Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 39
Filtrer
1.
Small Methods ; : e2400622, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39021326

RÉSUMÉ

Lipid nanoparticles (LNPs) are increasingly finding applications in targeted drug delivery, including for subcutaneous, intravenous, inhalation, and vaccine administration. While a variety of microscopy techniques are widely used for LNP characterization, their resolution does not allow for characterization of the spatial organization of different components, such as the excipients, targeting agents, or even the active ingredient. Herein, an approach is presented to probe the spatial organization of individual constituent groups of LNPs used for siRNA-based drug delivery, currently in clinical trials, by multinuclear solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Dynamic nuclear polarization is exploited (DNP) for sensitivity enhancement, together with judicious 2H labeing, to detect functionally important LNP constituents, the siRNA and the targeting agent (<1-2 w/v%), respectively, and achieve a structural model of the LNP locating the siRNA in the core, the targeting agent below the surface, and the sugars above the lipid bilayer at the surface. The integrated approach presented here is applicable for structural analysis of LNPs and can be extended more generally to other multi-component biological formulations.

2.
Chemistry ; 30(44): e202400177, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-38644348

RÉSUMÉ

We report an idea for the synthesis of oligopeptides using a solvent-free ball milling approach. Our concept is inspired by block play, in which it is possible to construct different objects using segments (blocks) of different sizes and lengths. We prove that by having a library of short peptides and employing the ball mill mechanosynthesis (BMMS) method, peptides can be easily coupled to form different oligopeptides with the desired functional and biological properties. Optimizing the BMMS process we found that the best yields we obtained when TBTU and cesium carbonate were used as reagents. The role of Cs2CO3 in the coupling mechanism was followed on each stage of synthesis by 1H, 13C and 133Cs NMR employing Magic Angle Spinning (MAS) techniques. It was found that cesium carbonate acts not only as a base but is also responsible for the activation of substrates and intermediates. The unique information about the BMMS mechanism is based on the analysis of 2D NMR data. The power of BMMS is proved by the example of different peptide combinations, 2+2, 3+2, 4+2, 5+2 and 4+4. The tetra-, penta-, hexa-, hepta- and octapeptides obtained under this project were fully characterized by MS and NMR techniques.


Sujet(s)
Carbonates , Césium , Oligopeptides , Césium/composition chimique , Carbonates/composition chimique , Oligopeptides/composition chimique , Spectroscopie par résonance magnétique , Solvants/composition chimique
3.
Pharmaceutics ; 15(9)2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37765292

RÉSUMÉ

Porphyrinic photosensitizers (PSs) and their nano-sized polymer-based carrier systems are required to exhibit low dark toxicity, avoid side effects, and ensure high in vivo tolerability. Yet, little is known about the intracellular fate of PSs during the dark incubation period and how it is affected by nanoparticles. In a systematic study, high-resolution magic angle spinning NMR spectroscopy combined with statistical analyses was used to study the metabolic profile of cultured HeLa cells treated with different concentrations of PS chlorin e4 (Ce4) alone or encapsulated in carrier systems. For the latter, either polyvinylpyrrolidone (PVP) or the micelle-forming polyethylene glycol (PEG)-polypropylene glycol triblock copolymer Kolliphor P188 (KP) were used. Diffusion-edited spectra indicated Ce4 membrane localization evidenced by Ce4 concentration-dependent chemical shift perturbation of the cellular phospholipid choline resonance. The effect was also visible in the presence of KP and PVP but less pronounced. The appearance of the PEG resonance in the cell spectra pointed towards cell internalization of KP, whereas no conclusion could be drawn for PVP that remained NMR-invisible. Multivariate statistical analyses of the cell spectra (PCA, PLS-DA, and oPLS) revealed a concentration-dependent metabolic response upon exposure to Ce4 that was attenuated by KP and even more by PVP. Significant Ce4-concentration-dependent alterations were mainly found for metabolites involved in the tricarboxylic acid cycle and the phosphatidylcholine metabolism. The data underline the important protective role of the polymeric carriers following cell internalization. Moreover, to our knowledge, for the first time, the current study allowed us to trace intracellular PS localization on an atomic level by NMR methods.

4.
J Magn Reson ; 349: 107404, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36848688

RÉSUMÉ

Cross polarization (CP) transfers via Hartmann-Hahn matching conditions are one of the cornerstones of solid-state magic-angle spinning NMR experiments. Here we investigate a windowed sequence for cross polarization (wCP) at 55 kHz magic-angle spinning, placing one window (and one pulse) per rotor period on one or both rf channels. The wCP sequence is known to have additional matching conditions. We observe a striking similarity between wCP and CP transfer conditions when considering the flip angle of the pulse rather than the rf-field strength applied during the pulse. Using fictitious spin-1/2 formalism and average Hamiltonian theory, we derive an analytical approximation that matches these observed transfer conditions. We recorded data at spectrometers with different external magnetic fields up to 1200 MHz, for strong and weak heteronuclear dipolar couplings. These transfers, and even the selectivity of CP were again found to relate to flip angle (average nutation).

5.
Chemistry ; 29(1): e202202318, 2023 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-36214658

RÉSUMÉ

A highly unusual solid-state epitaxy-induced phase transformation of Na4 SnS4 ⋅ 14H2 O (I) into Na4 Sn2 S6 ⋅ 5H2 O (II) occurs at room temperature. Ab initio molecular dynamics (AIMD) simulations indicate an internal acid-base reaction to form [SnS3 SH]3- which condensates to [Sn2 S6 ]4- . The reaction involves a complex sequence of O-H bond cleavage, S2- protonation, Sn-S bond formation and diffusion of various species while preserving the crystal morphology. In situ Raman and IR spectroscopy evidence the formation of [Sn2 S6 ]4- . DFT calculations allowed assignment of all bands appearing during the transformation. X-ray diffraction and in situ 1 H NMR demonstrate a transformation within several days and yield a reaction turnover of ≈0.38 %/h. AIMD and experimental ionic conductivity data closely follow a Vogel-Fulcher-Tammann type T dependence with D(Na)=6×10-14  m2 s-1 at T=300 K with values increasing by three orders of magnitude from -20 to +25 °C.

6.
Int J Mol Sci ; 23(16)2022 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-36012378

RÉSUMÉ

Solid salts of the divinyl chloronium (C2H3)2Cl+ cation (I) and unsaturated C4H6Cl+ and C4H7+ carbocations with the highly stable CHB11Hal11- anion (Hal=F, Cl) were obtained for the first time. At 120 °C, the salt of the chloronium cation decomposes, yielding a salt of the C4H5+ cation. This thermally stable (up to 200 °C) carbocation is methyl propargyl, CH≡C-C+-H-CH3 (VI), which, according to quantum chemical calculations, should be energetically much less favorable than other isomers of the C4H7+ cations. Cation VI readily attaches HCl to the formal triple C≡C bond to form the CHCl=CH-C+H-CH3 cation (VII). In infrared spectra of cations I, VI, and VII, frequencies of C=C and C≡C stretches are significantly lower than those predicted by calculations (by 400-500 cm-1). Infrared and 1H/13C magic-angle spinning NMR spectra of solid salts of cations I and VI and high-resolution 1H/13C NMR spectra of VII in solution in SO2ClF were interpreted. On the basis of the spectroscopic data, the charge and electron density distribution in the cations are discussed.


Sujet(s)
Imagerie par résonance magnétique , Sels , Cations/composition chimique , Spectroscopie par résonance magnétique/méthodes , Sels/composition chimique , Spectrophotométrie IR
7.
Mol Pharm ; 19(1): 188-199, 2022 01 03.
Article de Anglais | MEDLINE | ID: mdl-34843257

RÉSUMÉ

Amorphous drug nanoparticles usually exhibit low storage stability. A comprehensive understanding of the molecular states and physicochemical properties of the product is indispensable for designing stable formulations. In the present study, an amorphous cyclosporin A (CyA) nanosuspension with a mean particle size of approximately 370 nm was prepared by wet bead milling with poloxamer 407 (P407). Interestingly, the prepared amorphous CyA nanoparticles were transformed into uniform CyA nanocrystals with a reduced mean particle size of approximately 200 nm during storage at 25 °C. The CyA nanocrystals were stably maintained for at least 1 month. The particle morphologies and molecular structures of the CyA nanosuspensions before and after storage were thoroughly characterized by cryogenic transmission electron microscopy and magic-angle spinning nuclear magnetic resonance spectroscopy, respectively. They revealed that the freshly prepared amorphous CyA nanoparticles (∼370 nm) were secondary particles composed of aggregated primary particles with an estimated size of 50 nm. A portion of P407 was found to be entrapped at the gaps between the primary particles due to aggregation, while most of P407 was dissolved in the solution either adsorbing at the solid/liquid interface or forming polymeric micelles. The entrapped P407 is considered to play an important role in the destabilization of the amorphous CyA nanoparticles. The resultant CyA nanocrystals (∼200 nm) were uniform single crystals of Form 2 hydrate and showed corner-truncated bipyramidal features. Owing to the narrow particle size distribution of the CyA nanocrystals, the rate of Ostwald ripening was slow, giving long-term stability to the CyA nanocrystals. This study provides new insights into the destabilization mechanism of amorphous drug nanoparticles.


Sujet(s)
Ciclosporine/composition chimique , Nanoparticules/composition chimique , Poloxamère , Ciclosporine/administration et posologie , Spectroscopie par résonance magnétique , Microscopie électronique à transmission , Nanoparticules/administration et posologie , Taille de particule , Solubilité , Solutions
8.
Mol Pharm ; 18(11): 4111-4121, 2021 11 01.
Article de Anglais | MEDLINE | ID: mdl-34641686

RÉSUMÉ

The effects of pH changes and saccharin (SAC) addition on the nanostructure and mobility of the cationic aminoalkyl methacrylate copolymer Eudragit E PO (EUD-E) and its drug solubilization ability were investigated. Small-angle X-ray scattering performed using synchrotron radiation and atomic force microscopy showed that the EUD-E nanostructure, which has a size of approximately several nanometers, changed from a random coil structure at low pH (pH 4.0-5.0) to a partially folded structure at high pH (pH 5.5-6.5). The EUD-E also formed a partially folded structure in a wide pH range of 4.5-6.5 when SAC was present, and the coil-to-globule transition was moderate with pH increase, compared with that when SAC was absent. The equilibrium solubility of the neutral drug naringenin (NAR) was enhanced in the EUD-E solution and further increased as the pH increased. The enlargement of the hydrophobic region of EUD-E in association with the coil-to-globule transition led to efficient solubilization of NAR. The interaction with SAC enhanced the mobility of the EUD-E chains in the hydrophobic region of EUD-E, resulting in changes in the drug-solubilizing ability. 1H high-resolution magic-angle spinning NMR measurements revealed that the solubilized NAR in the partially folded structure of EUD-E showed higher molecular mobility in the presence of SAC than in the absence of SAC. This study highlighted that solution pH and the presence of SAC significantly changed the drug solubilization ability of EUD-E, followed by changes in the EUD-E nanostructure, including its hydrophobic region.


Sujet(s)
Flavanones/composition chimique , Nanostructures/composition chimique , Poly(acides méthacryliques)/composition chimique , Chimie pharmaceutique , Excipients/composition chimique , Concentration en ions d'hydrogène , Interactions hydrophobes et hydrophiles , Spectroscopie par résonance magnétique du proton , Saccharine/composition chimique , Diffusion aux petits angles , Solubilité , Diffraction des rayons X
9.
Curr Opin Struct Biol ; 70: 34-43, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-33915352

RÉSUMÉ

Magic-Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) is a fast-developing technique, capable of complementing solution NMR, X-ray crystallography, and electron microscopy for the biophysical characterization of microcrystalline, poorly crystalline or disordered protein samples, such as enzymes, biomolecular assemblies, membrane-embedded systems or fibrils. Beyond structures, MAS NMR is an ideal tool for the investigation of dynamics, since it is unique in its ability to distinguish static and dynamic disorder, and to characterize not only amplitudes but also timescales of motion. Building on seminal work on model proteins, the technique is now ripe for widespread application in structural biology. This review briefly summarizes the recent evolutions in biomolecular MAS NMR and accounts for the growing number of systems where this spectroscopy has provided a description of conformational dynamics over the very last few years.


Sujet(s)
Protéines , Cristallographie aux rayons X , Spectroscopie par résonance magnétique , Déplacement , Résonance magnétique nucléaire biomoléculaire
10.
J Alzheimers Dis ; 81(2): 797-808, 2021.
Article de Anglais | MEDLINE | ID: mdl-33843677

RÉSUMÉ

BACKGROUND: Circadian rhythm disturbance is commonly observed in Alzheimer's disease (AD). In mammals, these rhythms are orchestrated by the superchiasmatic nucleus (SCN). Our previous study in the Tg2576 AD mouse model suggests that inflammatory responses, most likely manifested by low GABA production, may be one of the underlying perpetrators for the changes in circadian rhythmicity and sleep disturbance in AD. However, the mechanistic connections between SCN dysfunction, GABA modulation, and inflammation in AD is not fully understood. OBJECTIVE: To reveal influences of amyloid pathology in Tg2576 mouse brain on metabolism in SCN and to identify key metabolic sensors that couple SCN dysfunction with GABA modulation and inflammation. METHODS: High resolution magic angle spinning (HR-MAS) NMR in conjunction with multivariate analysis was applied for metabolic profiling in SCN of control and Tg2576 female mice. Immunohistochemical analysis was used to detect neurons, astrocytes, expression of GABA transporter 1 (GAT1) and Bmal1. RESULTS: Metabolic profiling revealed significant metabolic deficits in SCN of Tg2576 mice. Reductions in glucose, glutamate, GABA, and glutamine provide hints toward an impaired GABAergic glucose oxidation and neurotransmitter cycling in SCN of AD mice. In addition, decreased redox co-factor NADPH and glutathione support a redox disbalance. Immunohistochemical examinations showed low expression of the core clock protein, Bmal1, especially in activated astrocytes. Moreover, decreased expression of GAT1 in astrocytes indicates low GABA recycling in this cell type. CONCLUSION: Our results suggest that redox disbalance and compromised GABA signaling are important denominators and connectors between neuroinflammation and clock dysfunction in AD.


Sujet(s)
Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Rythme circadien/physiologie , Noyau suprachiasmatique/métabolisme , Protéines amyloïdogènes/métabolisme , Animaux , Astrocytes/métabolisme , Modèles animaux de maladie humaine , Imagerie par résonance magnétique/méthodes , Souris , Neurones/métabolisme , Noyau suprachiasmatique/anatomopathologie
11.
J Magn Reson ; 319: 106827, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32950918

RÉSUMÉ

Symmetry based γ-encoded RNnν elements are broadly used in magic-angle spinning solid-state NMR experiments to achieve selective recoupling of the heteronuclear dipolar interactions. The recoupled dipolar couplings in such experiments are scaled by a factor, Ksc, which theoretically depends on the chosen symmetry numbers N, n, and ν. However, the maximum theoretical value of Ksc for γ-encoded RNnν pulses is limited to ~0.25, resulting in long RNnν experiment times. Also, the dependence of Ksc on the experimental parameters can result in systematic errors in the experimental determination of the dipolar couplings, especially at low and moderate MAS rates. In this manuscript, we investigate the use of MODifiEd RNnν symmetry (MODERNnν(ϕM)) pulses that increase the dipolar scaling factor by at least 1.45 fold compared to γ-encoded RNnν. The second advantage of MODERNnν(ϕM) pulses with respect to traditional RNnν pulses is the reduced influence of experimental parameters on Ksc, which allows for more accurate measurement of short-range distances. The robustness of MODERNnν(ϕM) is compared with γ-encoded R1423 symmetry pulses. The enhanced performance is demonstrated on two uniformly-13C-enriched samples, N-acetyl valine and the microcrystalline protein GB1, at a 31.111 kHz MAS rate.


Sujet(s)
Résonance magnétique nucléaire biomoléculaire/méthodes , Protéines/composition chimique , Valine/composition chimique , Isotopes du carbone , Isotopes de l'azote
12.
Methods Mol Biol ; 2127: 373-396, 2020.
Article de Anglais | MEDLINE | ID: mdl-32112334

RÉSUMÉ

NMR spectroscopy is a method of choice to characterize structure, function, and dynamics of integral membrane proteins at atomic resolution. Here, we describe protocols for sample preparation and characterization by NMR spectroscopy of two integral membrane proteins with different architecture, the α-helical membrane protein MsbA and the ß-barrel membrane protein BamA. The protocols describe recombinant expression in E. coli, protein refolding, purification, and reconstitution in suitable membrane mimetics, as well as key setup steps for basic NMR experiments. These include experiments on protein samples in the solid state under magic angle spinning (MAS) conditions and experiments on protein samples in aqueous solution. Since MsbA and BamA are typical examples of their respective architectural classes, the protocols presented here can also serve as a reference for other integral membrane proteins.


Sujet(s)
Spectroscopie par résonance magnétique/méthodes , Protéines membranaires/composition chimique , Protéines membranaires/isolement et purification , Transporteurs ABC/composition chimique , Transporteurs ABC/isolement et purification , Transporteurs ABC/métabolisme , Protéines de la membrane externe bactérienne/composition chimique , Protéines de la membrane externe bactérienne/isolement et purification , Protéines de la membrane externe bactérienne/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/isolement et purification , Protéines bactériennes/métabolisme , Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/isolement et purification , Protéines Escherichia coli/métabolisme , Lasers à solide , Double couche lipidique/composition chimique , Spectroscopie par résonance magnétique/instrumentation , Protéines membranaires/métabolisme , Résonance magnétique nucléaire biomoléculaire/méthodes , Renaturation des protéines , Protéines recombinantes/composition chimique , Protéines recombinantes/isolement et purification , Protéines recombinantes/métabolisme
13.
J Magn Reson ; 313: 106702, 2020 04.
Article de Anglais | MEDLINE | ID: mdl-32203923

RÉSUMÉ

Continuous wave (CW) dynamic nuclear polarization (DNP) is used with magic angle spinning (MAS) to enhance the typically poor sensitivity of nuclear magnetic resonance (NMR) by orders of magnitude. In a recent publication we show that further enhancement is obtained by using a frequency-agile gyrotron to chirp incident microwave frequency through the electron resonance frequency during DNP transfer. Here we characterize the effect of chirped MAS DNP by investigating the sweep time, sweep width, center-frequency, and electron Rabi frequency of the chirps. We show the advantages of chirped DNP with a trityl-nitroxide biradical, and a lack of improvement with chirped DNP using AMUPol, a nitroxide biradical. Frequency-chirped DNP on a model system of urea in a cryoprotecting matrix yields an enhancement of 142, 21% greater than that obtained with CW DNP. We then go beyond this model system and apply chirped DNP to intact human cells. In human Jurkat cells, frequency-chirped DNP improves enhancement by 24% over CW DNP. The characterization of the chirped DNP effect reveals instrument limitations on sweep time and sweep width, promising even greater increases in sensitivity with further technology development. These improvements in gyrotron technology, frequency-agile methods, and in-cell applications are expected to play a significant role in the advancement of MAS DNP.


Sujet(s)
Peptides antimicrobiens cationiques/composition chimique , Radicaux libres/composition chimique , Spectroscopie par résonance magnétique/méthodes , Urée/composition chimique , Isotopes du carbone , Humains , Cellules Jurkat , Micro-ondes
14.
J Biomol NMR ; 73(8-9): 451-460, 2019 Sep.
Article de Anglais | MEDLINE | ID: mdl-31407201

RÉSUMÉ

The second isoform of the human voltage dependent anion channel (VDAC2) is a mitochondrial porin that translocates calcium and other metabolites across the outer mitochondrial membrane. VDAC2 has been implicated in cardioprotection and plays a critical role in a unique apoptotic pathway in tumor cells. Despite its medical importance, there have been few biophysical studies of VDAC2 in large part due to the difficulty of obtaining homogeneous preparations of the protein for spectroscopic characterization. Here we present high resolution magic angle spinning nuclear magnetic resonance (NMR) data obtained from homogeneous preparation of human VDAC2 in 2D crystalline lipid bilayers. The excellent resolution in the spectra permit several sequence-specific assignments of the signals for a large portion of the VDAC2 N-terminus and several other residues in two- and three-dimensional heteronuclear correlation experiments. The first 12 residues appear to be dynamic, are not visible in cross polarization experiments, and they are not sufficiently mobile on very fast timescales to be visible in 13C INEPT experiments. A comparison of the NMR spectra of VDAC2 and VDAC1 obtained from highly similar preparations demonstrates that the spectral quality, line shapes and peak dispersion exhibited by the two proteins are nearly identical. This suggests an overall similar dynamic behavior and conformational homogeneity, which is in contrast to two earlier reports that suggested an inherent conformational heterogeneity of VDAC2 in membranes. The current data suggest that the sample preparation and spectroscopic methods are likely applicable to studying other human membrane porins, including human VDAC3, which has not yet been structurally characterized.


Sujet(s)
Double couche lipidique , Résonance magnétique nucléaire biomoléculaire/méthodes , Canal anionique-2 voltage-dépendant/composition chimique , Humains , Simulation de dynamique moléculaire , Conformation des protéines , Canal anionique-1 voltage-dépendant/composition chimique
15.
J Mol Biol ; 431(14): 2554-2566, 2019 06 28.
Article de Anglais | MEDLINE | ID: mdl-31082440

RÉSUMÉ

Proton transfer through membrane-bound ion channels is mediated by both water and polar residues of proteins, but the detailed molecular mechanism is challenging to determine. The tetrameric influenza A and B virus M2 proteins form canonical proton channels that use an HxxxW motif for proton selectivity and gating. The BM2 channel also contains a second histidine (His), H27, equidistant from the gating tryptophan, which leads to a symmetric H19xxxW23xxxH27 motif. The proton-dissociation constants (pKa's) of H19 in BM2 were found to be much lower than the pKa's of H37 in AM2. To determine if the lower pKa's result from H27-facilitated proton dissociation of H19, we have now investigated a H27A mutant of BM2 using solid-state NMR. 15N NMR spectra indicate that removal of the second histidine converted the protonation and tautomeric equilibria of H19 to be similar to the H37 behavior in AM2, indicating that the peripheral H27 is indeed the origin of the low pKa's of H19 in wild-type BM2. Measured interhelical distances between W23 sidechains indicate that the pore constriction at W23 increases with the H19 tetrad charge but is independent of the H27A mutation. These results indicate that H27 both accelerates proton dissociation from H19 to increase the inward proton conductance and causes the small reverse conductance of BM2. The proton relay between H19 and H27 is likely mediated by the intervening gating tryptophan through cation-π interactions. This relayed proton transfer may exist in other ion channels and has implications for the design of imidazole-based synthetic proton channels.


Sujet(s)
Dipeptides/métabolisme , Histidine/métabolisme , Spectroscopie par résonance magnétique/méthodes , Protons , Tryptophane/métabolisme , Protéines de la matrice virale/métabolisme , Protéines virales/métabolisme , Séquence d'acides aminés , Dipeptides/composition chimique , Dipeptides/génétique , Histidine/composition chimique , Histidine/génétique , Transport des ions , Modèles moléculaires , Mutation , Conformation des protéines , Tryptophane/composition chimique , Tryptophane/génétique , Protéines de la matrice virale/composition chimique , Protéines de la matrice virale/génétique , Protéines virales/composition chimique , Protéines virales/génétique
16.
Nanomaterials (Basel) ; 9(2)2019 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-30759838

RÉSUMÉ

The combined benefits of moisture-stable phosphonic acids and mesoporous silica materials (SBA-15 and MCM-41) as large-surface-area solid supports offer new opportunities for several applications, such as catalysis or drug delivery. We present a comprehensive study of a straightforward synthesis method via direct immobilization of several phosphonic acids and phosphoric acid esters on various mesoporous silicas in a Dean⁻Stark apparatus with toluene as the solvent. Due to the utilization of azeotropic distillation, there was no need to dry phosphonic acids, phosphoric acid esters, solvents, or silicas prior to synthesis. In addition to modeling phosphonic acids, immobilization of the important biomolecule adenosine monophosphate (AMP) on the porous supports was also investigated. Due to the high surface area of the mesoporous silicas, a possible catalytic application based on immobilization of an organocatalyst for an asymmetric aldol reaction is discussed.

17.
Structure ; 27(3): 537-544.e4, 2019 03 05.
Article de Anglais | MEDLINE | ID: mdl-30686667

RÉSUMÉ

The peptide ghrelin targets the growth hormone secretagogue receptor 1a (GHSR) to signal changes in cell metabolism and is a sought-after therapeutic target, although no structure is known to date. To investigate the structural basis of ghrelin binding to GHSR, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, site-directed mutagenesis, and Rosetta modeling. The use of saturation transfer difference NMR identified key residues in the peptide for receptor binding beyond the known motif. This information combined with assignment of the secondary structure of ghrelin in its receptor-bound state was incorporated into Rosetta using an approach that accounts for flexible binding partners. The NMR data and models revealed an extended binding surface that was confirmed via mutagenesis. Our results agree with a growing evidence of peptides interacting via two sites at G protein-coupled receptors.


Sujet(s)
Ghréline/composition chimique , Ghréline/métabolisme , Récepteurs à la ghréline/métabolisme , Animaux , Sites de fixation , Cellules COS , Chlorocebus aethiops , Cellules HEK293 , Humains , Spectroscopie par résonance magnétique , Modèles moléculaires , Mutagenèse dirigée , Liaison aux protéines , Conformation des protéines
18.
Chemphyschem ; 20(2): 295-301, 2019 01 21.
Article de Anglais | MEDLINE | ID: mdl-30471190

RÉSUMÉ

Cationic antimicrobial peptides (AMPs) are essential components of the innate immune system. They have attracted interest as novel compounds with the potential to treat infections associated with multi-drug resistant bacteria. In this study, we investigate piscidin 3 (P3), an AMP that was first discovered in the mast cells of hybrid striped bass. Prior studies showed that P3 is less active than its homolog piscidin 1 (P1) against planktonic bacteria. However, P3 has the advantage of being less toxic to mammalian cells and more active on biofilms and persister cells. Both P1 and P3 cross bacterial membranes and co-localize with intracellular DNA but P3 is more condensing to DNA while P1 is more membrane active. Recently, we showed that both peptides coordinate Cu2+ through an amino-terminal copper and nickel (ATCUN) motif. We also demonstrated that the bactericidal effects of P3 are linked to its ability to form radicals that nick DNA in the presence of Cu2+ . Since metal binding and membrane crossing by P3 is biologically important, we apply in this study solid-state NMR spectroscopy to uniformly 13 C-15 N-labeled peptide samples to structurally characterize the ATCUN motif of P3 bound to bilayers and coordinated to Ni2+ and Cu2+ . These experiments are supplemented with density functional theory calculations. Taken together, these studies refine the arrangement of not only the backbone but also side chain atoms of an AMP simultaneously bound to metal ions and phospholipid bilayers.


Sujet(s)
Peptides antimicrobiens cationiques/composition chimique , Cuivre/composition chimique , Double couche lipidique , Nickel/composition chimique , Résonance magnétique nucléaire biomoléculaire/méthodes , Phospholipides/composition chimique , Théorie de la fonctionnelle de la densité , Modèles moléculaires , Liaison aux protéines , Conformation des protéines
19.
Sci Bull (Beijing) ; 64(8): 516-523, 2019 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-36659741

RÉSUMÉ

Pentacoordinated Al (AlV) species in silica-alumina are promising to promote the formation of acid sites or act as surface defects for tailoring single-atom catalysts. However, pentahedral coordination (AlV) is rarely observed in conventionally prepared silica-alumina. Here, we show that high population and dispersion of AlV species on the surface of amorphous silica-alumina (ASA) can be achieved by means of flame spray pyrolysis. High resolution TEM/EDX, high magnetic-field NMR and DFT calculations are employed to characterize the structure of as-prepared ASAs. Solid-state 27Al multi-quantum MAS NMR experiments show that most of the AlV species are formed independently from the alumina phase and are accessible for guest molecules on the surface. Upon water adsorption, these AlV species are transformed to AlVI species, structurally similar to surface AlIV species, as confirmed by DFT calculations. The outstanding catalytic activity of as-synthesized ASA is demonstrated using the in situ H/D exchange reaction with deuterated benzene as an example. The AlV-rich ASA provides a much lower activation energy (∼30 kJ/mol) than that reported for zeolite H-ZSM-5 (∼60 kJ/mol). The superior catalytic performance is attributed to the high AlV content promoting the surface active sites in ASA. The knowledge gained on the synthesis of AlV-rich ASAs and the nature of aluminum coordination in these materials could pave the way to more efficient silica-alumina based catalysts.

20.
Proc Natl Acad Sci U S A ; 115(45): 11519-11524, 2018 11 06.
Article de Anglais | MEDLINE | ID: mdl-30333189

RÉSUMÉ

The host factor protein TRIM5α plays an important role in restricting the host range of HIV-1, interfering with the integrity of the HIV-1 capsid. TRIM5 triggers an antiviral innate immune response by functioning as a capsid pattern recognition receptor, although the precise mechanism by which the restriction is imposed is not completely understood. Here we used an integrated magic-angle spinning nuclear magnetic resonance and molecular dynamics simulations approach to characterize, at atomic resolution, the dynamics of the capsid's hexameric and pentameric building blocks, and the interactions with TRIM5α in the assembled capsid. Our data indicate that assemblies in the presence of the pentameric subunits are more rigid on the microsecond to millisecond timescales than tubes containing only hexamers. This feature may be of key importance for controlling the capsid's morphology and stability. In addition, we found that TRIM5α binding to capsid induces global rigidification and perturbs key intermolecular interfaces essential for higher-order capsid assembly, with structural and dynamic changes occurring throughout the entire CA polypeptide chain in the assembly, rather than being limited to a specific protein-protein interface. Taken together, our results suggest that TRIM5α uses several mechanisms to destabilize the capsid lattice, ultimately inducing its disassembly. Our findings add to a growing body of work indicating that dynamic allostery plays a pivotal role in capsid assembly and HIV-1 infectivity.


Sujet(s)
Protéines de capside/métabolisme , Capside/métabolisme , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/métabolisme , Protéines/métabolisme , Séquence d'acides aminés , Animaux , Sites de fixation , Capside/composition chimique , Capside/ultrastructure , Protéines de capside/composition chimique , Protéines de capside/génétique , Clonage moléculaire , Escherichia coli/génétique , Escherichia coli/métabolisme , Expression des gènes , Vecteurs génétiques/composition chimique , Vecteurs génétiques/métabolisme , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/ultrastructure , Humains , Macaca mulatta , Spectroscopie par résonance magnétique/méthodes , Simulation de dynamique moléculaire , Liaison aux protéines , Structure en hélice alpha , Structure en brin bêta , Motifs et domaines d'intéraction protéique , Protéines/composition chimique , Protéines/génétique , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Alignement de séquences , Similitude de séquences d'acides aminés , Ubiquitin-protein ligases
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE