Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.334
Filtrer
1.
Mol Pharm ; 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39088690

RÉSUMÉ

Nanoparticle-loaded dissolving microneedles (DMNs) have attracted increasing attention due to their ability to provide high drug loading, adjustable drug release behavior, and enhanced therapeutic efficiency. However, such delivery systems still face unsatisfied drug delivery efficiency due to insufficient driving force to promote nanoparticle penetration and the lack of in vivo fate studies to guide formulation design. Herein, an aggregation-caused quenching (ACQ) probe (P4) was encapsulated in l-arginine (l-Arg)-based nanomicelles, which was further formulated into nitric oxide (NO)-propelled nanomicelle-integrated DMNs (P4/l-Arg NMs@DMNs) to investigate their biological fate. The P4 probe could emit intense fluorescence signals in intact nanomicelles, while quenching with the dissociation of nanomicelles, providing a "distinguishable" method for tracking the fate of nanomicelles at a different status. l-Arg was demonstrated to self-generate NO under the tumor microenvironment with excessive reactive oxygen species (ROS), providing a pneumatic force to promote the penetration of nanomicelles in both three-dimensional (3D)-cultured tumor cells and melanoma-bearing mice. Compared with passive microneedles (P4 NMs@DMNs) without a NO propellant, the P4/l-Arg NMs@DMNs possessed a good NO production performance and higher nanoparticle penetration capacity. In conclusion, this study offered an ACQ probe-based biological fate tracking approach to demonstrate the potential of NO-propelled nanoparticle-loaded DMNs in penetration enhancement for topical tumor therapy.

2.
Biosens Bioelectron ; 263: 116590, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39096764

RÉSUMÉ

Diabetes is a chronic disease with significant complications, necessitating regular treatment and checkups, which can be costly and time-consuming for patients. To address this, we developed the Sliding Microneedle (MN)-Lateral flow immunoassay strip (LFIAs) device that combines the advantages of MNs and LFIAs to detect IL-6, an independent biomarker for diabetes complications. This device offers rapid and highly sensitive detection of IL-6 by extracting interstitial fluid (ISF) through MNs and transferring it to LFIAs. The stainless MN, embedded in the 3D-printed Sliding MN-LFIAs device, was inserted into the skin at a 20° angle, minimizing blood contamination risk. With a filter paper attached to the MN surface, the device collected 4.65 ± 0.05 µL of ISF containing IL-6 within 90 s. The ISF was then transferred to the LFIAs using a running buffer. After a 15-min reaction, silver enhancement (SE) treatment was applied, allowing for the highly sensitive and specific detection of IL-6 at 102 pg/mL concentrations. The Sliding MN-LFIAs device successfully distinguished between normal and diabetic rat models, demonstrating its potential as an effective tool for detecting diabetes complications quickly and affordably.

3.
Int J Pharm X ; 8: 100267, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39055743

RÉSUMÉ

Glabridin (Gla) has been reported to have significant effects in scar treatment, and however, the water insolubility of Gla leads to its poor transdermal absorption ability, which affects its bioactivities. Therefore, we attempted to prepare the Gla dissolving microneedles (Gla-MN) to improve the absorbtion of Gla. After investigation of the 3 factors including the needle tip matrix concentration, the prescription concentration of backing material, and the dissolution method of Gla, we finally determined the process parameters of 10% hyaluronic acid (HA) as the needle tip and 5% polyvinyl alcohol (PVA) as the backing, according to which the Gla-MN was prepared with the good characteristics of high hardness, complete appearance and good in vitro dissolution ability. We then loaded Gla onto the microneedles and measured that the average drug loading of Gla-MN was 2.26 ± 0.11 µg/mg and the cumulative transdermal release of Gla-MN was up to 76.9% after 24 h. In addition, Gla-MN had good skin penetration properties, with Gla-MN penetrating at least 4 to 5 layers of parafilm. And the skin basically could return to normal after 4 h of piercing. Importantly, our results showed that Gla-MN had higher transdermal delivery and therapeutic effects against keloid than that of Gla at the same dosage.

4.
Surv Ophthalmol ; 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38986847

RÉSUMÉ

Ophthalmic treatment demands precision and consistency in delivering therapeutic agents over extended periods to address many conditions, from common eye disorders to complex diseases. This diversity necessitates a range of delivery strategies, each tailored to specific needs. We delve into various delivery cargos that are pivotal in ophthalmic care. These cargos encompass biodegradable implants that gradually release medication, nonbiodegradable implants for sustained drug delivery, refillable tools allowing flexibility in treatment, hydrogels capable of retaining substances while maintaining ocular comfort, and advanced nanotechnology devices that precisely target eye tissues. Within each cargo category, we explore cutting-edge research-level approaches and FDA-approved methods, providing a thorough overview of the current state of ophthalmic drug delivery. In particular, our focus on nanotechnology reveals the promising potential for gene delivery, cell therapy administration, and the implantation of active devices directly into the retina. These advancements hold the key to more effective, personalized, and minimally- invasive ophthalmic treatments, revolutionizing the field of eye care.

5.
ACS Nano ; 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39020456

RÉSUMÉ

Timely blood reperfusion after myocardial infarction (MI) paradoxically triggers ischemia-reperfusion injury (I/RI), which currently has not been conquered by clinical treatments. Among innovative repair strategies for myocardial I/RI, microRNAs (miRNAs) are expected as genetic tools to rescue damaged myocardium. Our previous study identified that miR-30d can provide protection against myocardial apoptosis and fibrosis to alleviate myocardial injury. Although common methods such as liposomes and viral vectors have been used for miRNA transfection, their therapeutic efficiencies have struggled with inefficient in vivo delivery, susceptible inactivation, and immunogenicity. Here, we establish a nanoparticle-patch system for miR-30d delivery in a murine myocardial I/RI model, which contains ZIF-8 nanoparticles and a conductive microneedle patch. Loaded with miR-30d, ZIF-8 nanoparticles leveraging the proton sponge effect enable miR-30d to escape the endocytic pathway, thus avoiding premature degradation in lysosomes. Meanwhile, the conductive microneedle patch offers a distinct advantage by intramyocardial administration for localized, effective, and sustained miR-30d delivery, and it simultaneously releases Au nanoparticles to reconstruct electrical impulses within the infarcted myocardium. Consequently, the nanoparticle-patch system supports the consistent and robust expression of miR-30d in cardiomyocytes. Results from echocardiography and electrocardiogram (ECG) revealed improved heart functions and standard ECG wave patterns in myocardial I/RI mice after implantation of a nanoparticle-patch system for 3 and 6 weeks. In summary, our work incorporated conductive microneedle patch and miR-30d nanodelivery systems to synergistically transcend the limitations of common RNA transfection methods, thus mitigating myocardial I/RI.

6.
Colloids Surf B Biointerfaces ; 242: 114087, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-39003846

RÉSUMÉ

This study introduces a novel approach of repetitive modeling to simulate the pathological process of recurrent gout attacks in humans. This methodology addresses the instability issues present in rat models of gout, providing a more accurate representation of the damage recurrent gout episodes inflict on human skeletal systems. A soluble nanoneedle system encapsulating colchicine and iguratimod ethosomal formulations was developed. This system aims to modulate inflammatory cytokines and inhibit osteoclast activity, thereby treating inflammatory pain and bone damage associated with recurrent gout. Additionally, a comprehensive evaluation of the microneedles' appearance, morphology, mechanical properties, and penetration capability confirmed their effectiveness in penetrating the stratum corneum. Dissolution tests and skin irritation assessments demonstrated that these microneedles dissolve rapidly without irritating the skin. In vitro permeation studies indicated that transdermal drug delivery via these microneedles is more efficient and incurs lower drug loss compared to traditional topical applications. In vivo pharmacodynamic assessments conducted in animal models revealed significant analgesic and anti-inflammatory effects when both types of microneedles were used together. Further analyses, including X-ray imaging, hematoxylin and eosin (H&E) staining, Safranin-O/fast green staining, tartrate-resistant acid phosphatase staining, and quantification of osteoclasts, confirmed the bone-protective effects of the microneedle combination. In conclusion, the findings of this research underscore the potential of this novel therapeutic approach for clinical application in the treatment of recurrent gout.

7.
Bioeng Transl Med ; 9(4): e10662, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39036075

RÉSUMÉ

Electroporation, or the use of electric pulses to facilitate the intracellular delivery of DNA, RNA, and other molecules, is a well-established technique, that has been demonstrated to significantly augment the immunogenicity of DNA/mRNA vaccines and therapeutics. However, the clinical translation of traditional electroporators has been limited due to high costs, large size, complex user operation, and poor tolerability in humans due to nerve stimulation. In prior work, we introduced ePatch: an ultra-low-cost, handheld, battery-free electroporator employing a piezoelectric pulser coupled with a microneedle electrode array that showed enhanced immunogenic responses to an intradermal SARS-CoV-2 DNA vaccine in mice. The current study shifts focus from efficacy to tolerability, hypothesizing that ePatch's microneedle array, which localizes the electric field to the superficial skin strata, will minimize nerve stimulation and improve patient comfort. We tested this hypothesis in 14 healthy adults, monitoring pain and other potential adverse effects associated with electroporation. Compared to the insertion of a traditional hypodermic needle, the ePatch was less painful. Adverse effects such as pain, tenderness, erythema and swelling at the application sites were minimal, transient, and statistically indistinguishable between the experimental and placebo ePatch application, suggesting excellent tolerability towards electroporation. In summary, ePatch has a favorable tolerability profile in humans and offers the potential for the safe use of electroporation in a variety of clinical settings, including DNA and mRNA vaccination.

8.
Skin Res Technol ; 30(7): eSRT13784, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39031931

RÉSUMÉ

BACKGROUND: Microneedles are tiny needles, typically ranging from tens to hundreds of micrometers in length, used in various medical procedures and treatments. The tested medical device named "CELLADEEP Patch" a dissolvable microneedle therapy system (MTS), made of hyaluronic acid and collagen. And the iontophoresis technique is also applied in the system. The study aimed to evaluate the effectiveness of the "CELLADEEP Patch" in skin improvement. METHODS: Ex vivo human-derived skin tissue models were used in this study and they were divided into three different groups, namely, the Untreated Group, the Negative Control Group, and the Test Group respectively. The Untreated Group received no treatment measures, the Negative Control Group was exposed to ultraviolet B radiation (UVB) irradiation, and the Test Group was exposed to UVB irradiation and treated with "CELLADEEP Patch". Skin moisture content, transdermal water loss, and skin elasticity were evaluated by three clinical devices. Additionally, histological staining and related mRNA expression levels were also analyzed. RESULTS: The results of skin moisture content, transdermal water loss, and skin elasticity evaluation consistently illustrated that the application of "CELLADEEP Patch" led to remarkable skin improvement. And the analysis of histological staining images also confirmed the effectiveness of the "CELLADEEP Patch", especially for increasing collagen density. Moreover, the upregulation of Collagen type 1 a (COL1A1) and hyaluronan synthase 3 mRNA expression and the decrease of Matrix metalloproteinase 1 (MMP-1) and Interleukin-1 beta (IL-1ß) mRNA expression reflected its wrinkle improvement, moisturizing and anti-inflammation function. CONCLUSION: "CELLADEPP Patch", the MTS combined with the iontophoresis technique, exhibits its effectiveness in moisturizing, skin elasticity improvement, and anti-inflammatory function when applied to ex vivo human-derived skin tissue models in experiments. The study has contributed to the understanding of the "CELLADEPP Patch" and laid the foundation for subsequent animal experiments and clinical trials.


Sujet(s)
Acide hyaluronique , Ionophorèse , Aiguilles , Peau , Humains , Acide hyaluronique/administration et posologie , Ionophorèse/méthodes , Ionophorèse/instrumentation , Peau/effets des radiations , Collagène , Élasticité , Matrix metalloproteinase 1/métabolisme , Interleukine-1 bêta/métabolisme , Rayons ultraviolets , Vieillissement de la peau/effets des radiations , Perte insensible en eau/effets des radiations , Patch transdermique , Collagène de type I/métabolisme
9.
ACS Biomater Sci Eng ; 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38982708

RÉSUMÉ

Microneedles are a novel drug delivery system that offers advantages such as safety, painlessness, minimally invasive administration, simplicity of use, and controllable drug delivery. As a type of polymer microneedle with a three-dimensional network structure, hydrogel microneedles (HMNs) possess excellent biocompatibility and biodegradability and encapsulate various therapeutic drugs while maintaining drug activity, thus attracting significant attention. Recently, they have been widely employed to promote wound healing and have demonstrated favorable therapeutic effects. Although there are reviews about HMNs, few of them focus on wound management. Herein, we present a comprehensive overview of the design and preparation methods of HMNs, with a particular emphasis on their application status in wound healing, including acute wound healing, infected wound healing, diabetic wound healing, and scarless wound healing. Finally, we examine the advantages and limitations of HMNs in wound management and provide suggestions for future research directions.

10.
Adv Healthc Mater ; : e2401512, 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39030889

RÉSUMÉ

Tendon stem/progenitor cells (TSPCs) are crucial for tendon repair, regeneration, and homeostasis. Dysfunction of TSPCs, due to aberrant activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, contributes to tendinopathy. Unfortunately, the effectiveness of conventional subcutaneous injection targeting at suppressing JAK/STAT signaling pathway is limited due to the passive diffusion of drugs away from the injury site. Herein, a novel poly-gamma-glutamic acid (γ-PGA) dual-barb microneedle (MN) path loaded with TSPCs-derived nanovesicles (NVs) containing JAK/STAT inhibitor WP1066 (MN-WP1066-NVs) for tendinopathy treatment is designed. The dual-barb design of the MN ensures firm adhesion to the skin, allowing for sustained and prolonged release of WP1066-NVs, facilitating enhanced TSPCs self-renewal, migration, and stemness in tendinopathy. In vitro and in vivo experiments demonstrate that the degradation of γ-PGA patch tips facilitates the gradual release of WP1066-NVs at the lesion site. This release alleviates inflammation, suppresses extracellular matrix degradation, and restores normal tendon histological structure by inhibiting the JAK/STAT pathway. These findings suggest that the multifunctional dual-barb MN patch offers a novel and effective therapeutic strategy for tendinopathy treatment.

11.
Int J Biol Macromol ; 275(Pt 1): 133584, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38960271

RÉSUMÉ

The Helicobacter pylori infection in the stomach is the key reason for gastric mucosal bleeding. Eliminating gastric Helicobacter pylori by oral treatment remains difficult due to the presence of the gastric mucosal layer, which acts as a physical barrier to drugs via oral administration. In this study, a magnetic-navigable microneedle drug delivery platform (MNsD) for oral administration, featuring differential dual-mode drug release rate, was designed to fulfil rapid gastric hemostasis and overcome the gastric barriers for long-lasting Helicobacter pylori inhibition in stomach. MNs-D was created by rationally loading the carrier substrate, which was composed of silk fibroin with variable solubility, with antibiotics and hemostats. In vitro experiments showed MNs-D may sustainably eradicate Helicobacter pylori in stimulated gastric juices with long-lasting drug release (79 % in 24 h) and quickly establish hemostasis with instant drug release (92 % within 60 s). Most importantly, in vivo studies demonstrated MNs-D overcame the unsettling gastric mucosal barrier in traditional therapies of oral administration by insertion into the GML under magnetic navigation, resulting in sustained antibiotic release for long-lasting Helicobacter pylori eradiation (99 %). For differential dual-mode medication release against gastric Helicobacter pylori infections, this study may have firstly examined the effects of magnetic navigated microneedles administered orally.

12.
Sci Rep ; 14(1): 15295, 2024 07 03.
Article de Anglais | MEDLINE | ID: mdl-38961171

RÉSUMÉ

Palatal injections are considered to be one of the most painful dental procedures. As a result, it was important to find alternatives to this painful injection to improve children's cooperation. The dental literature mentioned using EMLA cream as a possible alternative to conventional injections, but its anesthetic effect was debated. Therefore, it was valuable to research the impact of microneedle patches to enhance the effectiveness of this cream. The purpose of this randomized controlled clinical trial was to compare the effectiveness of different methods of anesthesia and pain levels in children aged 7-11 years. The study compared the use of EMLA cream, EMLA with microneedles, and conventional palatal injections. A total of 90 children were randomly assigned to three groups: Group 1 received conventional palatal anesthesia (control), Group 2 received EMLA cream only, and Group 3 received EMLA with microneedles. Pain levels were assessed using the FLACC and Wong-Baker scales at three different time points: T1(during anesthesia), T2(on palatal probing), and T3(during extraction). The FLACC scale revealed a significant difference in pain between groups only at T1 (P value = 0.000). It was found that the conventional palatal injection group had a higher pain level than the EMLA cream-only group and the group using microneedle patches with EMLA cream (P value = 0.000). However, the other groups did not show significant differences in pain levels during the anesthesia (P value = 1.00). Similarly, the Wong-Baker scale also demonstrated a statistically significant difference in pain between groups only at T1 (P value = 0.000). It was found that the conventional palatal injection group had a higher pain level than the EMLA cream-only group and the group using microneedle patches with EMLA cream (P value = 0.000). However, the other groups did not show significant differences in pain levels during the anesthesia (P value = 0.091). The study concludes that both EMLA cream alone and EMLA with microneedles can be used as an alternative to conventional palatal anesthesia for children.


Sujet(s)
Anesthésiques locaux , Association de lidocaïne et de prilocaïne , Aiguilles , Palais , Humains , Enfant , Association de lidocaïne et de prilocaïne/administration et posologie , Femelle , Mâle , Anesthésiques locaux/administration et posologie , Mesure de la douleur , Anesthésie dentaire/méthodes , Anesthésie dentaire/instrumentation , Lidocaïne/administration et posologie
13.
Pharmaceutics ; 16(7)2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-39065582

RÉSUMÉ

Microneedles are an innovation in the field of medicine that have the potential to revolutionize drug delivery, diagnostics, and cosmetic treatments. This innovation provides a minimally invasive means to deliver drugs, vaccines, and other therapeutic substances into the skin. This research investigates the design and manufacture of customized microneedle arrays using laser ablation. Laser ablation was performed using an ytterbium laser on a polymethyl methacrylate (PMMA) substrate to create a mold for casting polydimethylsiloxane (PDMS) microneedles. An experimental design was conducted to evaluate the effect of process parameters including laser pulse power, pulse width, pulse repetition, interval between pulses, and laser profile on the desired geometry of the microneedles. The analysis of variance (ANOVA) model showed that lasing interval, laser power, and pulse width had the highest influence on the output metrics (diameter and height) of the microneedle. The microneedle dimensions showed an increase with higher pulse width and vice versa with an increase in pulse interval. A response surface model indicated that the laser pulse width and interval (independent variables) significantly affect the response diameter and height (dependent variable). A predictive model was generated to predict the microneedle topology and aspect ratio varying from 0.8 to 1.5 based on the variation in critical input process parameters. This research lays the foundation for the design and fabrication of customized microneedles based on variations in specific input parameters for therapeutic applications in dermal sensors, drug delivery, and vaccine delivery.

14.
Heliyon ; 10(12): e33025, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38984296

RÉSUMÉ

About a quarter of the world's population suffers from insomnia, and the number of the insomniacs is gradually increasing. However, the current drug therapy and non-drug therapy sleep-aid methods have certain limitations. In general, the sleep-aid effect of drug therapy is better than that of Non-drug therapy, but western medicine may lead to some side effects and drug abuse. Although the side effects of Chinese Herbal Medicine (CHM) are relatively small, making the herbal decoction is complex and time-consuming. Therefore, exploring a novel sleep-aid method is very significant. In this paper, a flexible and dissolving Traditional Chinese Medicine (TCM) microneedle patch is proposed for sleep-aid intervention. The TCM microneedle patch is a micrometer-scale intrusive object, and the herbal extracts are carried by the patch. The materials, design method, and fabrication process of the microneedle patch have been described in detail. Besides, the mechanical characteristics of the microneedle patch, sleep-aid effect evaluation method, and experimental scheme have been presented. Three microneedle tips with radii of 5 µm, 15 µm, and 22 µm are selected for simulation analysis. Abaqus simulation results indicate that the smaller the radius of the microneedle tip, the smaller the piercing force. Considering that the microneedle should easily penetrate the skin without buckling, that is, the piercing force should be larger than the buckling force, thus 15 µm, instead of 5 µm or 22 µm, is more suitable to be adopted as the radius of the microneedle tip. For the microneedle with the radius of 15 µm, the piercing force is 0.033 N, and the difference between the piercing force and buckling force is 0.036 N. Experimental results demonstrate that the fracture force of the microneedle is about 0.29 N, which is far larger than the piercing force and buckling force. The single-lead EEG signals of the frontal lobe are used to evaluate the sleep-aid effect of the TCM microneedle patch. After sleep-aid intervention on the Anmian and Yintang acupoints using the patches, for most subjects, the ratios of the low-frequency brain wave energies to the high-frequency brain wave energies are increased obviously, indicating that the proposed sleep-aid method is effective.

15.
Diabetes Obes Metab ; 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38984380

RÉSUMÉ

Metformin is a medication that is commonly prescribed to manage type 2 diabetes. It has been used for more than 60 years and is highly effective in lowering blood glucose levels. Recent studies indicate that metformin may have additional medical benefits beyond treating diabetes, revealing its potential therapeutic uses. Oral medication is commonly used to administer metformin because of its convenience and cost-effectiveness. However, there are challenges in optimizing its effectiveness. Gastrointestinal side effects and limitations in bioavailability have led to the underutilization of metformin. Innovative drug-delivery systems such as fast-dissolving tablets, micro/nanoparticle formulations, hydrogel and microneedles have been explored to optimize metformin therapy. These strategies enhance metformin dosage, targeting, bioavailability and stability, and provide personalized treatment options for improved glucose homeostasis, antiobesity and metabolic health benefits. Developing new delivery systems for metformin shows potential for improving therapeutic outcomes, broadening its applications beyond diabetes management and addressing unmet medical needs in various clinical settings. However, it is important to improve drug-delivery systems, addressing issues such as complexity, cost, biocompatibility, stability during storage and transportation, loading capacity, required technologies and biomaterials, targeting precision and regulatory approval. Addressing these limitations is crucial for effective, safe and accessible drug delivery in clinical practice. In this review, recent advances in the development and application of metformin-delivery systems for diabetes and obesity are discussed.

16.
Biomed Eng Lett ; 14(4): 737-746, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38946813

RÉSUMÉ

Microneedles (MNs) have emerged as an innovative, virtually painless technique for intradermal drug delivery. However, the complex and costly fabrication process has limited their widespread accessibility, especially for individuals requiring frequent drug administration. This study introduces a groundbreaking and cost-effective method for producing MNs utilizing fused deposition modeling (FDM) 3D printing technology to enhance transdermal drug delivery. The proposed fabrication process involves the elongation of molten polylactic acid (PLA) filaments to create meticulously designed conoid and neiloid MNs with smooth surfaces. This study underscores the critical role of printing parameters, particularly extrusion length and printing speed, in determining the shape of the MNs. Notably, the conoid-shaped MNs exhibit exceptional skin-penetrating capabilities. In order to evaluate their effectiveness, the MNs were tested on a polydimethylsiloxane (PDMS) skin model for skin penetration. The results highlight the high potential of 3D-printed MNs for transdermal drug administration. This novel approach capitalizes on the benefits of 3D printing technology to fabricate MNs that hold the promise of transforming painless drug administration for a variety of medical applications.

17.
Cell Rep Phys Sci ; 5(6): 101975, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38947182

RÉSUMÉ

Interstitial fluid (ISF) contains a wealth of biomolecules, yet it is underutilized for diagnostic testing due to a lack of rapid and simple techniques for collecting abundant amounts of fluid. Here, we report a simple and minimally invasive technique for rapidly sampling larger quantities of ISF from human skin. A microneedle array is used to generate micropores in skin from which ISF is extracted using a vacuum-assisted skin patch. Using this technique, an average of 20.8 µL of dermal ISF is collected in 25 min, which is an ∼6-fold improvement over existing sampling methods. Proteomic analysis of collected ISF reveals that it has nearly identical protein composition as blood, and >600 medically relevant biomarkers are identified. Toward this end, we demonstrate the detection of SARS-CoV-2 neutralizing antibodies in ISF collected from COVID-19 vaccinees using two commercial immunoassays, showcasing the utility of this technique for diagnostic testing.

18.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-38969433

RÉSUMÉ

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Sujet(s)
Techniques électrochimiques , Acides indolacétiques , Feuilles de plante , Acide salicylique , Solanum lycopersicum , Acier inoxydable , Solanum lycopersicum/composition chimique , Acides indolacétiques/analyse , Acide salicylique/analyse , Feuilles de plante/composition chimique , Feuilles de plante/métabolisme , Acier inoxydable/composition chimique , Techniques électrochimiques/instrumentation , Aiguilles , Maladies des plantes/microbiologie
19.
J Biomater Sci Polym Ed ; : 1-28, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39083398

RÉSUMÉ

Itraconazole (ITZ) is one of the broad-spectrum antifungal agents for treating fungal keratitis. In clinical use, ITZ has problems related to its poor solubility in water, which results in low bioavailability when administered orally. To resolve the issue, we formulated ITZ into the inclusion complex (ITZ-IC) system using ß-cyclodextrin (ß-CD), which can potentially increase the solubility and bioavailability of ITZ. The molecular docking study has confirmed that the binding energy of ITZ with the ß-CD was -5.0 kcal/mol, indicating a stable conformation of the prepared inclusion complex. Moreover, this system demonstrated that the inclusion complex could significantly increase the solubility of ITZ up to 4-fold compared to the pure drug. Furthermore, an ocular drug delivery system was developed through dissolving microneedle (DMN) using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) as polymeric substances. The evaluation results of DMN inclusion complexes (ITZ-IC-DMN) showed excellent mechanical strength and insertion ability. In addition, ITZ-IC-DMN can dissolve rapidly upon application. The ex vivo permeation study revealed that 75.71% (equivalent to 3.79 ± 0.21 mg) of ITZ was permeated through the porcine cornea after 24 h. Essentially, ITZ-IC-DMN exhibited no signs of irritation in the HET-CAM study, indicating its safety for application. In conclusion, this study has successfully developed an inclusion complex formulation containing ITZ using ß-CD in the DMN system. This approach holds promise for enhancing the solubility and bioavailability of ITZ through ocular administration.

20.
Biomed Pharmacother ; 178: 117219, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39084080

RÉSUMÉ

A transdermal delivery system offers high bioavailability and favorable patient adherence, constituting an optimal approach for localized administration in rheumatoid arthritis (RA) treatment. However, the stratum corneum (SC) impedes the delivery efficiency of conventional transdermal drug delivery systems. Microneedles (MNs) can temporarily create micropores within the SC, enabling drug distribution via bypassing this barrier and enhancing transdermal delivery effectiveness. Notably, MNs provide a painless method of drug delivery through the skin and may directly modulate inflammation in immune cells by delivering drugs via the lymphatic system during transdermal administration. However, the MN delivery system is not suitable for drugs with low water solubility and stability. Additionally, major concerns exist regarding the safety of using MN delivery for highly cytotoxic drugs, given that it could result in high local drug concentration at the delivery site. While MNs exhibit some degree of targeted delivery to the immune and inflammatory environment, their targeting efficiency remains suboptimal. Nanoformulations have the potential to significantly address the limitations of MNs in RA treatment by improving drug targeting, solubility, stability, and biocompatibility. Therefore, this review provides a concise overview of the advantages, disadvantages, and mechanisms of different types of MNs for RA treatment. It specifically focuses on the application and advantages of combining nanoformulation with MNs for RA treatment and summarizes the current trends in the development of nanoformulations combined with MNs in the field of RA treatment, offering theoretical support for future advancements and clinical applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE