Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 67
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Small ; : e2401200, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38984748

RÉSUMÉ

Interfacial chemistry plays a crucial role in determining the electrochemical properties of low-temperature rechargeable batteries. Although existing interface engineering has significantly improved the capacity of rechargeable batteries operating at low temperatures, challenges such as sharp voltage drops and poor high-rate discharge capabilities continue to limit their applications in extreme environments. In this study, an energy-level-adaptive design strategy for electrolytes to regulate interfacial chemistry in low-temperature Li||graphite dual-ion batteries (DIBs) is proposed. This strategy enables the construction of robust interphases with superior ion-transfer kinetics. On the graphite cathode, the design endues the cathode interface with solvent/anion-coupled interfacial chemistry, which yields an nitrogen/phosphor/sulfur/fluorin (N/P/S/F)-containing organic-rich interphase to boost anion-transfer kinetics and maintains excellent interfacial stability. On the Li metal anode, the anion-derived interfacial chemistry promotes the formation of an inorganic-dominant LiF-rich interphase, which effectively suppresses Li dendrite growth and improves the Li plating/stripping kinetics at low temperatures. Consequently, the DIBs can operate within a wide temperature range, spanning from -40 to 45 °C. At -40 °C, the DIB exhibits exceptional performance, delivering 97.4% of its room-temperature capacity at 1 C and displaying an extraordinarily high-rate discharge capability with 62.3% capacity retention at 10 C. This study demonstrates a feasible strategy for the development of high-power and low-temperature rechargeable batteries.

2.
Adv Mater ; : e2403848, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38837906

RÉSUMÉ

All-solid-state lithium batteries with polymer electrolytes suffer from electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy is proposed to modulate the Li+ coordinated structure, thus in situ constructing the stable interfaces. Since 15-crown-5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into a Li+ coordinated structure to weaken the Li+ coordination with polymer and boost the Li+ transport. The coordinated anions prior decompose to form LiF-rich, thin, and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li-Li cell can stably operate over 4360 h, the LiFePO4||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate interfacial chemistry by modulating the ion environment to accommodate the interfacial issues and will inspire more effective approaches to general interface issues for polymer electrolytes.

3.
Angew Chem Int Ed Engl ; 63(30): e202402946, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-38696279

RÉSUMÉ

Electrolytes with anion-dominated solvation are promising candidates to achieve dendrite-free and high-voltage potassium metal batteries. However, it's challenging to form anion-reinforced solvates at low salt concentrations. Herein, we construct an anion-reinforced solvation structure at a moderate concentration of 1.5 M with weakly coordinated cosolvent ethylene glycol dibutyl ether. The unique solvation structure accelerates the desolvation of K+, strengthens the oxidative stability to 4.94 V and facilitates the formation of inorganic-rich and stable electrode-electrolyte interface. These enable stable plating/stripping of K metal anode over 2200 h, high capacity retention of 83.0 % after 150 cycles with a high cut-off voltage of 4.5 V in K0.67MnO2//K cells, and even 91.5 % after 30 cycles under 4.7 V. This work provides insight into weakly coordinated cosolvent and opens new avenues for designing ether-based high-voltage electrolytes.

4.
Adv Sci (Weinh) ; 11(25): e2401536, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38582502

RÉSUMÉ

Rechargeable magnesium batteries (RMBs) have garnered significant attention due to their potential to provide high energy density, utilize earth-abundant raw materials, and employ metal anode safely. Currently, the lack of applicable cathode materials has become one of the bottleneck issues for fully exploiting the technological advantages of RMBs. Recent studies on Mg cathodes reveal divergent storage performance depending on the electrolyte formulation, posing interfacial issues as a previously overlooked challenge. This minireview begins with an introduction of representative cathode-electrolyte interfacial phenomena in RMBs, elaborating on the unique solvation behavior of Mg2+, which lays the foundation for interfacial chemistries. It is followed by presenting recently developed strategies targeting the promotion of Mg2+ desolvation in the electrolyte and alternative cointercalation approaches to circumvent the desolvation step. In addition, efforts to enhance the cathode-electrolyte compatibility via electrolyte development and interfacial engineering are highlighted. Based on the abovementioned discussions, this minireview finally puts forward perspectives and challenges on the establishment of a stable interface and fast interfacial chemistry for RMBs.

5.
Proc Natl Acad Sci U S A ; 121(17): e2311075121, 2024 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-38625942

RÉSUMÉ

Voltage oscillation at subzero in sodium-ion batteries (SIBs) has been a common but overlooked scenario, almost yet to be understood. For example, the phenomenon seriously deteriorates the performance of Na3V2(PO4)3 (NVP) cathode in PC (propylene carbonate)/EC (ethylene carbonate)-based electrolyte at -20 °C. Here, the correlation between voltage oscillation, structural evolution, and electrolytes has been revealed based on theoretical calculations, in-/ex-situ techniques, and cross-experiments. It is found that the local phase transition of the Na3V2(PO4)3 (NVP) cathode in PC/EC-based electrolyte at -20 °C should be responsible for the oscillatory phenomenon. Furthermore, the low exchange current density originating from the high desolvation energy barrier in NVP-PC/EC system also aggravates the local phase transformation, resulting in severe voltage oscillation. By introducing the diglyme solvent with lower Na-solvent binding energy, the voltage oscillation of the NVP can be eliminated effectively at subzero. As a result, the high capacity retentions of 98.3% at -20 °C and 75.3% at -40 °C are achieved. The finding provides insight into the abnormal SIBs degradation and brings the voltage oscillation behavior of rechargeable batteries into the limelight.

6.
Angew Chem Int Ed Engl ; 63(21): e202318663, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38516922

RÉSUMÉ

Graphite has been serving as the key anode material of rechargeable Li-ion batteries, yet is difficultly charged within a quarter hour while maintaining stable electrochemistry. In addition to a defective edge structure that prevents fast Li-ion entry, the high-rate performance of graphite could be hampered by co-intercalation and parasitic reduction of solvent molecules at anode/electrolyte interface. Conventional surface modification by pitch-derived carbon barely isolates the solvent and electrons, and usually lead to inadequate rate capability to meet practical fast-charge requirements. Here we show that, by applying a MoOx-MoNx layer onto graphite surface, the interface allows fast Li-ion diffusion yet blocks solvent access and electron leakage. By regulating interfacial mass and charge transfer, the modified graphite anode delivers a reversible capacity of 340.3 mAh g-1 after 4000 cycles at 6 C, showing promises in building 10-min-rechargeable batteries with a long operation life.

7.
Angew Chem Int Ed Engl ; 63(24): e202316299, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38422222

RÉSUMÉ

Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3 Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI-)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI--intercalation stage and promoting its specific capacity (from ~83 to 124 mAh g-1) and cycling life (>1000 cycles, 95 % capacity retention).

8.
Sci Bull (Beijing) ; 69(11): 1686-1696, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38423878

RÉSUMÉ

Rational carbonate electrolyte chemistry is critical for the development of high-voltage lithium metal batteries (LMBs). However, the implementation of traditional carbonate electrolyte is greatly hindered by the generation of an unstable electrode interphase and corrosive by-product (HF). Herein, we propose a triple-function eutectic solvent additive of N-methylacetamide (NmAc) with LiNO3 to enhance the stability and compatibility of carbonate electrolyte. Firstly, the addition of NmAc significantly improves the solubility of LiNO3 in carbonate electrolyte by forming an eutectic pair, which regulates the Li+ solvation structure and leads to dense and homogenous Li plating. Secondly, the hydrolysis of acidic PF5 is effectively alleviated due to the strong complexation of NmAc with PF5, thus reducing the generation of corrosive HF. In addition, the optimized cathode electrolyte interphase layer decreases the structural degradation and transition metal dissolution. Consequently, Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) cells with the designed electrolyte deliver superior long-term cycle reversibility and excellent rate capability. This study unveils the rationale for incorporating eutectic solvent additives within carbonate electrolytes, which significantly contribute to the advancement of their practical application for high-voltage LMBs.

9.
Environ Sci Technol ; 58(10): 4727-4736, 2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38411392

RÉSUMÉ

Heterogeneous oxidative aging of organic aerosols (OA) occurs ubiquitously in the atmosphere, initiated by oxidants, such as the hydroxyl radicals (•OH). Hydroperoxyl radicals (HO2•) are also an important oxidant in the troposphere, and its gas-phase chemistry has been well studied. However, the role of HO2• in heterogeneous OA oxidation remains elusive. Here, we carry out •OH-initiated heterogeneous oxidation of several OA model systems under different HO2• conditions in a flow tube reactor and characterize the molecular oxidation products using a suite of mass spectrometry instrumentation. By using hydrogen-deuterium exchange (HDX) with thermal desorption iodide-adduct chemical ionization mass spectrometry, we provide direct observation of organic hydroperoxide (ROOH) formation from heterogeneous HO2• and peroxy radicals (RO2•) reactions for the first time. The ROOH may contribute substantially to the oxidation products, varied with the parent OA chemical structure. Furthermore, by regulating RO2• reaction pathways, HO2• also greatly influence the overall composition of the oxidized OA. Last, we suggest that the RO2• + HO2• reactions readily occur at the OA particle interface rather than in the particle bulk. These findings provide new mechanistic insights into the heterogeneous OA oxidation chemistry and help fill the critical knowledge gap in understanding atmospheric OA oxidative aging.


Sujet(s)
Composés chimiques organiques , Oxydants , Oxydoréduction , Radical hydroxyle/composition chimique , Aérosols/analyse
10.
Angew Chem Int Ed Engl ; 63(19): e202317856, 2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38389190

RÉSUMÉ

In solid-state lithium metal batteries (SSLMBs), the inhomogeneous electrolyte-electrode interphase layer aggravates the interfacial stability, leading to discontinuous interfacial ion/charge transport and continuous degradation of the electrolyte. Herein, we constructed an anion-modulated ionic conductor (AMIC) that enables in situ construction of electrolyte/electrode interphases for high-voltage SSLMBs by exploiting conformational transitions under multiple interactions between polymer and lithium salt anions. Anions modulate the decomposition behavior of supramolecular poly (vinylene carbonate) (PVC) at the electrode interface by changing the spatial conformation of the polymer chains, which further enhances ion transport and stabilizes the interfacial morphology. In addition, the AMIC weakens the "Li+-solvation" and increases Li+ vehicle sites, thereby enhancing the lithium-ion transport number (tLi +=~0.67). Consequently, Li || LiNi0.8Co0.1Mn0.1O2 cell maintains about 85 % capacity retention and Coulombic efficiency >99.8 % in 200 cycles at a charge cut-off voltage of 4.5 V. This study provides a new understanding of lithium salt anions regulating polymer chain segment behavior in the solid-state polymer electrolyte (SPE) and highlights the importance of the ion environment in the construction of interfacial phases and ionic conduction.

11.
Angew Chem Int Ed Engl ; 63(17): e202400118, 2024 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-38302696

RÉSUMÉ

Exploration of the unique chemical properties of interfaces can unlock new understanding. A striking example is the finding of accelerated reactions, particularly spontaneous oxidation reactions, that occur without assistance of catalysts or external oxidants at the air interface of both aqueous and organic solutions (provided they contain some water). This finding opened a new area of interfacial chemistry but also caused heated debate regarding the primary chemical species responsible for the observed oxidation. An overview of the literature covering oxidation in microdroplets with air interfaces is provided, together with a critical examination of previous findings and hypotheses. The water radical cation/radical anion pair, formed spontaneously and responsible for the electric field at or near the droplet/air interface, is suggested to constitute the primary redox species. Mechanisms of accelerated microdroplet reactions are critically discussed and it is shown that hydroxyl radical/hydrogen peroxide formation in microdroplets does not require that these species be the primary oxidant. Instead, we suggest that hydroxyl radical and hydrogen peroxide are the products of water radical cation decay in water. The importance of microdroplet chemistry in the prebiotic environment is sketched briefly and the role of partial solvation in reaction acceleration is noted.

12.
Natl Sci Rev ; 11(3): nwae006, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38344116

RÉSUMÉ

The rise in wearable electronics has witnessed the advancement of self-healable wires, which are capable of recovering mechanical and electrical properties upon structural damage. However, their highly fluctuating electrical resistances in the range of hundreds to thousands of ohms under dynamic conditions such as bending, pressing, stretching and tremoring may seriously degrade the precision and continuity of the resulting electronic devices, thus severely hindering their wearable applications. Here, we report a new family of self-healable wires with high strengths and stable electrical conductivities under dynamic conditions, inspired by mechanical-electrical coupling of the myelinated axon in nature. Our self-healable wire based on mechanical-electrical coupling between the structural and conductive components has significantly improved the electrical stability under dynamic scenarios, enabling precise monitoring of human health status and daily activities, even in the case of limb tremors from simulated Parkinson's disease. Our mechanical-electrical coupling strategy opens a new avenue for the development of dynamically stable electrodes and devices toward real-world wearable applications.

13.
Adv Colloid Interface Sci ; 325: 103117, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38394718

RÉSUMÉ

The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.


Sujet(s)
Antioxydants , Élimination des déchets , Humains , Antioxydants/pharmacologie , Micelles , Aliments , Peroxydation lipidique , Huiles/composition chimique , Colloïdes , Oxydoréduction , Tensioactifs , Émulsions
14.
Angew Chem Int Ed Engl ; 63(16): e202400960, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38385630

RÉSUMÉ

Polymer-inorganic composite electrolytes (PICE) have attracted tremendous attention in all-solid-state lithium batteries (ASSLBs) due to facile processability. However, the poor Li+ conductivity at room temperature (RT) and interfacial instability severely hamper the practical application. Herein, we propose a concept of competitive coordination induction effects (CCIE) and reveal the essential correlation between the local coordination structure and the interfacial chemistry in PEO-based PICE. CCIE introduction greatly enhances the ionic conductivity and electrochemical performances of ASSLBs at 30 °C. Owing to the competitive coordination (Cs+…TFSI-…Li+, Cs+…C-O-C…Li+ and 2,4,6-TFA…Li…TFSI-) from the competitive cation (Cs+ from CsPF6) and molecule (2,4,6-TFA: 2,4,6-trifluoroaniline), a multimodal weak coordination environment of Li+ is constructed enabling a high efficient Li+ migration at 30 °C (Li+ conductivity: 6.25×10-4 S cm-1; tLi +=0.61). Since Cs+ tends to be enriched at the interface, TFSI- and PF6 - in situ form LiF-Li3N-Li2O-Li2S enriched solid electrolyte interface with electrostatic shielding effects. The assembled ASSLBs without adding interfacial wetting agent exhibit outstanding rate capability (LiFePO4: 147.44 mAh g-1@1 C and 107.41mAhg-1@2 C) and cycling stability at 30 °C (LiFePO4:94.65 %@200cycles@0.5 C; LiNi0.5Co0.2Mn0.3O2: 94.31 %@200 cycles@0.3 C). This work proposes a concept of CCIE and reveals its mechanism in designing PICE with high ionic conductivity as well as high interfacial compatibility at near RT for high-performance ASSLBs.

15.
Small ; 20(19): e2311712, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38258404

RÉSUMÉ

Water-hexane interfacial preparation of photostable Au@CsPbBr3 (Au@CPB) hybrid nanocrystals (NCs) from pure CsPbBr3 (CPB) NCs is reported, with the coexistence of exciton and localized surface plasmon resonance with equal dominance. This enables strong exciton-plasmon coupling in these plasmonic perovskite NCs where not only the photoluminescence is quenched intrinsically due to ultrafast charge separation, but also the light absorption property increases significantly, covering the entire visible region. Using a controlled interfacial strategy, a reversible chemical transformation between CPB and Au@CPB NCs is shown, with the simultaneous eruption of larger-size ligand-free aqueous Au nanoparticles (NPs). An adsorption-desorption mechanism is proposed for the reversible transformation, while the overgrowth reaction of the Au NPs passes through the Au aggregation intermediate. This study further shows that the plasmonic Au@CPB hybrid NCs as well as ligand-free Au NPs exhibit clear surface enhanced Raman scattering (SERS) effect of a commercially available probe molecule. Overall, the beautiful interfacial chemistry delivers two independent plasmonic materials, i.e., Au@CPB NCs and ligand-free aqueous Au NPs, which may find important implications in photocatalytic and biomedical applications.

16.
ACS Appl Mater Interfaces ; 16(5): 5813-5822, 2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38272467

RÉSUMÉ

The electrochemical kinetic processes of Li+ ions, including the desolvation of the Li+ ions from the electrolyte to the solid electrolyte interphase (SEI), the transportation of desolvated Li+ ions across the SEI, and the charge transfer at the interface between the SEI and graphite, determine the rate performance and cycling stability of the graphitic anode in lithium-ion batteries (LIBs). In this work, fluorine-terminated self-assembled monolayers were grafted on the surface of spherical graphite particles to regulate the chemical composition and structure of SEI formed on the graphite surface in the presence of conventional ester electrolytes. The comprehensive characterization and first-principles calculation results illustrate that a uniform LiF-dominated SEI film can be generated on the as-functionalized graphite anode due to the carbon-fluorine bonds' cleavage of fluorine-terminated self-assembled monolayers. The LiF-dominated SEI film is particularly beneficial for desolvated lithium-ion transport across the SEI, affording LiCoO2//graphite full cells with substantially enhanced fast-charging capability and cycle stability. This strategy should be potentially useful for modifying other anode materials to regulate the interfacial chemistry between the anode and electrolyte in lithium-ion batteries.

17.
ACS Appl Mater Interfaces ; 16(1): 712-722, 2024 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-38157368

RÉSUMÉ

Mineralization by MgO is an attractive potential strategy for direct air capture (DAC) of CO2 due to its tendency to form carbonate phases upon exposure to water and CO2. Hydration of MgO during this process is typically assumed to not be rate limiting, even at ambient temperatures. However, surface passivation by hydrated phases likely reduces the CO2 capture capacity. Here, we examine the initial hydration reactions that occur on MgO(100) surfaces to determine whether they could potentially impact CO2 uptake. We first used atomic force microscopy (AFM) to explore changes in reaction layers in water (pH = 6 and 12) and MgO-saturated solution (pH = 11) and found the reaction layers on MgO are heterogeneous and nonuniform. To determine how relative humidity (R.H.) affects reactivity, we reacted samples at room temperature in nominally dry N2 (∼11-12% R.H.) for up to 12 h, in humid (>95% R.H.) N2 for 5, 10, and 15 min, and in air at 33 and 75% R.H. for 8 days. X-ray reflectivity and electron microscopy analysis of the samples reveal that hydrated phases form rapidly upon exposure to humid air, but the growth of the hydrated reaction layer slows after its initial formation. Reaction layer thickness is strongly correlated with R.H., with denser reaction layers forming in 75% R.H. compared with 33% R.H. or nominally dry N2. The reaction layers are likely amorphous or poorly crystalline based on grazing incidence X-ray diffraction measurements. After exposure to 75% R.H. in air for 8 days, the reaction layer increases in density as compared to the sample reacted in humid N2 for 5-15 min. This may represent an initial step toward the crystallization of the reaction layer. Overall, high R.H. favors the formation of a hydrated, disordered layer on MgO. Based on our results, DAC in a location with a higher R.H. will be favorable, but growth may slow significantly from initial rates even on short timescales, presumably due to surface passivation.

18.
Article de Anglais | MEDLINE | ID: mdl-38047551

RÉSUMÉ

Proteases are important biomarkers and targets for the diagnosis and treatment of disease. The advantageous properties of semiconductor quantum dots (QDs) have made these nanoparticles useful as probes for protease activity; however, the effects of QD surface chemistry on protease activity are not yet fully understood. Here, we present a systematic study of the impact of sterics on the proteolysis of QD-peptide conjugates. The study utilized eight proteases (chymotrypsin, trypsin, endoproteinase Lys C, papain, endoproteinase Arg C, thrombin, factor Xa, and plasmin) and 41 distinct surface chemistries. The latter included three molecular weights of each of three macromolecular ligands derived from dextran and polyethylene glycol, as well as anionic and zwitterionic small-molecule ligands, and an array of mixed coatings of macromolecular and small-molecule ligands. These surface chemistries spanned a diversity of thicknesses, densities, and packing organization, as characterized by gel electrophoresis, capillary electrophoresis, dynamic light scattering, and infrared spectroscopy. The macromolecular ligands decreased the adsorption of proteases on the QDs and decelerated proteolysis of the QD-peptide conjugates via steric hindrance. The properties of the QD surface chemistry, rather than the protease properties, were the main factor in determining the magnitude of deceleration. The broad scope of this study provides insights into the many ways in which QD surface chemistry affects protease activity, and will inform the development of optimized nanoparticle-peptide conjugates for sensing of protease activity and resistance to unwanted proteolysis.

19.
Exploration (Beijing) ; 3(3): 20220051, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37933378

RÉSUMÉ

Among the promising batteries for electric vehicles, rechargeable Li-air (O2) batteries (LABs) have risen keen interest due to their high energy density. However, safety issues of conventional nonaqueous electrolytes remain the bottleneck of practical implementation of LABs. Solid-state electrolytes (SSEs) with non-flammable and eco-friendly properties are expected to alleviate their safety concerns, which have become a research focus in the research field of LABs. Herein, we present a systematic review on the progress of SSEs for rechargeable LABs, mainly focusing on the interfacial issues existing between the SSEs and electrodes. The discussion highlights the challenges and feasible strategies for designing suitable SSEs for LABs.

20.
ACS Nano ; 17(18): 18608-18615, 2023 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-37710356

RÉSUMÉ

NaClO4 and NaPF6, the most universally adopted electrolyte salts in commercial sodium-ion batteries (SIBs), have a decisive influence on the interfacial chemistry, which is closely related to electrochemical performance. The complicated and ambiguous interior mechanism of microscopic interfacial chemistry has prevented reaching a consensus regarding the most suitable sodium salt for high-performance SIB electrolytes. Herein, we reveal that the solvation structure induced by different sodium salt anions determines the Na+ desolvation kinetics and interfacial film evolution process. Specifically, the weak interaction between Na+ and PF6- promoted sodium desolvation and storage kinetics. The solvation structure involving PF6- induced the anion's preferential decomposition, generating a thin, inorganic compound-rich cathode-electrolyte interphase that ensured interface stability and inhibited solvent decomposition, thereby guaranteeing electrode stability and promoting the charge transfer kinetics. This study provides clear evidence that NaPF6 is not only more compatible with industrial processes but also more conducive to battery performance. Commercial electrolyte design employing NaPF6 will undoubtedly promote the industrialization of SIBs.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...