Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 183
Filtrer
1.
Chin Clin Oncol ; 13(Suppl 1): AB060, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39295378

RÉSUMÉ

BACKGROUND: Autophagy is a self-renewing process of the cell having a dual role in gliomagenesis depending on the tumor stage. Several microRNAs play a key role in the regulation of autophagy and the outcome of cancer. We investigated the potential relevance of autophagy in gliomagenesis and survival by exploring the association of the basal gene expression of autophagy-associated markers LC3, ULK1/2, UVRAG, Beclin1, mTOR, UVRAG, PI3K, AKT, PTEN and their target microRNAs miR-126, miR-374, miR-21, miR-7, miR-204 and miR-100 in low- and high-grades of gliomas. METHODS: A total of 50 fresh glioma tissues were used for the extraction of RNA using TRIzol-Chloroform method and reverse transcribed cDNA. The cDNA was used to determine the expression of genes and microRNAs using quantitative real-time polymerase chain reaction (qPCR). Mann-Whitney U-test was used to determine the statistical significance. RESULTS: In high-grade glioma, increased expression of AKT and miR-21, coupled with reduced ULK2 and LC3 expression was distinctly observed. While correlation analysis identified a strong positive correlation between ULK2 and UVRAG, PTEN, miR-7, and miR-100 and a moderate positive correlation emerged between ULK2 and mTOR, miR-7, miR-30, miR-100, miR-204, and miR-374, also between miR-21 and miR-126 in low-grade glioma. Similarly, a positive correlation appeared between ULK2 and AKT, LC3, PI3K, PTEN, ULK1, VPS34, mTOR, Beclin1, UVRAG, miR-7 and miR-374. AKT positively correlated with LC3, PI3K, PTEN, ULK1, VPS34, mTOR, Beclin1, UVRAG, miR-7, miR-30, miR-204, miR-374, miR-126 and miR-21 weakly correlated with AKT and miR-30 in high-grade glioma. The low ULK2, UVRAG, and miR-374 expression group exhibited significantly poor overall survival in glioma, while miR-21 over-expression indicated a poor prognosis in glioma patients. CONCLUSIONS: This study provides comprehensive insights into the molecular landscape of gliomas, highlighting the dysregulation of autophagy genes ULK2, and UVRAG and the associated miR-21, miR-126 and miR-374 as potential prognostic biomarkers and emphasizing their unique significance in shaping survival outcomes in gliomas patients.


Sujet(s)
Autophagie , Gliome , microARN , Humains , Gliome/génétique , Gliome/anatomopathologie , microARN/génétique , microARN/métabolisme , Mâle , Pronostic , Femelle , Adulte d'âge moyen , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Adulte , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/métabolisme , Sujet âgé , Protéines suppresseurs de tumeurs
2.
Front Oncol ; 14: 1440612, 2024.
Article de Anglais | MEDLINE | ID: mdl-39267821

RÉSUMÉ

In most patients with advanced prostate cancer treated with hormonal therapy, androgen independence eventually emerges, leading to death. Androgen receptor signalling remains an important prostate cancer driver, even in the advanced disease stage. MicroRNAs (miRs), non-coding RNAs that regulate gene expression by inhibiting translation and/or promoting degradation of target mRNAs, can act as tumour suppressors or "oncomiRs" and modulate tumour growth. Because of their stability in tissues and in circulation, and their specificity, microRNAs have emerged as potential biomarkers, as well as therapeutic targets in cancer. We identified miR-1271-5p as an androgen receptor modulatory microRNA and we show it can promote hormone sensitive prostate cancer cell growth. Inhibition or overexpression of miR-1271-5p levels affects prostate cancer cell growth, apoptosis and expression of both androgen receptor target genes and other genes that are likely direct targets, dependent on androgen receptor status, and tumour stage. We conclude that miR-1271-5p has the potential to drive progression of hormone-dependent disease and that the use of specific inhibitors of miR-1271-5p may have therapeutic potential in prostate cancer.

3.
Med Oncol ; 41(9): 222, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39120634

RÉSUMÉ

Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.


Sujet(s)
microARN , Phosphatidylinositol 3-kinases , Protéines proto-oncogènes c-akt , Transduction du signal , Tumeurs du sein triple-négatives , Humains , Tumeurs du sein triple-négatives/génétique , Tumeurs du sein triple-négatives/métabolisme , Tumeurs du sein triple-négatives/anatomopathologie , microARN/génétique , Phosphatidylinositol 3-kinases/métabolisme , Phosphatidylinositol 3-kinases/génétique , Transduction du signal/génétique , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Femelle , Régulation de l'expression des gènes tumoraux
4.
Cells ; 13(13)2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38994952

RÉSUMÉ

Endometrial cancer (EC) is a significant cause of cancer-related deaths in women. MicroRNAs (miRs) play a role in cancer development, acting as oncogenes or tumor suppressors. This study evaluated the diagnostic potential of hsa-miR-185-5p and hsa-miR-191-5p in EC and their correlation with clinical and histopathological features. A cross-sectional study analyzed formalin-fixed, paraffin-embedded tissue samples from 59 patients: 18 with EC, 21 with endometrial hyperplasia (EH), 17 with normal endometrium (NE), and 3 with endometrial polyps (EPs). Quantitative reverse transcription-polymerase chain reaction and TaqMan probes were used for miR expression analysis. The Shapiro-Wilk test was used to analyze the normal distribution of the data. Subsequently, parametric or non-parametric tests were used to evaluate the associations between the expression levels of each miR and clinical parameters. Both miRs were underexpressed in some precursor and malignant lesions compared to certain NE subtypes and benign lesions. Specifically, hsa-miR-185-5p showed underexpression in grade 3 EC compared to some NE and EH subtypes (FC: -57.9 to -8.5, p < 0.05), and hsa-miR-191-5p was underexpressed in EH and EC compared to secretory endometrium and EPs (FC: -4.2 to -32.8, p < 0.05). SETD1B, TJP1, and MSI1 were common predicted target genes. In conclusion, hsa-miR-185-5p and hsa-miR-191-5p are underexpressed in EC tissues, correlating with histopathological grades, highlighting their potential as diagnostic biomarkers and their role as tumor suppressors in EC.


Sujet(s)
Tumeurs de l'endomètre , Endomètre , Régulation de l'expression des gènes tumoraux , microARN , Humains , Femelle , microARN/génétique , microARN/métabolisme , Tumeurs de l'endomètre/génétique , Tumeurs de l'endomètre/anatomopathologie , Tumeurs de l'endomètre/métabolisme , Endomètre/métabolisme , Endomètre/anatomopathologie , Adulte d'âge moyen , Études transversales , Grading des tumeurs , Adulte , Sujet âgé , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme
5.
Genetics ; 227(4)2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-38963803

RÉSUMÉ

Radiotherapy is a key treatment option for a wide variety of human tumors, employed either alone or alongside with other therapeutic interventions. Radiotherapy uses high-energy particles to destroy tumor cells, blocking their ability to divide and proliferate. The effectiveness of radiotherapy is due to genetic and epigenetic factors that determine how tumor cells respond to ionizing radiation. These factors contribute to the establishment of resistance to radiotherapy, which increases the risk of poor clinical prognosis of patients. Although the mechanisms by which tumor cells induce radioresistance are unclear, evidence points out several contributing factors including the overexpression of DNA repair systems, increased levels of reactive oxygen species, alterations in the tumor microenvironment, and enrichment of cancer stem cell populations. In this context, dysregulation of microRNAs or miRNAs, critical regulators of gene expression, may influence how tumors respond to radiation. There is increasing evidence that miRNAs may act as sensitizers or enhancers of radioresistance, regulating key processes such as the DNA damage response and the cell death signaling pathway. Furthermore, expression and activity of miRNAs have shown informative value in overcoming radiotherapy and long-term radiotoxicity, revealing their potential as biomarkers. In this review, we will discuss the molecular mechanisms associated with the response to radiotherapy and highlight the central role of miRNAs in regulating the molecular mechanisms responsible for cellular radioresistance. We will also review radio-miRs, radiotherapy-related miRNAs, either as sensitizers or enhancers of radioresistance that hold promise as biomarkers or pharmacological targets to sensitize radioresistant cells.


Sujet(s)
microARN , Tumeurs , Radiotolérance , microARN/génétique , microARN/métabolisme , Humains , Radiotolérance/génétique , Tumeurs/radiothérapie , Tumeurs/génétique , Tumeurs/métabolisme , Réparation de l'ADN , Animaux , Régulation de l'expression des gènes tumoraux/effets des radiations , Altération de l'ADN
6.
Article de Anglais | MEDLINE | ID: mdl-38919080

RÉSUMÉ

Traumatic and inherited cataract spiking blindness is caused by accumulated deposition of mutant eye lens protein or lens microarchitecture alteration. A traumatic cataract is a clouding of the eye's natural lens that occurs as a result of physical trauma to the eye. This trauma can be caused by various incidents such as blunt force injury, penetration by a foreign object, or a significant impact on the eye area. Inheritance cataracts or hereditary cataracts are cataracts that are genetically inherited from one or both parents. Complications following cataract surgery encompass various adverse outcomes such as inflammation, infection, bleeding, swelling, drooping eyelid, glaucoma, secondary cataracts, and complete loss of vision. The main purpose of the review is to highlight common pathophysiology associated with traumatic and inherited cataracts. Also, the review discusses diagnosis and treatment strategies for such cataract types by targeting their key pathological hallmarks. γD-crystallin plays a crucial role in maintaining the optical properties of the lens during the life span of an individual. Carbamazepine, Resveratrol, and Myricetin (CRM) are effectively bound at the γD-crystallin binding site and thereby could minimize misfolding and aggregation of γD-crystallin. miR-202, miR-193b, miR-135a, miR365, and miR-376a had the highest levels of abundance in the aqueous humor of individuals diagnosed with cataracts. The validation of these miRs will provide more insights into their functional roles and may be used for diagnostic purposes. The effective CRM combination as a multidrug formulation may postpone both traumatic and inherited cataracts and protect the eye from blindness.

7.
Front Oncol ; 14: 1411539, 2024.
Article de Anglais | MEDLINE | ID: mdl-38939334

RÉSUMÉ

Background: Pervasive transcription of the eukaryotic genome generates noncoding RNAs (ncRNAs), which regulate messenger RNA (mRNA) stability and translation. MicroRNAs (miRNAs/miRs) represent a group of well-studied ncRNAs that maintain cellular homeostasis. Thus, any aberration in miRNA expression can cause diseases, including carcinogenesis. According to microRNA microarray analyses, intronic miR-617 is significantly downregulated in oral squamous cell carcinoma (OSCC) tissues compared to normal oral tissues. Methods: The miR-617-mediated regulation of DDX27 is established by performing experiments on OSCC cell lines, patient samples, and xenograft nude mice model. Overexpression plasmid constructs, bisulphite sequencing PCR, bioinformatics analyses, RT-qPCR, Western blotting, dual-luciferase reporter assay, and cell-based assays are utilized to delineate the role of miR-617 in OSCC. Results: The present study shows that miR-617 has an anti-proliferative role in OSCC cells and is partly downregulated in OSCC cells due to the hypermethylation of its independent promoter. Further, we demonstrate that miR-617 upregulates DDX27 gene by interacting with its promoter in a dose-dependent and sequence-specific manner, and this interaction is found to be biologically relevant in OSCC patient samples. Subsequently, we show that miR-617 regulates cell proliferation, apoptosis, and anchorage-independent growth of OSCC cells by modulating DDX27 levels. Besides, our study shows that miR-617 exerts its effects through the PI3K/AKT/MTOR pathway via regulating DDX27 levels. Furthermore, the OSCC xenograft study in nude mice shows the anti-tumorigenic potential of miR-617. Conclusion: miR-617-mediated upregulation of DDX27 is a novel mechanism in OSCC and underscores the therapeutic potential of synthetic miR-617 mimics in cancer therapeutics. To the best of our knowledge, miR-617 is the 15th example of a miRNA that upregulates the expression of a protein-coding gene by interacting with its promoter.

8.
Int J Cardiol ; 410: 132220, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38815672

RÉSUMÉ

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a widespread hereditary cardiac pathology characterized by thickened heart walls and rearrangement of cardiomyocytes. Despite extensive research, the mechanisms underlying HCM development remain poorly understood, impeding the development of effective therapeutic and diagnostic strategies. Recent studies have suggested a polygenic nature of HCM development alongside monogenic forms. Transcriptomic profiling is a valuable tool for investigating such diseases. In this study, we propose a novel approach to study regulatory microRNAs (miRNAs) in the context of HCM, utilizing state-of-the-art data analysis tools. METHODS AND RESULTS: Our method involves applying the Monte Carlo simulation and machine learning algorithm to transcriptomic data to generate high-capacity classifiers for HCM. From these classifiers, we extract key genes crucial for their performance, resulting in the identification of 16 key genes. Subsequently, we narrow down the pool of miRNAs by selecting those that may target the greatest number of key genes within the best models. We particularly focused on miR-124-3p, which we validated to have an association with HCM on an independent dataset. Subsequent investigation of its function revealed involvement of miR-124-3p in the RhoA signaling pathway. CONCLUSIONS: In this study we propose a new approach to analyze transcriptomic data to search for microRNAs associated with a disease. Using this approach for transcriptomic profiling data of patients with HCM, we identified miR-124-3p as a potential regulator of the RhoA signaling pathway in the pathogenesis of HCM.


Sujet(s)
Cardiomyopathie hypertrophique , Apprentissage machine , microARN , microARN/génétique , Cardiomyopathie hypertrophique/génétique , Cardiomyopathie hypertrophique/diagnostic , Humains , Marqueurs biologiques/métabolisme , Analyse de profil d'expression de gènes/méthodes , Mâle , Femelle
9.
J Biophotonics ; 17(6): e202300391, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38581192

RÉSUMÉ

Mid-infrared laser spectroscopy was used to investigate common bacteria encountered in biopharmaceutical industries. The study involved the detection of bacteria using quantum cascade laser spectroscopy coupled to a grazing angle probe (QCL-GAP). Substrates similar to surfaces commonly used in biopharmaceutical industries were used as support media for the samples. Reflectance measurements were assisted by Multivariate Analysis (MVA) to assemble a powerful spectroscopic technique with classification and identification resources. The species analyzed, Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus luteus, were used to challenge the technique's capability to discriminate from microorganisms of the same family. Principal Components Analysis and Partial Least Squares-Discriminant Analysis differentiated between the bacterial species, using QCL-GAP-MVA as the reference. Spectral differences in the bacterial membrane were used to determine if these microorganisms were present in the samples analyzed. Results herein provided effective discrimination for the bacteria under study with high sensitivity and specificity.


Sujet(s)
Lasers , Analyse multifactorielle , Analyse en composantes principales , Staphylococcus epidermidis/isolement et purification , Staphylococcus aureus/isolement et purification , Micrococcus luteus/isolement et purification , Microbiologie industrielle , Analyse spectrale , Analyse discriminante
10.
Xenobiotica ; : 1-19, 2024 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-38568505

RÉSUMÉ

1. Occupational exposure to 4,4'-methylene diphenyl diisocyanate (MDI) is associated with occupational asthma (OA) development. Alveolar macrophage-induced recruitment of immune cells to the lung microenvironment plays an important role during asthma pathogenesis. Previous studies identified that MDI/MDI-glutathione (GSH)-exposure downregulates endogenous hsa-miR-206-3p/hsa-miR-381-3p. Our prior report shows that alternatively activated (M2) macrophage-associated markers/chemokines are induced by MDI/MDI-GSH-mediated Krüppel-Like Factor 4 (KLF4) upregulation in macrophages and stimulates immune cell chemotaxis. However, the underlying molecular mechanism(s) by which MDI/MDI-GSH upregulates KLF4 remain unclear.2. Following MDI-GSH exposure, microRNA(miR)-inhibitors/mimics or plasmid transfection, endogenous hsa-miR-206-3p/hsa-miR-381-3p, KLF4, or M2 macrophage-associated markers (CD206, TGM2), and chemokines (CCL17, CCL22, CCL24) were measured by either RT-qPCR, western blot, or luciferase assay.3. MDI-GSH exposure downregulates hsa-miR-206-3p/hsa-miR-381-3p by 1.46- to 9.75-fold whereas upregulates KLF4 by 1.68- to 1.99-fold, respectively. In silico analysis predicts binding between hsa-miR-206-3p/hsa-miR-381-3p and KLF4. Gain- and loss-of-function, luciferase reporter assays and RNA-induced silencing complex-immunoprecipitation (RISC-IP) studies confirm the posttranscriptional regulatory roles of hsa-miR-206-3p/hsa-miR-381-3p and KLF4 in macrophages. Furthermore, hsa-miR-206-3p/hsa-miR-381-3p regulate the expression of M2 macrophage-associated markers and chemokines via KLF4.4. In conclusion, hsa-miR-206-3p/hsa-miR-381-3p play a major role in regulation of MDI/MDI-GSH-induced M2 macrophage-associated markers and chemokines by targeting the KLF4 transcript, and KLF4-mediated regulation in macrophages.

11.
Cell Biochem Funct ; 42(3): e4006, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38622913

RÉSUMÉ

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long noncoding RNA (lncRNA) that is widely expressed in a variety of mammalian cell types. Altered expression levels of the lncRNA NEAT1 have been reported in liver-related disorders including cancer, fatty liver disease, liver fibrosis, viral hepatitis, and hepatic ischemia. lncRNA NEAT1 mostly acts as a competing endogenous RNA (ceRNA) to sponge various miRNAs (miRs) to regulate different functions. In regard to hepatic cancers, the elevated expression of NEAT1 has been reported to have a relation with the proliferation, migration, angiogenesis, apoptosis, as well as epithelial-mesenchymal transition (EMT) of cancer cells. Furthermore, NEAT1 upregulation has contributed to the pathogenesis of other liver diseases such as fibrosis. In this review, we summarize and discuss the molecular mechanisms by which NEAT1 contributes to liver-related disorders including acute liver failure, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, and liver carcinoma, providing novel insights and introducing NEAT1 as a potential therapeutic target in these diseases.


Sujet(s)
microARN , Stéatose hépatique non alcoolique , ARN long non codant , Animaux , Humains , Prolifération cellulaire/génétique , Fibrose , Cirrhose du foie/génétique , Mammifères/génétique , Mammifères/métabolisme , microARN/génétique , microARN/métabolisme , Stéatose hépatique non alcoolique/génétique , ARN long non codant/génétique , ARN long non codant/métabolisme
12.
Eur J Pharmacol ; 970: 176490, 2024 May 05.
Article de Anglais | MEDLINE | ID: mdl-38492876

RÉSUMÉ

Neurodegenerative diseases (NDDs) are a collection of incapacitating disorders in which neuroinflammation and neuronal apoptosis are major pathological consequences due to oxidative stress. Neuroinflammation manifests in the impacted cerebral areas as a result of pro-inflammatory cytokines stimulating the Janus Kinase2 (JAK2)/Signal Transducers and Activators of Transcription3 (STAT3) pathway via neuronal cells. The pro-inflammatory cytokines bind to their respective receptor in the neuronal cells and allow activation of JAK2. Activated JAK2 phosphorylates tyrosines on the intracellular domains of the receptor which recruit the STAT3 transcription factor. The neuroinflammation issues are exacerbated by the active JAK2/STAT3 signaling pathway in conjunction with additional transcription factors like nuclear factor kappa B (NF-κB), and the mammalian target of rapamycin (mTOR). Neuronal apoptosis is a natural process made worse by persistent neuroinflammation and immunological responses via caspase-3 activation. The dysregulation of micro-RNA (miR) expression has been observed in the consequences of neuroinflammation and neuronal apoptosis. Neuroinflammation and neuronal apoptosis-associated gene amplification may be caused by dysregulated miR-mediated aberrant phosphorylation of JAK2/STAT3 signaling pathway components. Therefore, JAK2/STAT3 is an attractive therapeutic target for NDDs. Numerous synthetic and natural small molecules as JAK2/STAT3 inhibitors have therapeutic advances against a wide range of diseases, and many are now in human clinical studies. This review explored the interactive role of the JAK2/STAT3 signaling system with key pathological factors during the reinforcement of NDDs. Also, the clinical trial data provides reasoning evidence about the possible use of JAK2/STAT3 inhibitors to abate neuroinflammation and neuronal apoptosis in NDDs.


Sujet(s)
microARN , Maladies neurodégénératives , Humains , Maladies neurodégénératives/traitement médicamenteux , Maladies neuro-inflammatoires , Kinase Janus-2/métabolisme , Facteurs de transcription/métabolisme , Cytokines/métabolisme , microARN/génétique , Facteur de transcription STAT-3/métabolisme , Apoptose/génétique
13.
Mol Ther Nucleic Acids ; 35(2): 102160, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38495845

RÉSUMÉ

Reprogramming scar fibroblasts into cardiomyocytes has been proposed to reverse the damage associated with myocardial infarction. However, the limited improvement in cardiac function calls for enhanced strategies. We reported enhanced efficacy of our miR reprogramming cocktail miR combo (miR-1, miR-133a, miR-208a, and miR-499) via RNA-sensing receptor stimulation. We hypothesized that we could combine RNA-sensing receptor activation with fibroblast reprogramming by chemically modifying miR combo. To test the hypothesis, miR combo was modified to enhance interaction with the RNA-sensing receptor Rig1 via the addition of a 5'-triphosphate (5'ppp) group. Importantly, when compared with unmodified miR combo, 5'ppp-modified miR combo markedly improved reprogramming efficacy in vitro. Enhanced reprogramming efficacy correlated with a type-I interferon immune response with strong and selective secretion of interferon ß (IFNß). Antibody blocking studies and media replacement experiments indicated that 5'ppp-miR combo utilized IFNß to enhance fibroblast reprogramming efficacy. In conclusion, miRs can acquire powerful additional roles through chemical modification that potentially increases their clinical applications.

14.
Front Microbiol ; 15: 1349535, 2024.
Article de Anglais | MEDLINE | ID: mdl-38516020

RÉSUMÉ

MicroRNAs (miRs) are a group of small, 17-25 nucleotide, non-coding RNA that regulate gene expression at the post-transcriptional level. To date, little is known about the molecular signatures of regulatory interactions between miRs and apoptosis and oxidative stress in viral diseases. Lagovirus europaeus is a virus that causes severe disease in rabbits (Oryctolagus cuniculus) called Rabbit Hemorrhagic Disease (RHD) and belongs to the Caliciviridae family, Lagovirus genus. Within Lagovirus europaeus associated with RHD, two genotypes (GI.1 and GI.2) have been distinguished, and the GI.1 genotype includes four variants (GI.1a, GI.1b, GI.1c, and GI.1d). The study aimed to assess the expression of miRs and their target genes involved in apoptosis and oxidative stress, as well as their potential impact on the pathways during Lagovirus europaeus-two genotypes (GI.1 and GI.2) infection of different virulences in four tissues (liver, lung, kidneys, and spleen). The expression of miRs and target genes related to apoptosis and oxidative stress was determined using quantitative real-time PCR (qPCR). In this study, we evaluated the expression of miR-21 (PTEN, PDCD4), miR-16b (Bcl-2, CXCL10), miR-34a (p53, SIRT1), and miRs-related to oxidative stress-miR-122 (Bach1) and miR-132 (Nfr-2). We also examined the biomarkers of both processes (Bax, Bax/Bcl-2 ratio, Caspase-3, PARP) and HO-I as biomarkers of oxidative stress. Our report is the first to present the regulatory effects of miRs on apoptosis and oxidative stress genes in rabbit infection with Lagovirus europaeus-two genotypes (GI.1 and GI.2) in four tissues (liver, lungs, kidneys, and spleen). The regulatory effect of miRs indicates that, on the one hand, miRs can intensify apoptosis (miR-16b, miR-34a) in the examined organs in response to a viral stimulus and, on the other hand, inhibit (miR-21), which in both cases may be a determinant of the pathogenesis of RHD and tissue damage. Biomarkers of the Bax and Bax/Bcl-2 ratio promote more intense apoptosis after infection with the Lagovirus europaeus GI.2 genotype. Our findings demonstrate that miR-122 and miR-132 regulate oxidative stress in the pathogenesis of RHD, which is associated with tissue damage. The HO-1 biomarker in the course of rabbit hemorrhagic disease indicates oxidative tissue damage. Our findings show that miR-21, miR-16b, and miR-34a regulate three apoptosis pathways. Meanwhile, miR-122 and miR-132 are involved in two oxidative stress pathways.

15.
Adv Clin Chem ; 119: 71-116, 2024.
Article de Anglais | MEDLINE | ID: mdl-38514212

RÉSUMÉ

Cardiac fibrosis, associated with right heart dysfunction, results in significant morbidity and mortality. Stimulated by various cellular and humoral stimuli, cardiac fibroblasts, macrophages, CD4+ and CD8+ T cells, mast and endothelial cells promote fibrogenesis directly and indirectly by synthesizing numerous profibrotic factors. Several systems, including the transforming growth factor-beta and the renin-angiotensin system, produce type I and III collagen, fibronectin and α-smooth muscle actin, thus modifying the extracellular matrix. Although magnetic resonance imaging with gadolinium enhancement remains the gold standard, the use of circulating biomarkers represents an inexpensive and attractive means to facilitate detection and monitor cardiovascular fibrosis. This review explores the use of protein and nucleic acid (miRNAs) markers to better understand underlying pathophysiology as well as their role in the development of therapeutics to inhibit and potentially reverse cardiac fibrosis.


Sujet(s)
Produits de contraste , Myocarde , Humains , Myocarde/anatomopathologie , Produits de contraste/métabolisme , Cellules endothéliales , Gadolinium/métabolisme , Fibrose
16.
Lipids Health Dis ; 23(1): 41, 2024 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-38331795

RÉSUMÉ

Liver fat storage, also called hepatic steatosis, is increasingly common and represents a very frequent diagnosis in the medical field. Excess fat is not without consequences. In fact, hepatic steatosis contributes to the progression toward liver fibrosis. There are two main types of fatty liver disease, alcoholic fatty liver disease (AFLD) and nonalcoholic fatty liver disease (NAFLD). Although AFLD and NAFLD are similar in their initial morphological features, both conditions involve the same evolutive forms. Moreover, there are various common mechanisms underlying both diseases, including alcoholic liver disease and NAFLD, which are commonalities. In this Review, the authors explore similar downstream signaling events involved in the onset and progression of the two entities but not completely different entities, predominantly focusing on the gut microbiome. Downstream molecular events, such as the roles of sirtuins, cytokeratins, adipokines and others, should be considered. Finally, to complete the feature, some new tendencies in the therapeutic approach are presented.


Sujet(s)
Stéatose hépatique alcoolique , Stéatose hépatique non alcoolique , Humains , Stéatose hépatique non alcoolique/diagnostic , Foie , Cirrhose du foie , Transduction du signal
17.
Mar Environ Res ; 195: 106374, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38277816

RÉSUMÉ

The occurrence of Phaeocystis globosa, a harmful algal bloom species in Chinese coastal waters, has significant impacts on marine organisms and poses a threat to the safety of coastal nuclear power plants. Although previous studies have established a close association between P. globosa blooms and the bacterial community, the relationship between the microeukaryotic community and P. globosa blooms remains poorly understood. In this study, the variations in the microeukaryotic community resulting from a P. globosa bloom were analyzed using 18S rRNA gene amplicon sequencing. The results indicated that the diversity of the microeukaryotic community during the bloom phase was significantly higher than that during the dissipation phase. The microeukaryotic community compositions varied significantly between the two phases of the P. globosa bloom. During the bloom phase, the dominant microeukaryotic was Viridiplantae, which was then replaced by Dinoflagellata during the dissipation phase. Co-occurrence network analysis showed that the relationship among the microeukaryotic community during the bloom phase was more complex than that during the dissipation phase, and the keystone taxa varied as the bloom progressed. Additionally, microeukaryotic community assembly was primarily driven by stochastic processes during the bloom phase based on the ß-nearest taxon distance, whereas it was driven by both deterministic processes and stochastic processes during the dissipation phase. Overall, our findings provide novel insight into the mechanisms and interactions involved in microeukaryotic community dynamics in environments disturbed by P. globosa blooms.


Sujet(s)
Haptophyta , Baies (géographie) , Prolifération d'algues nuisibles , Organismes aquatiques , Bactéries
18.
Cell Mol Life Sci ; 81(1): 55, 2024 Jan 23.
Article de Anglais | MEDLINE | ID: mdl-38261097

RÉSUMÉ

To investigate the mechanism(s) underlying the expression of primate-specific microRNAs (miRs), we sought DNA regulatory elements and proteins mediating expression of the primate-specific hsa-miR-608 (miR-608), which is located in the SEMA4G gene and facilitates the cholinergic blockade of inflammation by targeting acetylcholinesterase mRNA. 'Humanized' mice carrying pre-miR-608 flanked by 250 bases of endogenous sequences inserted into the murine Sema4g gene successfully expressed miR-608. Moreover, by flanking miR-608 by shortened fragments of its human genome region we identified an active independent promoter within the 150 nucleotides 5' to pre-miR-608, which elevated mature miR-608 levels by 100-fold in transfected mouse- and human-originated cells. This highlighted a regulatory role of the 5' flank as enabling miR-608 expression. Moreover, pull-down of the 150-base 5' sequence revealed its interaction with ribosomal protein L24 (RPL24), implicating an additional mechanism controlling miR-608 levels. Furthermore, RPL24 knockdown altered the expression of multiple miRs, and RPL24 immunoprecipitation indicated that up- or down-regulation of the mature miRs depended on whether their precursors bind RPL24 directly. Finally, further tests showed that RPL24 interacts directly with DDX5, a component of the large microprocessor complex, to inhibit miR processing. Our findings reveal that RPL24, which has previously been shown to play a role in miR processing in Arabidopsis thaliana, has a similar evolutionarily conserved function in miR biogenesis in mammals. We thus characterize a novel extra-ribosomal role of RPL24 in primate miR regulation.


Sujet(s)
microARN , Protéines ribosomiques , Animaux , Humains , Souris , Acetylcholinesterase , microARN/génétique , Primates , Protéines ribosomiques/génétique
19.
PNAS Nexus ; 2(11): pgad332, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37954154

RÉSUMÉ

In many plant species, flower stigma secretions are important in early stages of sexual reproduction. Previous chemical analysis and proteomic characterization of these exudates provided insights into their biological function. Nevertheless, the presence of nucleic acids in the stigma exudates has not been previously reported. Here, we studied the stigma exudates of Pyrus communis, Pyrus pyrifolia, and Pyrus syriaca and showed them to harbor extracellular RNAs of various sizes. RNA sequencing revealed, for the first time, the presence of known Rosaceae mature microRNAs (miRs), also abundant in the stigma source tissue. Predicted targets of the exudate miRs in the Arabidopsis thaliana genome include genes involved in various biological processes. Several of these genes are pollen transcribed, suggesting possible involvement of exudate miRs in transcriptional regulation of the pollen. Moreover, extracellular miRs can potentially act across kingdoms and target genes of stigma interacting organisms/microorganisms, thus opening novel applicative avenues in Horticulture.

20.
Cells ; 12(13)2023 06 26.
Article de Anglais | MEDLINE | ID: mdl-37443754

RÉSUMÉ

Thyroid carcinomas are growing malignancies worldwide. They encompass several diagnostic categories with varying degrees of dedifferentiation. Focal adhesion kinase is involved in cellular communication and locomotion. It is regulated on a posttranscriptional level by miR-7, miR-135a, and miR-138 and on a posttranslational level by autophosphorylation at Y397 (pY397-FAK). We related regulators of FAK with histologic dedifferentiation, clinicopathological factors, and differential diagnosis in the thyroid neoplasia spectrum. We classified 82 cases into 5 groups with increasing aggressiveness: healthy tissue, follicular and classical variants of papillary thyroid carcinoma (PTC), dedifferentiated PTC, and anaplastic carcinoma. MiRs were analyzed by RT-qPCR. Protein expression of pY397-FAK was analyzed by immunohistochemistry (separately in the membrane, cytoplasm, and nuclear compartment) and Western blot. All three miRs were upregulated in healthy tissue compared to malignant, while pY397-FAK was downregulated. MiRs and pY397-FAK were not mutually correlated. MiR-135a-5p was decreasing while membranous and cytoplasmic pY397-FAK increased with dedifferentiation. Neither miR correlated with clinicopathological factors. MiR-135a-5p, miR-138-5p, and membranous and cytoplasmic pY397-FAK discriminated the follicular from the classical variant of PTC. Disturbances of FAK regulation on different levels contribute to neoplastic dedifferentiation. pY397-FAK exerts its oncogenic role in the membrane and cytoplasm. Diagnostically, miRs-135a-5p, miR-138-5p, and membranous and cytoplasmic pY397-FAK differentiated between classical and follicular PTC.


Sujet(s)
microARN , Tumeurs de la thyroïde , Humains , Tumeurs de la thyroïde/métabolisme , microARN/génétique , microARN/métabolisme , Focal adhesion protein-tyrosine kinases , Cancer papillaire de la thyroïde/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE