Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nanotechnology ; 35(32)2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38648780

RÉSUMÉ

Flexible piezoresistive pressure sensors are gaining significant attention, particularly in the realm of flexible wearable electronic skin. Here, a flexible piezoresistive pressure sensor was developed with a broad sensing range and high sensitivity. We achieved this by curing polydimethylsiloxane (PDMS) on sandpaper, creating a PDMS film as the template with a micro-protrusion structure. The core sensing layer was formed using a composite of silver nanowires (AgNWs) and waterborne polyurethane (WPU) with a similar micro-protrusion structure. The sensor stands out with its exceptional sensitivity, showing a value of 1.04 × 106kPa-1with a wide linear range from 0 to 27 kPa. It also boasts a swift response and recovery time of 160 ms, coupled with a low detection threshold of 17 Pa. Even after undergoing more than 1000 cycles, the sensor continues to deliver stable performance. The flexible piezoresistive pressure sensor based on AgNWs/WPU composite film (AWCF) can detect small pressure changes such as pulse, swallowing, etc, which indicates that the sensor has great application potential in monitoring human movement and flexible wearable electronic skin.


Sujet(s)
Polydiméthylsiloxanes , Nanofils , Polyuréthanes , Pression , Argent , Dispositifs électroniques portables , Polyuréthanes/composition chimique , Nanofils/composition chimique , Argent/composition chimique , Humains , Polydiméthylsiloxanes/composition chimique , Monitorage physiologique/instrumentation , Monitorage physiologique/méthodes , Mouvement
2.
J Colloid Interface Sci ; 617: 478-488, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-35290805

RÉSUMÉ

In recent years, flexible high-performance piezoresistive pressure sensors have attracted considerable attention for the important application potential in the emerging fields of smart robots, wearable electronics and electronic skin. Herein, inspired by human skin, a new strategy was proposed for the fabrication of a double-layer piezoresistive pressure sensor with wide sensing range and high sensitivity. It was based on the utilization of sandpaper as template and MXene for the constructions of micro-protrusion rough surface on polydimethylsiloxane film and electrically conductive pathways, respectively. The prepared sensor demonstrated high sensitivity of 2.6 kPa-1 in wide linear range of 0-30 kPa, fast response/recovery time of 40/40 ms and excellent repeatability. Importantly, the sensor was successfully applied for the real-time detection of radial artery heart rate, limb movement, handwriting and vocal cord vocalization. Moreover, the integrated device by the sensors had the capability of identifying and visualizing spatial pressure distribution. The findings conceivably stand out a new methodology to prepare flexible high-performance piezoresistive pressure sensors for wearable electronics, human-computer interaction, intelligent robots and health monitoring.


Sujet(s)
Polydiméthylsiloxanes , Dispositifs électroniques portables , Humains , Déplacement , Mouvement
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE