of apixaban on endometrial receptivity via immunohistochemical investigation of integrin ß3 expression in pregnant rats. The second aim was to compare the endometrial effects of both subcutaneous and oral anticoagulant drugs in terms of integrin ß3 expressions. METHODS: A total of 24 rats were selected for this study and divided into three equal groups as control, enoxaparin and apixaban groups. Subcutaneous enoxaparin and oral apixaban were applied for 15 days starting on the first day of pregnancy. On the 15th day of pregnancy, all rats were killed by cervical dislocation, and uterine horns, including pregnancy materials, were investigated for pregnancy success and endometrial receptivity by using immunohistochemical integrin ß3 staining. RESULTS: Living, viable fetuses were higher in the apixaban group compared to the control group (p=0.037). Intensity and universality of immunohistochemical staining of integrin ß3 for endometrial stroma were detected statistically higher in the apixaban group than the other groups. (p=0.009 for intensity, p=0.014 for universality). Endometrial epithelial and myometrial integrin ß3 expression were detected to be identical between the groups (p=0.3). CONCLUSIONS: Apixaban enhances endometrial receptivity via increasing integrin ß3 expression in rats. This result can lead to further studies to be done in the future.


Sujet(s)
Énoxaparine , Intégrine bêta3 , Grossesse , Femelle , Rats , Animaux , Intégrine bêta3/métabolisme , Projets pilotes , Énoxaparine/pharmacologie , Implantation embryonnaire , Anticoagulants/pharmacologie
19.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-35215229

RÉSUMÉ

Radiolabeled peptides with high specificity for overexpressed receptors in tumor cells hold great promise for diagnostic and therapeutic applications. In this work, we aimed at comparing the radiolabeling efficiency and biological properties of two different RGD analogs: GRGDYV and GRGDHV, labeled with iodine-131 (131I) and technetium-99m-tricarbonyl complex [99mTc][Tc(CO)3]+. Additionally, we evaluated their interaction with the αvß3 integrin molecule, overexpressed in a wide variety of tumors, including glioblastoma. Both peptides were chemically synthesized, purified and radiolabeled with 131I and [99mTc][Tc(CO)3]+ using the chloramine-T and tricarbonyl methodologies, respectively. The stability, binding to serum proteins and partition coefficient were evaluated for both radioconjugates. In addition, the binding and internalization of radiopeptides to rat C6 glioblastoma cells and rat brain homogenates from normal animals and a glioblastoma-induced model were assessed. Finally, ex vivo biodistribution studies were carried out. Radiochemical yields between 95-98% were reached for both peptides under optimized radiolabeling conditions. Both peptides were stable for up to 24 h in saline solution and in human serum. In addition, the radiopeptides have hydrophilic characteristics and a percentage of binding to serum proteins around 35% and 50% for the [131I]I-GRGDYV and [99mTc]Tc(CO)3-GRGDHV fragments, respectively. Radiopeptides showed the capacity of binding and internalization both in cell culture (C6) and rat brain homogenates. Biodistribution studies corroborated the results obtained with brain homogenates and confirmed the different binding characteristics due to the exchange of radionuclides and the presence of the tricarbonyl complex. Thereby, the results showed that both radiopeptides might be considered for future clinical applications.

20.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article de Anglais | MEDLINE | ID: mdl-35163668

RÉSUMÉ

Breast cancer is characterized by a hypoxic microenvironment inside the tumor mass, contributing to cell metastatic behavior. Hypoxia induces the expression of hypoxia-inducible factor (HIF-1α), a transcription factor for genes involved in angiogenesis and metastatic behavior, including the vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and integrins. Integrin receptors play a key role in cell adhesion and migration, being considered targets for metastasis prevention. We investigated the migratory behavior of hypoxia-cultured triple-negative breast cancer cells (TNBC) and endothelial cells (HUVEC) upon αvß3 integrin blocking with DisBa-01, an RGD disintegrin with high affinity to this integrin. Boyden chamber, HUVEC transmigration, and wound healing assays in the presence of DisBa-01 were performed in hypoxic conditions. DisBa-01 produced similar effects in the two oxygen conditions in the Boyden chamber and transmigration assays. In the wound healing assay, hypoxia abolished DisBa-01's inhibitory effect on cell motility and decreased the MMP-9 activity of conditioned media. These results indicate that αvß3 integrin function in cell motility depends on the assay and oxygen levels, and higher inhibitor concentrations may be necessary to achieve the same inhibitory effect as in normoxia. These versatile responses add more complexity to the role of the αvß3 integrin during tumor progression.


Sujet(s)
Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Cellules endothéliales/métabolisme , Intégrine alphaVbêta3/antagonistes et inhibiteurs , Intégrine alphaVbêta3/métabolisme , Hypoxie tumorale , Apoptose/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Mouvement cellulaire/effets des médicaments et des substances chimiques , Forme de la cellule/effets des médicaments et des substances chimiques , Venins de crotalidé/pharmacologie , Milieux de culture conditionnés/pharmacologie , Désintégrines/pharmacologie , Cellules endothéliales/anatomopathologie , Femelle , Cellules endothéliales de la veine ombilicale humaine/effets des médicaments et des substances chimiques , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Humains , Matrix metalloproteinases/métabolisme , Néovascularisation physiologique/effets des médicaments et des substances chimiques , Oxygène , Sous-unités de protéines/métabolisme , Hypoxie tumorale/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE