Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 278
Filtrer
1.
Se Pu ; 42(9): 827-836, 2024 Sep.
Article de Chinois | MEDLINE | ID: mdl-39198942

RÉSUMÉ

Bisphenols (BPs) and parabens (PBs) are of great concern for environmental pollution and human health because of their endocrine-disrupting effects and potential health hazards. Urinary biomonitoring of BPs and PBs can provide basic data for human internal exposure evaluation, which is a prerequisite for accurately assessing their health risks. In this study, we developed a new pretreatment procedure based on solid supported liquid-liquid extraction (SLE) for the simultaneous separation of ten BPs and five PBs in human urine, followed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. In the instrumental analysis, the HPLC conditions and MS/MS parameters were comprehensively optimized. Accurate qualitative and quantitative determination of ten BPs and five PBs was achieved by introducing a ternary gradient elution system of water, methanol, and acetonitrile for LC separation. During sample pretreatment, the extraction solvent and elution volume were optimized. Specifically, urine samples were held at room temperature and centrifuged at 3000 r/min for 10 min. The supernatant (2 mL) was then transferred to a glass tube, and the pH was adjusted to 5.0 using HCl (0.5 mL; 0.1 mol/L) and NaAc-HAc buffer (1.5 mL). Thereafter, ß-glucuronidase-arylsulfatase (20 µL) and surrogate standard solutions (10 ng;13C12-BPS,13C12-BPAF,13C6-MeP, and 13C6-BuP) were added, and the mixture was incubated in a shaker bath in the dark at 37 ℃ for 16 h. After incubation, the hydrolyzed sample (4 mL) was loaded onto an SLE cartridge and equilibrated for a minimum of 5 min to ensure the solution was completely absorbed by the packing material. Subsequently, the target chemicals were eluted with a mixed ethyl acetate/n-hexane solution (3∶7, v/v; 15 mL). Separation of the targets was performed on a ZORBAX SB-C18 reversed-phase column (250 mm×4.6 mm, 5 µm) using an acetonitrile-methanol-water system as the mobile phase. The method was verified by spiking mixed urine samples at three levels (1, 5, and 50 µg/L), with the recoveries ranging from 84.3% to 119.8%. Except for bisphenols (BPS), whose matrix effect was calculated as -21.8%, the matrix effects of other analytes were lower than 20%, indicating low matrix interference. The linear ranges of the analytes varied from 0.1-500 µg/L to 1-500 µg/L, with correlation coefficients higher than 0.995. The method limits of quantification for target chemicals ranged from 0.03 to 0.30 µg/L, and the relative standard deviations of intra- and inter-day experiments were 1.4%-8.4% and 5.7%-14.6%, respectively, suggesting high stability and reproducibility. The method was successfully applied to the determination of ten BPs and five PBs in 10 urine samples from a general population. The concentrations of target chemicals in the human urine samples varied. Methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and bisphenol A (BPA) were detected in all samples, with median mass concentrations of 1.10, 0.60, 0.21, and 0.55 µg/L, respectively. The detection rates of the other chemicals were less than 50%, which may be related to the production and use of specific chemicals, their bioavailability, and biological metabolism in humans.


Sujet(s)
Extraction liquide-liquide , Parabènes , Phénols , Spectrométrie de masse en tandem , Spectrométrie de masse en tandem/méthodes , Humains , Extraction liquide-liquide/méthodes , Phénols/urine , Phénols/analyse , Parabènes/analyse , Composés benzhydryliques/urine , Chromatographie en phase liquide/méthodes , Chromatographie en phase liquide à haute performance/méthodes
2.
Se Pu ; 42(9): 856-865, 2024 Sep.
Article de Chinois | MEDLINE | ID: mdl-39198944

RÉSUMÉ

Neonicotinoid pesticides are a relatively new class of pesticides that have garnered significant attention owing to their potential ecological risks to nontarget organisms. A method combining solid phase extraction with liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) was developed for the rapid and accurate detection of eight neonicotinoid pesticides (dinotefuran, E-nitenpyram, thiamethoxam, clothianidin, imidacloprid, imidaclothiz, acetamiprid, and thiacloprid) in wastewater. The chromatographic mobile phase and MS parameters were selected, and a single-factor method was used to determine the optimal column type, extraction volume, sample loading speed, and pH for SPE. The optimal parameters were as follows: column type, HLB column (500 mg/6 mL); sample extraction volume, 500 mL; sample loading speed, 10 mL/min; and sample pH, 6-8. The matrix effects of the wastewater samples were reduced by optimizing the chromatographic gradient-elution program, examining the dilution factor of the samples, and using the isotope internal standard calibration method. Prior to analysis, the wastewater samples were diluted 5-fold with ultrapure water for pretreatment. Subsequently, 2 mmol/L ammonium acetate aqueous solution containing 0.1% (v/v) formic acid and methanol was used as mobile phases for gradient elution on a ZORBAX Eclipse Plus C18 column (100 mm×2.1 mm, 1.8 µm). The samples were quantified using positive-ion multiple reaction monitoring (MRM) mode for 10 min. Imidacloprid-d4 was used as the isotope internal standard. The SPE process was further optimized by applying response surface methodology to select the type and mass of rinsing and elution solvents. The optimal pretreatment of the SPE column included rinsing with 10% methanol aqueous solution and elution with methanol-acetonitrile (1∶1, v/v) mixture (7 mL). The eight neonicotinoid pesticides showed satisfactory linearity within the relevant range, with linear correlation coefficients (r) all greater than 0.9990. The method detection limits (MDLs) ranged from 0.2 to 1.2 ng/L, and the method quantification limits (MQLs) ranged from 0.8 to 4.8 ng/L. The average recoveries of the eight neonicotinoid pesticides were in the range of 82.6%-94.2% at three spiked levels, with relative standard deviations (RSDs) ranging from 3.9% to 9.4%. Finally, the optimized method was successfully applied to analyze wastewater samples collected from four sewage treatment plants. The results indicated that the eight neonicotinoid pesticides could be generally detected at concentrations ranging from not detected (ND) to 256 ng/L. The developed method has a low MDL and high accuracy, rendering it a suitable choice for the trace detection of the eight neonicotinoid pesticides in wastewater when compared with other similar methods. The proposed method can be utilized to monitor the environmental impact and assess the potential risks of neonicotinoid pesticides in wastewater, thus promoting the protection of nontarget organisms and the sustainable use of these pesticides in agriculture.


Sujet(s)
Néonicotinoïdes , Composés nitrés , Extraction en phase solide , Spectrométrie de masse en tandem , Eaux usées , Polluants chimiques de l'eau , Spectrométrie de masse en tandem/méthodes , Extraction en phase solide/méthodes , Eaux usées/composition chimique , Eaux usées/analyse , Néonicotinoïdes/analyse , Polluants chimiques de l'eau/analyse , Chromatographie en phase liquide/méthodes , Composés nitrés/analyse , Thiaméthoxame/analyse , Guanidines/analyse , Thiazoles/analyse , Pesticides/analyse , Thiazines/analyse , Oxazines/analyse
3.
Article de Anglais | MEDLINE | ID: mdl-39162003

RÉSUMÉ

Introduction: Animal studies suggest that adolescent exposure to Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating constituent of cannabis, causes lasting functional alterations in brain and other organs. Those studies often neglect the impact that age- and sex-dependent differences in the distribution and metabolism of the drug might exert on its pharmacological effects. Here, we provide a comparative analysis of Δ9-THC pharmacokinetics in adolescent and adult female mice, which identify significant dissimilarities in distribution and metabolism of Δ9-THC between females of these age groups. Materials and Methods: We administered Δ9-THC (5 mg/kg, intraperitoneal) to adolescent (37-day old) and young adult (70-day old) female mice and quantified Δ9-THC and its first-pass metabolites-11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-in plasma and brain tissue using liquid chromatography/tandem mass spectrometry. Results: Maximal plasma concentrations of Δ9-THC were 8 times higher in adolescent than adult female mice. Conversely, brain concentrations and brain-to-plasma ratios were 25-50% higher in adults than adolescents. Concentrations of Δ9-THC metabolites were higher in plasma but lower in brain of adolescent compared to adult female mice. Conclusions: The results identify multiple age-dependent differences in the pharmacokinetic properties of Δ9-THC in female mice, which might influence the pharmacological response to the drug.

4.
Foods ; 13(16)2024 Aug 18.
Article de Anglais | MEDLINE | ID: mdl-39200508

RÉSUMÉ

There has been a growing interest in the use of hemp as an animal feed ingredient considering its economic value and nutritional properties. However, there is a paucity of research regarding the safety of hemp-based animal feed currently. Thus, this raises safety concerns on the potential transfer of cannabinoids from hemp-based animal feed to animal products intended for human consumption and its health effects. As such, the detection and quantification of cannabinoids in meat and animal feeds would be desirable for monitoring purposes. In this study, a simple, rapid and sensitive method for the simultaneous quantification of four major cannabinoids (delta-9-tetrahydrocannabinol, cannabidiol, cannabinol and tetrahydrocannabinolic acid) in meat and animal feeds by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was successfully developed and validated. The method was selective and sensitive, achieving limits of detection and quantification for the four cannabinoids from 5 to 7 µg/kg and 15 to 21 µg/kg, respectively. The overall recovery with matrix-matched calibration curves for the cannabinoids ranged from 87-115%. The coefficients of variation were between 2.17-13.38% for intraday precision and 3.67-12.14% for inter-day precision. The method was subsequently applied to monitor cannabinoids in 120 meat and 24 animal feed samples. No cannabinoid was detected, suggesting no imminent food safety concerns arising from the potential incorporation of hemp and by-products in animal feed and nutrition under the promotion of sustainable agricultural practices.

5.
Front Immunol ; 15: 1343109, 2024.
Article de Anglais | MEDLINE | ID: mdl-39144147

RÉSUMÉ

Introduction: Primary central nervous system lymphoma (PCNSL) is a rare type of non-Hodgkin's lymphoma that affects brain parenchyma, eyes, cerebrospinal fluid, and spinal cord. Diagnosing PCNSL can be challenging because imaging studies often show similar patterns as other brain tumors, and stereotactic brain lesion biopsy conformation is invasive and not always possible. This study aimed to validate a previous proteomic profiling (PMID: 32610669) of cerebrospinal fluid (CSF) and develop a CSF-based proteomic panel for accurate PCNSL diagnosis and differentiation. Methods: CSF samples were collected from patients of 30 PCNSL, 30 other brain tumors, and 31 tumor-free/benign controls. Liquid chromatography tandem-mass spectrometry targeted proteomics analysis was used to establish CSF-based proteomic panels. Results: Final proteomic panels were selected and optimized to diagnose PCNSL from tumor-free controls or other brain tumor lesions with an area under the curve (AUC) of 0.873 (95%CI: 0.723-0.948) and 0.937 (95%CI: 0.807- 0.985), respectively. Pathways analysis showed diagnosis panel features were significantly enriched in pathways related to extracellular matrices-receptor interaction, focal adhesion, and PI3K-Akt signaling, while prion disease, mineral absorption and HIF-1 signaling were significantly enriched with differentiation panel features. Discussion: This study suggests an accurate clinical test panel for PCNSL diagnosis and differentiation with CSF-based proteomic signatures, which may help overcome the challenges of current diagnostic methods and improve patient outcomes.


Sujet(s)
Marqueurs biologiques tumoraux , Tumeurs du cerveau , Protéomique , Humains , Protéomique/méthodes , Marqueurs biologiques tumoraux/liquide cérébrospinal , Tumeurs du cerveau/liquide cérébrospinal , Tumeurs du cerveau/diagnostic , Femelle , Mâle , Adulte d'âge moyen , Sujet âgé , Diagnostic différentiel , Adulte , Lymphome malin non hodgkinien/liquide cérébrospinal , Lymphome malin non hodgkinien/diagnostic
6.
J Hazard Mater ; 476: 135020, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-38959832

RÉSUMÉ

Amidst far-reaching COVID-19 effects and social constraints, this study leveraged wastewater-based epidemiology to track 38 conventional drugs and 30 new psychoactive substances (NPS) in northern Taiwan. Analyzing daily samples from four Taipei wastewater plants between September 2021 and January 2024-encompassing club reopenings, holidays, Lunar New Year, an outbreak, and regular periods-thirty-one drugs were detected, including 5 NPS. Tramadol, zolpidem tartrate, CMA, and MDPV were newly detected in Taiwanese sewage with frequency of 1.4 %- 89.0 %. Conventional drug use typically increased post-pandemic, aside from benzodiazepines and methadone. Methamphetamine showed 100 % frequency, indicating ongoing daily consumption despite COVID-19 measures. Methamphetamine and morphine's consumption dipped then rose around club reopening, hinting at limited access. The consumption trend of methadone appeared to compensate for the use of morphine. Ketamine and NPS demonstrated similar patterns throughout the entire period. NPS as party drugs seemed influenced by an unstable supply chain and complexities in implementation. Benzodiazepines, commonly abused alongside synthetic cathinones in Taiwan exhibited an opposing trend to NPS while aligned with acetaminophen, suggesting elevated stress and anxiety levels during the pandemic. No significant differences were observed in drug consumption between weekdays and weekends, potentially indicating that COVID-19 measures blurred the traditional distinctions between these timeframes. ENVIRONMENTAL IMPLICATION: New psychoactive substances refer to chemically modified variants of controlled drugs designed to mimic the effects of the original drugs while evading modern detection methods, categorizing them as hazardous materials. The study presents a sewage monitoring project conducted from 2021 to 2024, collecting samples from four WWTPs to analyze NPS and conventional drug trends during and after the COVID-19 pandemic. The findings uncovered connections between drug consumption patterns and pandemic-related policies. In light of the persistent drug abuse and their environmental presence, the results bear critical importance for both environmental and public health. We provide a thorough assessment of these relationships and prioritize areas for future research.


Sujet(s)
COVID-19 , Substances illicites , Eaux usées , Taïwan/épidémiologie , COVID-19/épidémiologie , Humains , Substances illicites/analyse , Psychoanaleptiques , Surveillance épidémiologique fondée sur les eaux usées , Troubles liés à une substance/épidémiologie , SARS-CoV-2 , Polluants chimiques de l'eau/analyse , Détection d'abus de substances/méthodes
7.
Se Pu ; 42(7): 721-729, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-38966980

RÉSUMÉ

Lysine (K) is widely used in the design of lysine-targeted crosslinkers, structural elucidation of protein complexes, and analysis of protein-protein interactions. In "shotgun" proteomics, which is based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), proteins from complex samples are enzymatically digested, generating thousands of peptides and presenting significant challenges for the direct analysis of K-containing peptides. In view of the lack of effective methods for the enrichment of K-containing peptides, this work developed a method which based on a hydrophobic-tag-labeling reagent C10-S-S-NHS and reversed-phase chromatography (termed as HYTARP) to achieve the efficient enrichment and identification of K-containing peptides from complex samples. The C10-S-S-NHS synthesized in this work successfully labeled standard peptides containing various numbers of K and the labeling efficiency achieved up to 96% for HeLa cell protein tryptic digests. By investigating the retention behavior of these labeled peptides in C18 RP column, we found that most K-labeled peptides were eluted once when acetonitrile percentage reached 57.6% (v/v). Further optimization of the elution gradient enabled the efficient separation and enrichment of the K-labeled peptides in HeLa digests via a stepwise elution gradient. The K-labeled peptides accounted for 90% in the enriched peptides, representing an improvement of 35% compared with the number of peptides without the enrichment. The dynamic range of proteins quantified from the enriched K-containing peptides spans 5-6 orders of magnitude, and realized the detection of low-abundance proteins in the complex sample. In summary, the HYTARP strategy offers a straightforward and effective approach for reducing sample complexity and improving the identification coverage of K-containing peptides and low-abundance proteins.


Sujet(s)
Chromatographie en phase inverse , Interactions hydrophobes et hydrophiles , Lysine , Peptides , Chromatographie en phase inverse/méthodes , Lysine/composition chimique , Peptides/composition chimique , Peptides/analyse , Humains , Cellules HeLa , Spectrométrie de masse en tandem/méthodes , Protéomique/méthodes
8.
Food Sci Anim Resour ; 44(4): 873-884, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38974729

RÉSUMÉ

Flunixin is a veterinary nonsteroidal anti-inflammatory agent whose residues have been investigated in their original form within tissues such as muscle and liver. However, flunixin remains in milk as a metabolite, and 5-hydroxy flunixin has been used as the primary marker for its surveillance. This study aimed to develop a quantitative method for detecting flunixin and 5-hydroxy flunixin in milk and to strengthen the monitoring system by applying to other livestock and fishery products. Two different methods were compared, and the target compounds were extracted from milk using an organic solvent, purified with C18, concentrated, and reconstituted using a methanol-based solvent. Following filtering, the final sample was analyzed using liquid chromatography- tandem mass spectrometry. Method 1 is environmentally friendly due to the low use of reagents and is based on a multi-residue, multi-class analysis method approved by the Ministry of Food and Drug Safety. The accuracy and precision of both methods were 84.6%-115% and 0.7%-9.3%, respectively. Owing to the low matrix effect in milk and its convenience, Method 1 was evaluated for other matrices (beef, chicken, egg, flatfish, and shrimp) and its recovery and coefficient of variation are sufficient according to the Codex criteria (CAC/GL 71-2009). The limits of detection and quantification were 2-8 and 5-27 µg/kg for flunixin and 2-10 and 6-33 µg/kg for 5-hydroxy flunixin, respectively. This study can be used as a monitoring method for a positive list system that regulates veterinary drug residues for all livestock and fisheries products.

9.
Arch Toxicol ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951190

RÉSUMÉ

Snake venoms are complex mixtures majorly composed of proteins with well-studied biological effects. However, the exploration of non-protein components, especially lipids, remains limited despite their potential for discovering bioactive molecules. This study compares three liquid-liquid lipid extraction methods for both chemical and biological analyses of Bothrops moojeni snake venom. The methods evaluated include the Bligh and Dyer method (methanol, chloroform, water), considered standard; the Acunha method, a modification of the Bligh and Dyer protocol; and the Matyash method (MTBE/methanol/water), featuring an organic phase less dense than the aqueous phase. Lipidomic analysis using liquid chromatography with high-resolution mass spectrometry (LC-HRMS) system revealed comparable values of lipid constituents' peak intensity across different extraction methods. Our results show that all methods effectively extracted a similar quantity of lipid species, yielding approximately 17-18 subclasses per method. However, the Matyash and Acunha methods exhibited notably higher proportions of biologically active lipids compared to the Bligh and Dyer method, particularly in extracting lipid species crucial for cellular structure and function, such as sphingomyelins and phosphatidylinositol-phosphate. In conclusion, when selecting a lipid extraction method, it is essential to consider the study's objectives. For a biological approach, it is crucial to evaluate not only the total quantity of extracted lipids but also their quality and biological activity. The Matyash and Acunha methods show promise in this regard, potentially offering a superior option for extracting biologically active lipids compared to the Bligh and Dyer method.

10.
J Forensic Sci ; 69(5): 1799-1814, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38997947

RÉSUMÉ

The collection, storage, and transport of samples prior to and during analysis is of utmost importance, especially for highly potent analogs that may not be present in high concentrations and are susceptible to pH or thermally mediated degradation. An accelerated stability study was performed on 17 fentanyl analogs (fentalogs) over a wide range of pH (2-10) and temperature (20-60°C) conditions over 24 h. Dilute aqueous systems were used to investigate temperature and pH-dependent kinetics using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Liquid chromatography-quadrupole/time-of-flight-mass spectrometry (LC-Q/TOF-MS) was used for structural elucidation of degradants. With the exception of remifentanil, all fentalogs evaluated were stable at pH 6 or lower. Fentalogs were generally unstable in strongly alkaline environments and at elevated temperatures. Remifentanil was the least stable drug and N-dealkylated fentalogs were the most stable. Fentanyl degraded to acetylfentanyl, norfentanyl, fentanyl N-oxide, and 1-phenethylpyridinium salt (1-PEP). A total of 26 unique breakdown products were observed for 15 of the fentanyl derivatives studied. Common degradation pathways involved N-dealkylation, oxidation of the piperidine nitrogen, and ß-elimination of N-phenylpropanamide followed by oxidation/dehydration of the piperidine ring. Ester and amide hydrolysis, demethylation at the propanamide, and O-demethylation were observed for selected fentalogs only. The potential for analyte loss should be considered during the pre-analytical phase (i.e., shipping and transport) where environmental conditions may not be controlled, as well as during the analysis itself.


Sujet(s)
Analgésiques morphiniques , Stabilité de médicament , Fentanyl , Spectrométrie de masse en tandem , Température , Fentanyl/analogues et dérivés , Fentanyl/composition chimique , Concentration en ions d'hydrogène , Chromatographie en phase liquide , Analgésiques morphiniques/composition chimique , Analgésiques morphiniques/analyse , Marqueurs biologiques/analyse , Humains , Manipulation d'échantillons
11.
Transl Pediatr ; 13(5): 748-759, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38840687

RÉSUMÉ

Background: Bronchopulmonary dysplasia (BPD), characterized by impaired lung development, remains a leading cause of morbidity and mortality in premature infants. The synthesis and metabolism of lipids play a critical role in normal lung development, such as dipalmitoylphosphatidylcholine, a key component of pulmonary surfactant (PS). Therefore, we conducted a lipidomics study of rat lung tissue to explore the changes of pulmonary lipid composition in the progression of BPD disease. Methods: In this study, we exposed neonatal Sprague-Dawley (SD) rats to hyperoxia for 14 days. After hyperoxia exposure, the lung tissues of rats were analyzed pathologically, and untargeted lipidomics was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: Hematoxylin-eosin (H&E) staining showed that the alveoli enlarged, the number of alveoli decreased and the pulmonary surfactant-associated protein D (SFTPD) decreased in hyperoxia-exposed rats. A total of 620 pulmonary lipids were detected by LC-MS/MS, covering 27 lipid categories. The most common lipids were triacylglycerol (TAG), followed by phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Conclusions: Compared with those rats exposed to normoxic conditions, the lipid levels in the lungs of rats exposed to hyperoxia for 14 days generally decreased, with the levels of TAG and PC decreasing most significantly. In short, our results provide a clue for finding therapeutic targets and biomarkers of a BPD rat model lung liposome.

12.
Se Pu ; 42(6): 555-563, 2024 Jun.
Article de Chinois | MEDLINE | ID: mdl-38845516

RÉSUMÉ

Mitochondria perform various metabolic processes that significantly affect cell differentiation, proliferation, signal transduction, and programmed cell death. The disruption of mitochondrial bioenergetic and metabolic functions is closely related to many disorders. The specific isolation and purification of intact, high-purity, and functional mitochondria are central to the understanding of their mechanism of action but remain challenging tasks. In this study, a mitochondrial penetrating peptide (MPP) with the sequence FrFKFrFK(Ac) was used as a mitochondrial recognition motif to construct a peptide-guided affinity separation material. The multiple aromatic phenylalanine (F) residues in this amphiphilic peptide can confer lipophilicity to the mitochondrial membrane, whereas the basic residues (D-arginine and lysine) render the MPP surface positively charged, thereby promoting the binding of negatively charged mitochondria. After the derivatization of the N terminal of MPP with an oligoglycine spacer, the peptide ligands were conjugated to matrix beads (MB) with surface aldehyde functional groups. Peptide functionalization was performed via a condensation reaction between the amino group in the peptide ligand and the aldehyde group on the beads. The generated Schiff bases were reduced, affording stable covalent bonds. The dense and stable functionalization of the beads with the mitochondria-targeting peptides was demonstrated using high performance liquid chromatography (HPLC), zeta potential assay, and scanning electron microscopy (SEM). The immobilization efficiency of the peptide ligands was 1.47 µmol/g, and the surface potential of MB@MPP was 11 mV. MB@MPP was used for the direct isolation of mitochondria after cell homogenization. As observed by SEM, mitochondria with a cross-sectional diameter of 500 nm were efficiently captured on the MB@MPP surface. Because the mitochondrial membrane potential is an important marker of mitochondrial function and the driving force behind the staining of mitochondria with Mito Tracker dyes, the specific binding and separation of fluorescent mitochondria from the cell samples revealed that the proposed MB@MPP-based isolation approach can keep mitochondria intact and retain their functions. Western blot assays were employed to characterize the protein markers of the mitochondria (citrate synthase (CS) and voltage-dependent anion channel protein (VDAC)) and cytoplasmic protein (vinculin), and examine the integrity and purity of the captured mitochondria. The results showed that the lysates released from MB@MPP had high CS and VDAC contents. By contrast, vinculin, which is highly abundant in whole-cell lysates, was barely detected in the lysates from MB@MPP. These results suggest that MB@MPP isolates mitochondria with high affinity, specificity, and antifouling ability by using the targeting peptide as the capture handle. A comparison with a commercial mitochondrial isolation kit demonstrated that MB@MPP can separate mitochondria with higher CS and VDAC abundance and purity. Given the superior separation performance of MB@MPP, the molecular profiles of the isolated mitochondria under stress were subjected to further analysis of their molecular profiles under stress. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established to detect tryptophan (Trp) and riboflavin in the mitochondria. Quantification was performed in multiple-reaction monitoring (MRM) mode. Owing to the high purity of the mitochondria, the Trp and riboflavin contents were determined to be 265 and 0.67 nmol/mg, respectively. The metabolic response of mitochondria to external stimuli was further examined using acadesine, an adenosine 5'-monophosphate (AMP)-activated protein kinase activator with a wide range of metabolic effects, to treat cells. After cell homogenization, MB@MPP was used to separate the mitochondria from the cell samples with and without acadesine treatment, followed by LC-MS/MS analysis. The quantification results demonstrated that acadesine induced a 14% upregulation of Trp content in the mitochondria. By contrast, the riboflavin content decreased to 0.48 nmol/mg, which is 72% of that in untreated mitochondria. The changes in Trp and riboflavin contents could influence their metabolic pathways and, thus, the levels of their metabolites, such as nicotinamide adenine dinucleotide, flavin mononucleotide, and flavin adenine dinucleotide, which are essential coenzymes in mitochondria. Peptide-functionalized affinity microbeads with high affinity and specificity for mitochondria are promising for the efficient isolation of high-quality mitochondria, and offer a useful tool for understanding the complicated functions and dynamics of this unique organelle.


Sujet(s)
Mitochondries , Peptides , Mitochondries/métabolisme , Peptides/composition chimique , Peptides/isolement et purification , Animaux , Chromatographie d'affinité
13.
Se Pu ; 42(6): 572-580, 2024 Jun.
Article de Chinois | MEDLINE | ID: mdl-38845518

RÉSUMÉ

Perfluorooctanoic acid (PFOA) is a persistent contaminant with detrimental effects on the natural environment. This persistence leads to potential enrichment and osmotic transfer, which can affect normal circulation in the environment. PFOA poses significant threats to both the natural environment and human health. Therefore, the development of cost-effective, highly efficient, and environment-friendly PFOA adsorbents is a crucial endeavor. This paper presents the catalyst-free one-pot synthesis of fluorinated nitrogen-rich porous organic polymers (POP-3F) via a Schiff-base condensation reaction. The reaction between the nitrogen-rich compound 1,4-bis(2,4-diamino-1,3,5-triazine)benzene and p-trifluoromethylbenzaldehyde yielded POP-3F. The introduction of fluorine atoms into the nitrogen-rich porous organic polymer enhanced its hydrophobicity, thereby facilitating favorable fluoro-fluorine interactions with PFOA and, thus, improving the efficacy of the adsorbent. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), solid-state nuclear magnetic resonance (ssNMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, and thermogravimetric analysis (TGA) were used to confirm the successful synthesis and characterization of POP-3F. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted in negative electrospray ionization (ESI) mode coupled with multi-reaction monitoring mode (MRM). The instrument was equipped with an Atlantis T3 column (100 mm×2.1 mm, 3 µm), and analysis was conducted using an external standard method. The influences of various factors on PFOA adsorption by POP-3F, including pH, salt concentration, and humic acid presence, were investigated. The highest PFOA removal rate (98.6%) was achieved at a pH of 2, indicating the applicability of POP-3F for the effective removal of PFOA from acidic industrial wastewater. The removal rate of PFOA was unaffected by increases in NaCl concentration. This phenomenon can be attributed to electrostatic interactions between the protonated secondary amines in POP-3F and deprotonated PFOA. Upon the addition of NaCl, a double electric layer is formed on the POP-3F surface, with Cl- ions in the outer layer and Na+ ions in the inner layer, which weakened these interactions. Humic acid is competitively adsorbed with PFOA. However, POP-3F demonstrated good removal rates even in the presence of high humic acid concentrations in water. Adsorption isotherm and kinetics experiments were conducted at the optimal pH to explore the relevant adsorption mechanism. The results showed a rapid initial adsorption rate, with 95.4% PFOA removal within 5 min. Optimal adsorption equilibrium was achieved within 6 h, and the removal rate decreased by only 0.3% after 24 h. This finding indicates that POP-3F exhibits sustained efficacy for PFOA removal. Langmuir fitting analysis revealed a theoretical maximum adsorption capacity of 191 mg/g for POP-3F; this value surpasses those of activated carbon materials and most other adsorbents, highlighting the superior PFOA-adsorption performance of POP-3F. Additionally, matrix effects minimally affected the removal of PFOA by POP-3F, with only a slight reduction (0.1%) observed in simulated natural water. The recyclability of POP-3F was assessed over five adsorption-desorption cycles. The removal efficenecy exhibited a minor decrease of only 0.67% after five cycles. These results demonstrate the recyclability of the proposed adsorbent, which translates into cost reduction through reusability. This characteristic renders POP-3F a promising candidate for the economical and efficient removal of PFOA from wastewater in practical applications.

14.
J Hazard Mater ; 473: 134599, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38788569

RÉSUMÉ

The application of disposable tableware has increased substantially in recent times due to the rapidly growing food delivery business in China. Synthetic phenolic antioxidants (SPAs) are widely used in food contact materials (FCMs) to delay the process of oxidation; however, their compositions, concentrations, and potential health hazards remain unclear. Therefore, FCMs comprised of five materials obtained from 19 categories (n = 118) in China were analyzed for SPAs concentrations. FCMs have been found to contain a variety of SPAs, with ∑SPAs concentrations ranging from 44.18 to 69,485.12 µg/kg (median: 2615.63 µg/kg). The predominant congeners identified in the sample include 2,4-di-tert-butylphenol (2,4-DTBP), 2,6-di-tert-butylphenol (2,6-DTBP), and 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) with a median concentration of 885.75, 555.45 and of 217.44 µg/kg, respectively. Milky tea paper cups, instant noodle buckets, milky teacups, and disposable cups showed high levels of SPAs. 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (AO 2246) was predominantly detected in polyethylene and polyethylene terephthalate-based products. The migration test identified disposable plastic cups and bowls as the predominant FCMs and 2,4-DTBP as the dominant SPA. The exposure risk of SPAs decreased with age. In children, the estimated daily intake of ∑SPAs from FCMs was determined to be 17.56 ng/kg body weight/day, which was 8.3 times higher than that of phthalic acid esters. The current findings indicate the potential ingestion risk of SPAs during the daily life application of multiple FCM categories.


Sujet(s)
Antioxydants , Exposition alimentaire , Phénols , Phénols/analyse , Chine , Exposition alimentaire/analyse , Humains , Antioxydants/analyse , Antioxydants/composition chimique , Contamination des aliments/analyse , Emballage alimentaire
15.
J Pharm Biomed Anal ; 245: 116150, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38657366

RÉSUMÉ

Niraparib is a potent and orally bioavailable inhibitor of poly (ADP-ribose) polymerase (PARP) with high specificity for isoforms 1 and 2. It has been approved by the U.S. Food and Drug Administration for ovarian cancer maintenance therapy and is currently under development for various cancers, including glioblastoma. To assess central nervous system (CNS) penetration of niraparib in glioblastoma patients, a novel bioanalytical method was developed to measure total and unbound niraparib levels in human brain tumor tissue and cerebrospinal fluid (CSF). The method was validated using plasma as a surrogate matrix over the concentration range of 1-10,000 nM on an LC-MS/MS system. The MS/MS detection was conducted in positive electrospray ionization mode, while chromatography was performed using a Kinetex™ PS C18 column with a total 3.5-minute gradient elution run time. The maximum coefficient of variation for both intra- and inter-day precision was 10.6%, with accuracy ranging from 92.8% - 118.5% across all matrices. Niraparib was stable in human brain homogenate for at least 6 hours at room temperature (RT) and 32 days at -20°C, as well as in stock and working solutions for at least 21 hours (RT) and 278 days (4°C). Equilibrium dialysis experiments revealed the fractions unbound of 0.05 and 0.16 for niraparib in human brain and plasma, respectively. The validated method is currently employed to assess niraparib levels in human glioblastoma tissue, CSF, and plasma in an ongoing trial on newly diagnosed glioblastoma and recurrent IDH1/2(+) ATRX mutant glioma patients (NCT05076513). Initial results of calculated total (Kp) and unbound (Kp,uu) tumor-to-plasma partition coefficients indicate significant brain penetration ability of niraparib in glioblastoma patients.


Sujet(s)
Tumeurs du cerveau , Indazoles , Pipéridines , Inhibiteurs de poly(ADP-ribose) polymérases , Spectrométrie de masse en tandem , Humains , Pipéridines/pharmacocinétique , Pipéridines/sang , Pipéridines/administration et posologie , Pipéridines/usage thérapeutique , Indazoles/pharmacocinétique , Indazoles/administration et posologie , Indazoles/usage thérapeutique , Spectrométrie de masse en tandem/méthodes , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/métabolisme , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacocinétique , Chromatographie en phase liquide/méthodes , Glioblastome/traitement médicamenteux , Glioblastome/métabolisme , Reproductibilité des résultats , Encéphale/métabolisme , Sulfonamides/pharmacocinétique , Sulfonamides/analyse , Sulfonamides/administration et posologie ,
16.
Environ Toxicol Chem ; 43(6): 1339-1351, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38661510

RÉSUMÉ

Pharmaceuticals are found in aquatic environments due to their widespread use and environmental persistence. To date, a range of impairments to aquatic organisms has been reported with exposure to pharmaceuticals; however, further comparisons of their impacts across different species on the molecular level are needed. In the present study, the crustacean Daphnia magna and the freshwater fish Japanese medaka, common model organisms in aquatic toxicity, were exposed for 48 h to the common analgesics acetaminophen (ACT), diclofenac (DCF), and ibuprofen (IBU) at sublethal concentrations. A targeted metabolomic-based approach, using liquid chromatography-tandem mass spectrometry to quantify polar metabolites from individual daphnids and fish was used. Multivariate analyses and metabolite changes identified differences in the metabolite profile for D. magna and medaka, with more metabolic perturbations for D. magna. Pathway analyses uncovered disruptions to pathways associated with protein synthesis and amino acid metabolism with D. magna exposure to all three analgesics. In contrast, medaka exposure resulted in disrupted pathways with DCF only and not ACT and IBU. Overall, the observed perturbations in the biochemistry of both organisms were different and consistent with assessments using other endpoints reporting that D. magna is more sensitive to pollutants than medaka in short-term studies. Our findings demonstrate that molecular-level responses to analgesic exposure can reflect observations of other endpoints, such as immobilization and mortality. Thus, environmental metabolomics can be a valuable tool for selecting sentinel species for the biomonitoring of freshwater ecosystems while also uncovering mechanistic information. Environ Toxicol Chem 2024;43:1339-1351. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Sujet(s)
Acétaminophène , Daphnia , Diclofenac , Ibuprofène , Métabolomique , Oryzias , Polluants chimiques de l'eau , Animaux , Oryzias/métabolisme , Daphnia/effets des médicaments et des substances chimiques , Daphnia/métabolisme , Acétaminophène/toxicité , Ibuprofène/toxicité , Polluants chimiques de l'eau/toxicité , Diclofenac/toxicité , Daphnia magna
17.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-38612906

RÉSUMÉ

Glycosphingolipids (GSLs), mainly located in the cell membrane, play various roles in cancer cell function. GSLs have potential as renal cell carcinoma (RCC) biomarkers; however, their analysis in body fluids is challenging because of the complexity of numerous glycans and ceramides. Therefore, we applied wide-targeted lipidomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with selected reaction monitoring (SRM) based on theoretical mass to perform a comprehensive measurement of GSLs and evaluate their potency as urinary biomarkers. In semi-quantitative lipidomics, 240 SRM transitions were set based on the reported/speculated structures. We verified the feasibility of measuring GSLs in cells and medium and found that disialosyl globopentaosylceramide (DSGb5 (d18:1/16:0)) increased GSL in the ACHN medium. LC-MS/MS analysis of urine samples from clear cell RCC (ccRCC) patients and healthy controls showed a significant increase in the peak intensity of urinary DSGb5 (d18:1/16:0) in the ccRCC group compared with that in the control group. Receiver operating characteristic analysis indicated that urinary DSGb5 could serve as a sensitive and specific marker for RCC screening, with an AUC of 0.89. This study demonstrated the possibility of urinary screening using DSGb5 (d18:1/16:0). In conclusion, urinary DSGb5 (d18:1/16:0) was a potential biomarker for cancer screening, which could contribute to the treatment of RCC patients.


Sujet(s)
Glycosphingolipides acides , Liquides biologiques , Néphrocarcinome , Tumeurs du rein , Humains , Néphrocarcinome/diagnostic , Chromatographie en phase liquide , Spectrométrie de masse en tandem , Marqueurs biologiques , Lignée cellulaire , Tumeurs du rein/diagnostic
18.
Se Pu ; 42(4): 333-344, 2024 Apr.
Article de Chinois | MEDLINE | ID: mdl-38566422

RÉSUMÉ

17ß-Estradiol (E2), an important endocrine hormone in the mammalian body, participates in the regulation of the physiological functions of the reproductive system, mammary glands, bone, and cardiovascular system, among others. Paradoxically, despite the physiological actions of endogenous E2 (0.2-1.0 nmol/L), numerous clinical and experimental studies have demonstrated that high-dose E2 treatment can cause tumor regression and exert pro-apoptotic actions in multiple cell types; however, the underlying mechanism remains undescribed. In particular, little information of the cellular processes responding to the lethality of E2 is available. In the present study, we attempted to characterize the cellular processes responding to high-dose (µmol/L) E2 treatment using quantitative phosphoproteomics to obtain a better understanding of the regulatory mechanism of E2-induced cell death. First, the cell phenotype induced by high-dose E2 was determined by performing Cell Counting Kit-8 assay (CCK8), cell cytotoxicity analysis by trypan blue staining, and microscopic imaging on HeLa cells treated with 1-10 µmol/L E2 or dimethyl sulfoxide (DMSO) for 1-3 d. E2 inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Compared with the DMSO-treated HeLa cells, the cells treated with 5 µmol/L E2 for 2 d demonstrated >74% growth inhibition and approximately 50% cell death. Thus, these cells were used for quantitative phosphoproteomic analysis. Next, a solid-phase extraction (SPE)-based immobilized titanium ion affinity chromatography (Ti4+-IMAC) phosphopeptide-enrichment method coupled with data-independent acquisition (DIA)-based quantitative proteomics was employed for the in-depth screening of high-dose E2-regulated phosphorylation sites to investigate the intracellular processes responding to high-dose E2 treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified over 10000 phosphorylation sites regulated by E2 and DMSO in HeLa cells. In comparison with the DMSO-treated cells, the cells treated with 5 µmol/L E2 showed 537 upregulated phosphorylation sites and 387 downregulated phosphorylation sites, with a threshold of p<0.01 and |log2(fold change)|≥1. A total of 924 phosphorylation sites on 599 proteins were significantly regulated by high-dose E2, and these sites were subjected to enrichment analysis. In addition, 453 differently regulated phosphorylation sites on 325 proteins were identified only in the E2- or DMSO-treated cell samples. These phosphorylation sites may be phosphorylated or dephosphorylated in response to high-dose E2 stimulation and were subjected to parallel enrichment analyses. Taken together, 1218 phosphorylation sites on 741 proteins were significantly regulated by high-dose E2 treatment. The functional phosphoproteins in these two groups were then analyzed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to determine the biological processes in which they participate and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Consistent with the cell-phenotype data, cell cycle-related proteins were highly enriched in the two groups of E2-regulated phosphoproteins (p<0.05), indicating that high-dose E2 treatment can regulate cell proliferation. In addition, E2-regulated phosphoproteins were highly enriched in the cellular processes of ribosome biogenesis, nucleocytoplasmic transport, and messenger ribonucleic acid (mRNA) processing/splicing (p<0.05), indicating that the activation of these processes may contribute to high-dose E2-induced cell death. These results further confirm that high-dose E2 treatment inhibits protein translation and induces cell death. Furthermore, the significant upregulation of multiple phosphorylation sites associated with epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPKs) MAPK1, MAPK4, and MAPK14 by high-dose E2 indicates that the EGFR and MAPK signaling pathways are likely involved in the regulation of E2-induced cell death. These phosphorylation sites likely play vital roles in E2-induced cell death in HeLa cells. Overall, our phosphoproteomic data could be a valuable resource for uncovering the regulatory mechanisms of E2 in the micromolar range.


Sujet(s)
Diméthylsulfoxyde , Spectrométrie de masse en tandem , Animaux , Humains , Chromatographie en phase liquide , Cellules HeLa , Oestradiol/pharmacologie , Phosphoprotéines/composition chimique , Phosphoprotéines/métabolisme , Récepteurs ErbB/métabolisme , Phosphorylation , Mammifères/métabolisme
19.
J Proteome Res ; 23(4): 1221-1231, 2024 04 05.
Article de Anglais | MEDLINE | ID: mdl-38507900

RÉSUMÉ

Proteins usually execute their biological functions through interactions with other proteins and by forming macromolecular complexes, but global profiling of protein complexes directly from human tissue samples has been limited. In this study, we utilized cofractionation mass spectrometry (CF-MS) to map protein complexes within the postmortem human brain with experimental replicates. First, we used concatenated anion and cation Ion Exchange Chromatography (IEX) to separate native protein complexes in 192 fractions and then proceeded with Data-Independent Acquisition (DIA) mass spectrometry to analyze the proteins in each fraction, quantifying a total of 4,804 proteins with 3,260 overlapping in both replicates. We improved the DIA's quantitative accuracy by implementing a constant amount of bovine serum albumin (BSA) in each fraction as an internal standard. Next, advanced computational pipelines, which integrate both a database-based complex analysis and an unbiased protein-protein interaction (PPI) search, were applied to identify protein complexes and construct protein-protein interaction networks in the human brain. Our study led to the identification of 486 protein complexes and 10054 binary protein-protein interactions, which represents the first global profiling of human brain PPIs using CF-MS. Overall, this study offers a resource and tool for a wide range of human brain research, including the identification of disease-specific protein complexes in the future.


Sujet(s)
Protéines , Spectrométrie de masse en tandem , Humains , Spectrométrie de masse en tandem/méthodes , Protéines/composition chimique , Chromatographie en phase liquide à haute performance/méthodes , Chromatographie d'échange d'ions/méthodes , Encéphale , Protéome/analyse
20.
J Pharm Biomed Anal ; 244: 116123, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38554555

RÉSUMÉ

Monoclonal antibodies like Herceptin play a pivotal role in modern therapeutics, with their glycosylation patterns significantly influencing their bioactivity. To characterize the N-glycan profile and their relative abundance in Herceptin, we employed two analytical methods: hydrophilic interaction chromatography with fluorescence detection (HILIC-FLD) for released glycans and liquid chromatography tandem mass spectrometry (LC-MS/MS) for glycopeptides. Our analysis included 21 European Union (EU)-Herceptin lots and 14 United States (US)-Herceptin lots. HILIC-FLD detected 25 glycan species, including positional isomers, revealing comparable chromatographic profiles for both EU and US lots. On the other hand, LC-MS/MS identified 26 glycoforms within the glycopeptide EEQYNSTYR. Both methods showed that a subset of glycans dominated the total abundance. Notably, EU-Herceptin lots with an expiration date of October 2022 exhibited increased levels of afucosylated and high mannose N-glycans. Our statistical comparisons showed that the difference in quantitative results between HILIC-FLD and LC-MS/MS is significant, indicating that the absolute quantitative values depend on the choice of the analytical method. However, despite these differences, both methods demonstrated a strong correlation in relative glycan proportions. This study contributes to the comprehensive analysis of Herceptin's glycosylation, offering insights into the influence of analytical methods on glycan quantification and providing valuable information for the biopharmaceutical industry.


Sujet(s)
Interactions hydrophobes et hydrophiles , Polyosides , Trastuzumab , Humains , Antinéoplasiques immunologiques/analyse , Antinéoplasiques immunologiques/composition chimique , Glycopeptides/analyse , Glycopeptides/composition chimique , Glycosylation , /méthodes , Polyosides/analyse , Polyosides/composition chimique , Spectrométrie de masse en tandem/méthodes , Trastuzumab/analyse , Trastuzumab/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE