Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 152
Filtrer
1.
J Appl Toxicol ; 2024 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-39128859

RÉSUMÉ

Rubus imperialis (Rosaceae) is a Brazilian medicinal plant that already exhibited therapeutical perspectives. However, previous studies revealed cellular and/or genetic toxicity of extracts from aerial parts of this plant, as well as other species of the Rubus genus. Being 2ß,3ß-19α-trihydroxyursolic acid (2B) one of the major compounds of this plant, with proven pharmacological effect, it is important to investigate the biosafety of this isolated compound. Therefore, in the present study, (2B) was tested by several cytogenotoxic endpoints up to 20 µg/ml in human hepatoma HepG2/C3A cells. The test compound did not produce any decreased cell viability, DNA damage, chromosomal mutations, cell cycle changes, or apoptotic effects in the tested cells. Additionally, RT-qPCR analysis revealed the downregulation of CYP3A4 (metabolism), M-TOR (cell death), and CDKN1A (cell cycle) genes. Under the experimental conditions used, the 2B compound did not show cytogenotoxic activity after a single exposure to HepG2/C3A human cells.

2.
J Toxicol Environ Health A ; 87(18): 752-761, 2024 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-38922576

RÉSUMÉ

Although the last pandemic created an urgency for development of vaccines, there was a continuous and concerted effort to search for therapeutic medications among existing drugs with different indications. One of the medications of interest that underwent this change was infliximab (IFM). This drug is used as an anti-inflammatory, predominantly in patients with Crohn 's disease, colitis ulcerative, and rheumatoid arthritis. In addition to these patients, individuals infected with Coronavirus Disease (COVID-19) were administered this chimeric monoclonal antibody (IMF) to act as an immunomodulator for patients in the absence of comprehensive research. Consequently, the present study aimed to examine the genotoxic effects attributed to IFM treatment employing different assays in vivo using mouse Mus musculus. Therefore, IFM was found to induce genotoxic effects as evidenced by the comet assay but did not demonstrate genotoxic potential utilizing mouse bone marrow MN test. The results of evaluating the expression of the P53 and BCL-2 genes using RT-qPCR showed stimulation of expression of these genes at 24 hr followed by a decline at 48 hr. Although the comet assay provided positive results, it is noteworthy that based upon negative findings in the micronucleus test, the data did not demonstrate significant changes in the genetic material that might affect the therapeutic use of IFM. The stimulation of expression of P53 and BCL-2 genes at 24 hr followed by a decline at 48 hr suggest a transient, if any, effect on genetic material. However, there is still a need for more research to more comprehensively understand the genotoxic profile of this medication.


Sujet(s)
Infliximab , Protéine p53 suppresseur de tumeur , Animaux , Souris , Protéine p53 suppresseur de tumeur/génétique , Altération de l'ADN/effets des médicaments et des substances chimiques , Test des comètes , Tests de micronucleus , Protéines proto-oncogènes c-bcl-2/génétique , Mâle , Gènes p53/effets des médicaments et des substances chimiques , Gènes bcl-2/effets des médicaments et des substances chimiques
3.
J Ethnopharmacol ; 333: 118499, 2024 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-38936645

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Schinus molle L. is a medicinal species belonging to the Anacardiaceae family. It is commonly referred to as "aroeira" and its leaves and roots are utilized for treating different pathological conditions. However, despite its widespread use in traditional medicine, there is a lack of in-depth toxicological studies. AIM: To evaluate the acute toxicity and genotoxicity of S. molle aqueous extract/ethanol-soluble fraction in rats. MATERIAL AND METHODS: First, a purified aqueous extract was obtained from the leaves of S. mole through infusion (referred to as EESM) and its compounds were identified using LC-DAD-MS data. Female rats were then subjected to acute oral toxicity tests using doses of 5, 50, 300, and 2000 mg/kg of ESSM. Studies on genetic material, including the micronucleus test and comet assay, were conducted on male and female Wistar rats using the same doses as in the acute toxicity test. For both assays, ESSM was administered orally. RESULTS: The main metabolites annotated from ESSM were dimeric proanthocyanidins, phenylpropanoids acids, flavan-3-ols, simple organic acids (C6-C1), a flavonol di-O-glycosylated (rutin), and O-glycosylated megastigmane. The ESSM did not exhibit any acute toxic effects, such as changes in biochemical, hematologic, or histopathological analysis. Furthermore, no changes were observed in comet assay or micronucleus tests when rats were given doses of 5, 50, 300, or 2000 mg/kg of ESSM. CONCLUSION: The results showed that the ESSM does not induce acute toxicity or exhibit genotoxicity up to a dose of 2000 mg/kg.


Sujet(s)
Tests de micronucleus , Extraits de plantes , Feuilles de plante , Rat Wistar , Tests de toxicité aigüe , Animaux , Extraits de plantes/toxicité , Extraits de plantes/composition chimique , Femelle , Mâle , Feuilles de plante/composition chimique , Rats , Anacardiaceae/composition chimique , Éthanol/composition chimique , Éthanol/toxicité , Altération de l'ADN/effets des médicaments et des substances chimiques , Test des comètes , Relation dose-effet des médicaments , Mutagènes/toxicité , Schinus
4.
Environ Sci Pollut Res Int ; 31(25): 37215-37228, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38764087

RÉSUMÉ

The present study aimed to report the morphometric and hematological indices and genotoxicity of a free-life population of D'Orbigny's slider turtles (Trachemys dorbigni) living in an urban area in Southern Brazil. For that, 16 specimens were randomly captured in an urban canal that receives irregular releases of wastewater. Biometrics and external visual changes were analyzed, such as turtle shell deformities, and the presence of parasites. Blood samples were collected to evaluate the hematological profile and the presence of micronuclei and other erythrocyte nuclear abnormalities as potential mutagenic and genotoxic effects. Water physicochemical parameters were also measured. Organisms with ectoparasites (31.25%) and small carapace deformations (56.25%) were observed, but maximum carapace length and weight were considered normal for the species according to the literature. The blood profile indicated low hemoglobin and hematocrit and a high number of total leukocytes, particularly eosinophils which characterize parasitic infections. A frequency of 0.12% for the micronucleus was considered basal, but the frequency of other erythrocyte abnormalities was evident, mainly of blebbed nuclei (63.79%), indicating chromosomal damage in the early stage. The results of this study suggest that natural populations of chelonian inhabiting urbanized areas are impacted by anthropogenic activities in the surrounding environment. Furthermore, it provides comprehensive data which can serve as a comparative model for environmental monitoring studies involving turtles.


Sujet(s)
Tortues , Animaux , Brésil , Marqueurs biologiques/sang , Eau douce , Surveillance de l'environnement , Tests de micronucleus
5.
J Appl Toxicol ; 44(8): 1129-1138, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38567776

RÉSUMÉ

Rubus imperialis Chum. Schl. (Rosaceae) have demonstrated some pharmacological activities, including gastroprotective action. However, genotoxic effects of R. imperialis extract was also reported. Since niga-ichigoside F1 (NIF1) is a major compound of this plant species, and which has proven pharmacological properties, it is essential to investigate whether this compound is responsible for the observed toxicity. Therefore, the objective of this study was to analyze the effects of NIF1 on HepG2/C3A cells for possible cytogenotoxicity, cell cycle and apoptosis influence, and expression of genes linked to the DNA damage, cell cycle, cell death, and xenobiotic metabolism. The results showed no cytogenotoxic effects of NIF1 at concentrations between 0.1 and 20 µg/ml. Flow cytometry also showed no cell cycle or apoptosis disturbance. In the gene expression analysis, none of the seven genes investigated showed altered expression. The data indicate that NIF1 has no cytogenotoxic effects, and no interruption of the cell cycle, or induction of apoptosis, apparently not being responsible for the cytotoxic effects observed in the crude extract of R. imperialis.


Sujet(s)
Apoptose , Cycle cellulaire , Humains , Cellules HepG2 , Apoptose/effets des médicaments et des substances chimiques , Cycle cellulaire/effets des médicaments et des substances chimiques , Rubus/composition chimique , Altération de l'ADN/effets des médicaments et des substances chimiques , Extraits de plantes/toxicité , Extraits de plantes/pharmacologie , Survie cellulaire/effets des médicaments et des substances chimiques , Relation dose-effet des médicaments , Saponines/toxicité , Saponines/pharmacologie
6.
J Toxicol Environ Health A ; 87(1): 33-46, 2024 01 02.
Article de Anglais | MEDLINE | ID: mdl-37886814

RÉSUMÉ

Hydroxycoumarins are an important source of biologically active compounds. Previous studies have shown that the number and position of the hydroxyl substituents in the scaffold play an important role for the observed biological activity. In the present study, 3-(3-hydroxyphenyl)-7-hydroxycoumarin was synthesized, and potential cytogenotoxic effects determined in human HepG2/C3A cells displaying phase 1 and phase 2 enzymes (metabolizing cell ability) and compared to human peripheral blood mononuclear cells (PBMC) without xenobiotics metabolizing capacity. Cell viability was determined with concentrations between 0.01 and 10 µg/ml of 3-(3-hydroxyphenyl)-7-hydroxycoumarin using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and trypan blue tests. Genotoxicity was determined utilizing the comet assay, and the clastogenic/aneugenic potential employing the micronucleus (MN) test. The results of the in vitro cytotoxicity assays showed a significant decrease in cell viability of PBMC following exposure to 10 µg/ml concentration of the studied compound after 48 and 72 hr. Comet assay observations noted significant DNA damage in PBMC after 4 hr treatment. No marked cytogenotoxic effects were found in HepG2/C3A cells. No chromosomal mutations were observed in both cell lines. It is important to note that 3-(3-hydroxyphenyl)-7-hydroxycoumarin may exert beneficial pharmacological actions at the low micromolar range and with half-life less than 24 hr. Therefore, the results obtained encourage the continuation of studies on this new molecule for medicinal purposes, but its potential toxicity at higher concentrations and longer exposure times needs to be investigated in further studies.


Sujet(s)
Altération de l'ADN , Agranulocytes , Humains , Test des comètes/méthodes , Tests de micronucleus/méthodes , Mort cellulaire , Ombelliférones/pharmacologie
7.
PeerJ ; 11: e16452, 2023.
Article de Anglais | MEDLINE | ID: mdl-38077413

RÉSUMÉ

Background: Chloramine-T (CL-T) is a synthetic sodium salt used as a disinfectant in fish farms to combat bacterial infections in fish gills and skin. While its efficacy in pathogen control is well-established, its reactivity with various functional groups has raised concerns. However, limited research exists on the toxicity of disinfection by-products to aquatic organisms. Therefore, this study aims to assess the sublethal effects of CL-T on adult zebrafish by examining biomarkers of nucleus cytotoxicity and genotoxicity, acetylcholinesterase (AChE) inhibition, and histopathological changes. Methods: Male and female adult zebrafish (wildtype AB lineage) specimens were exposed to 70, 140, and 200 mg/L of CL-T and evaluated after 96 h. Cytotoxic and genotoxic effects were evaluated by estimating the frequencies of nuclear abnormalities (NA), micronuclei (MN), and integrated optical density (IOD) of nuclear erythrocytes. Histopathological changes in the gills and liver were assessed using the degree of tissue changes (DTC). AChE activity was measured in brain samples. Results and conclusions: At a concentration of 200 mg/L, NA increased, indicating the cytogenotoxic potential of CL-T in adult zebrafish. Morphological alterations in the nuclei were observed at both 70 and 200 mg/L concentrations. Distinct IOD profiles were identified across the three concentrations. There were no changes in AChE activity in adult zebrafish. The DTC scores were high in all concentrations, and histological alterations suggested low to moderate toxicity of CL-T for adult zebrafish.


Sujet(s)
Perciformes , Danio zébré , Animaux , Mâle , Femelle , Acetylcholinesterase , Chloramines/toxicité , Composés tosyliques
8.
Bull Environ Contam Toxicol ; 112(1): 15, 2023 Dec 19.
Article de Anglais | MEDLINE | ID: mdl-38114722

RÉSUMÉ

Urban activities pollute aquatic ecosystems, and the integrity of organisms such as fish. The use of cytological techniques, such as the analysis of blood cellular integrity using the Micronucleus test, can help detect mutagenic damage as a result to urban effluents exposure. In this context, this study aimed to evaluate the frequency of micronucleus and other nuclear abnormalities in Oreochromis niloticus fish environmentally exposed to urban effluents in relation to their erythrocyte recovery capacity when exposed to clean water (30 and 45 days). The results indicated high copper, dissolved iron, nickel, and thermotolerant coliform levels in the urban stream. There was no difference in the frequency of micronuclei. In contrast, cells with nuclear nuclei, binucleates, kidney-shaped nuclei, notched nuclei, lobed nuclei, and segmented nuclei decreased according to the time the fish were exposed to clean water. When exposed to clean water, we conclude that urban fish recover from genotoxic and cytotoxic damage.


Sujet(s)
Cichlides , Polluants chimiques de l'eau , Animaux , Cichlides/génétique , Écosystème , Érythrocytes , Tests de micronucleus , Eau , Polluants chimiques de l'eau/toxicité , Polluants chimiques de l'eau/analyse , Altération de l'ADN
9.
J Toxicol Environ Health A ; 86(24): 929-941, 2023 Dec 17.
Article de Anglais | MEDLINE | ID: mdl-37728073

RÉSUMÉ

Oenothein B (OeB) is a dimeric ellagitannin with potent antioxidative, antitumor, immunomodulatory, and anti-inflammatory properties. Despite the promising activities of OeB, studies examining the genotoxic or protective effects of this ellagitannin on DNA are scarce. Therefore, to further comprehensively elucidate the chemopreventive profile of OeB, the aim of this study was to evaluate the mutagenic and antimutagenic actions of OeB using Salmonella typhimurium strains with the Ames test. The micronucleus (MN) test and comet assay were used to assess the anticytotoxic and antigenotoxic effects of OeB on mouse bone marrow cells following differing treatments (pre-, co-, and post-treatment) in response to cyclophosphamide (CPA)-induced DNA damage. In addition, histopathological analyses were performed to assess liver and kidney tissues of Swiss Webster treated mice. Our results did not detect mutagenic or antimutagenic activity attributed to OeB at any concentration in the Ames test. Regarding the MN test, data showed that this ellagitannin exerted antigenotoxic and anticytotoxic effects against CPA-induced DNA damage under all treatment conditions. However, no anticytotoxic action was observed in MN test after pre-treatment with the highest doses of OeB. In addition, OeB demonstrated antigenotoxic effects in the comet assay for all treatments. Histopathological analyses indicated that OeB attenuated the toxic effects of CPA in mouse liver and kidneys. These findings suggest that OeB exerted a chemoprotective effect following pre- and co-treatments and a DNA repair action in post-treatment experiments. Our findings indicate that OeB protects DNA against CPA-induced damaging agents and induces post-damage DNA repair.

10.
Environ Sci Pollut Res Int ; 30(40): 92095-92106, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37480534

RÉSUMÉ

Pollution generated by the mining industry can cause harm to wildlife. This study aimed to evaluate the cytotoxicity, genotoxicity and mutagenicity in bats environmentally exposed to open pit mining. Thus, 62 bats of the following species, Carollia perspicillata, Glossophaga soricina, Phyllostomus hastatus, and Desmodus rotundus exposed to mining activities (ferronickel) were used in the analysis. The animals were obtained in samplings in July and November of 2021, totaling 8 days of sampling in the field. The results indicated that species differ in the frequency of genotoxic damage between sampling points within the mining landscape. Cytotoxicity was observed by scoring of karyorrhexis, pyknosis and karyolysis. The most captured species, C. perspicillata, showed differences in DNA damage between exposed and unexposed populations, but no differences were observed between males (n = 14) and females (n = 20). G. soricina was also a sensitive species for indicating a high frequency of DNA damages compared to the omnivore P. hastatus. Elements such as Mn, Cr, Pb, and Zn observed in water samples were at high levels in the mining area. We conclude that bats in mining areas are susceptible to increased DNA damage as already identified for other species.


Sujet(s)
Antinéoplasiques , Chiroptera , Animaux , Femelle , Mâle , Mutagènes/toxicité , Mutagenèse , Animaux sauvages , Altération de l'ADN
11.
J Toxicol Environ Health A ; 86(11): 361-371, 2023 06 03.
Article de Anglais | MEDLINE | ID: mdl-37096566

RÉSUMÉ

Plants with medicinal potential may also produce adverse effects in humans. This seems to be the case for the species Rubus rosifolius, where preliminary studies demonstrated genotoxic effects attributed to extracts obtained from leaves and stems of this plant using on HepG2/C3A human hepatoma cells as a model. Considering the beneficial properties of this plant as an antidiarrheal, analgesic, antimicrobial, and antihypertensive and its effects in the treatment of gastrointestinal diseases, the present study was developed with the aim of determining the cytotoxic and genotoxic potential of extracts of leaves and stems of R. rosifolius in primary without metabolic competence in human peripheral blood mononuclear cells (PBMC). Cell viability analyses at concentrations of between 0.01 and 100 µg/ml of both extracts did not markedly affect cell viability. In contrast, assessment of the genotoxic potential using the comet assay demonstrated significant damage to DNA within PBMC from a concentration of 10 µg/ml in the stem extract, and a clastogenic/aneugenic response without cytokinesis-block proliferation index (CBPI) alterations at concentrations of 10, 20, or 100 µg/ml for both extracts. Under our experimental conditions, the data obtained demonstrated genotoxic and mutagenic effects attributed to extracts from leaves and stems of R. rosifolius in cells in the absence of hepatic metabolism.


Sujet(s)
Agranulocytes , Rubus , Humains , Extraits de plantes/toxicité , Tests de micronucleus , Test des comètes , Altération de l'ADN , Mutagènes , Feuilles de plante
12.
Toxicol In Vitro ; 86: 105485, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36279965

RÉSUMÉ

Rubus rosifolius, popularly known as "red mulberry", is a common medicinal plant in southern Brazil and is used as an antidiarrheal, analgesic, antimicrobial and antihypertensive, and to treat stomach diseases. The aim of this study was to analyze the R. rosifolius stem extract (RrSE) for possible in vitro cytotoxic and genotoxic effects, using the comet assay and the micronucleus test to assess genotoxicity, and flow cytometry to assess the impact on the cell cycle and apoptosis in HepG2/C3A cells, in addition to evaluating the expression of genes linked to the induction of DNA damage, cell cycle, apoptosis and metabolism of xenobiotics. The MTT assay observed no cytotoxic effects at concentrations between 0.01 and 100 µg/mL of the extract. However, genotoxic effects occurred in treatments with the extract from a 1 µg/mL concentration. Flow cytometry analysis revealed a significant increase in cells in the G2/M phase after treatment with 10 µg/mL, a decrease in cells in the G0/G1 phase in the treatment with 100 µg/mL, and a significant increase in total apoptotic cells. In the gene expression analysis, an increase in the CYP1A2 xenobiotics metabolizing gene expression was observed. Despite the promising pharmacological effects of R. rosifolius, the results revealed that the RrSE has genotoxic effect and induces apoptosis in HepG2/C3A cells, indicating danger in using this plant extract by humans.


Sujet(s)
Carcinome hépatocellulaire , Tumeurs du foie , Rubus , Humains , Apoptose , Altération de l'ADN , Extraits de plantes/toxicité , Extraits de plantes/analyse , Cellules HepG2 , Lignée cellulaire
13.
J Appl Toxicol ; 43(2): 323-334, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36000810

RÉSUMÉ

3-(3,4-Dihydroxyphenyl)-7,8-dihydroxycoumarin is a newly synthesized coumarin derivative with a potent antioxidant effect. The aim of the present study is to investigate the safety of this compound, determining the in vitro cytotoxic and genotoxic in human peripheral blood mononuclear cells (PBMC) and in HepG2/C3A cells. Cell viability has been investigated by the trypan blue staining test and MTT assay and the genotoxicity by the comet assay and micronucleus test, using concentrations between 0.01 and 10 µg/ml. The compound proved to be noncytotoxic in both cell lines, at all tested concentrations, protecting the cells from the DNA damage. In addition, this molecule does not show clastogenic/aneugenic effects when performing the micronucleus test with cytokinesis blockade. Based on the obtained data, and the conditions of the experiments, we can conclude that the 3-(3,4-dihydroxyphenyl)-7,8-dihydroxycoumarin is a safe molecule up to a concentration of 10 µg/ml, which encourages further studies aiming to explore its potential as a drug candidate.


Sujet(s)
Agranulocytes , Leucocytes , Humains , Test des comètes , Ombelliférones/toxicité , Altération de l'ADN , Tests de micronucleus , Mutagènes
14.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12713, 2023. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1447680

RÉSUMÉ

Mesenchymal stromal/stem cells stem (MSC) have been widely studied due to their great potential for application in tissue engineering and regenerative and translational medicine. In MSC-based therapy for human diseases, cell proliferation is required to obtain a large and adequate number of cells to ensure therapeutic efficacy. During in vitro culture, cells are under an artificial environment and manipulative stress that can affect genetic stability. Several regulatory agencies have established guidelines to ensure greater safety in cell-based regenerative and translational medicine, but there is no specific definition about the maximum number of passages that ensure the lowest possible risk in MSC-based regenerative medicine. In this context, the aim of this study was to analyze DNA damage and chromosome alterations in adipose-derived mesenchymal stromal cells (ADMSC) until the eleventh passage and to provide additional subsidies to regulatory agencies related to number of passages in these cells. Thus, two methods in genetic toxicology were adopted: comet assay and micronucleus test. The comet assay results showed an increase in DNA damage from the fifth passage onwards. The micronucleus test showed a statistically significant increase of micronucleus from the seventh passage onwards, indicating a possible mutagenic effect associated with the increase in the number of passages. Based on these results, it is important to emphasize the need to assess genetic toxicology and inclusion of new guidelines by regulatory agencies to guarantee the safety of MSC-based therapies for human diseases.

15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12777, 2023. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1447683

RÉSUMÉ

To evaluate the risks of hair dye exposure, we investigated cellular and molecular effects of Arianor Ebony dye, which is a mixture of azo and anthraquinone dyes, used in the composition of the black color. Cytotoxicity, genotoxicity, and gene expression of relevant molecules of apoptotic and oxidative stress mechanisms were investigated in HepG2 cells exposed to Arianor Ebony. Results showed that the dye did not induce cytotoxicity to exposed cells at a concentration up to 50 µg/mL compared to the negative control. However, genotoxic assays indicated that the dye was able to damage the genetic material at a concentration of 25 µg/mL, with induction factor values of exposed cells two- to five-fold higher than those recorded for the negative control. Moreover, the lowest observed effect concentration was 12.5 µg/mL. For gene expression, relevant changes were observed in cytochrome c and caspase 9, which decreased in cells incubated with the dye in a dose-dependent manner when compared with the negative control. In parallel, the expression of genes for antioxidant enzymes was increased in exposed cells, suggesting the presence of metabolic routes that protect cells against the toxic effect of the dye, avoiding exacerbated cellular death. Results suggested that the dye disrupted cellular homeostasis through mitochondrial dysfunction, which may be hazardous to human health. Thus, further investigations are necessary to deeply understand the mechanisms of action of the dye, considering its toxic potential found in our ex vivo assays.

16.
J Toxicol Environ Health A ; 85(22): 937-951, 2022 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-36068785

RÉSUMÉ

Coumarins and chalcones are compounds widely found in plants or obtained by synthetic methods which possess several biological properties including antioxidant, anti-inflammatory, and antitumor effects. A series of coumarin-chalcone hybrids were synthesized to improve their biological actions and reduce potential adverse effects. Considering the applications of these molecules, a coumarin-chalcone hybrid [7-methoxy-3-(E)-3-(3,4,5-trimethoxyphenyl) acryloyl-2 H-chromen-2-one] (4-MET) was synthesized and the genotoxic, cytotoxic, and protective effects assessed against damage induced by different mutagens. First, in silico tools were used to predict biological activity of 4-MET which indicated a chemopreventive potential. Subsequently, the genotoxic/antigenotoxic activities of 4-MET were determined both in vitro (Ames test) and in vivo (micronucleus (MN) test and comet assay). In addition, molecular docking simulations were performed between 4-MET and glutathione reductase, an important cellular detoxifying enzyme. Our results indicated that 4-MET was not mutagenic in the Ames test; however, when co-treated with sodium azide or 4-nitroquinoline 1-oxide (4-NQO), 4-MET significantly reduced the harmful actions of these mutagens. Except for a cytotoxic effect after 120 hr treatment, 4-MET alone did not produce cytotoxicity or genotoxicity in the MN test and comet assay. Nonetheless, all treatments of 4-MET with cyclophosphamide (CPA) showed a chemoprotective effect against DNA damage induced by CPA. Further, molecular docking analysis indicated a strong interaction between 4-MET and the catalytic site of glutathione reductase. These effects may be related to (1) damage prevention, (2) interaction with detoxifying enzymes, and (3) DNA-repair induction. Therefore, data demonstrated that 4-MET presents a favorable profile to be used in chemopreventive therapies.


Sujet(s)
Chalcone , Chalcones , Chalcones/pharmacologie , Test des comètes/méthodes , Coumarines/pharmacologie , Cyclophosphamide , Altération de l'ADN , Réparation de l'ADN , Glutathione reductase , Tests de micronucleus , Simulation de docking moléculaire , Mutagènes/toxicité
17.
Article de Anglais | MEDLINE | ID: mdl-35649679

RÉSUMÉ

Agricultural workers engaged in tobacco cultivation are constantly exposed to large amounts of harmful agents, such as pesticides and nicotine. Furthermore, most of the flue-cured tobacco leaves are manually graded exposing workers to agents such as tobacco-specific nitrosamines. This study aimed to evaluate genetic damage and oxidative stress in tobacco farmers occupationally exposed during the harvest and grading seasons. We obtained data on DNA damage detected in Comet assay in blood cells and micronucleus experiment with buccal cells from 241 individuals. The serum cotinine levels and nitrates were also evaluated. The Comet Assay results showed a showed an increased visual score for males and females during harvest time and tobacco grading. An increase of micronucleated and binucleated cells was observed in the grading group compared to the control and harvest groups. The oxidative stress measurements showed a clear increase of thiobarbituric acid reactive substances (TBARS) in tobacco farmers during harvest time, and trolox equivalent antioxidant capacity (TEAC) in individuals during harvest and grading time compared to the controls. Significant increases of the cotinine levels were observed during the harvest and grading period (harvest>grading), and nitrates for the grading period compared to the control. In this study, tobacco farmers presented compromised DNA integrity associated with enhanced oxidative stress levels.


Sujet(s)
Agriculteurs , Exposition professionnelle , Cotinine , Femelle , Humains , Mâle , Muqueuse de la bouche , Nitrates , Exposition professionnelle/effets indésirables , Exposition professionnelle/analyse , Stress oxydatif , Saisons , Nicotiana/effets indésirables
18.
Toxicol In Vitro ; 83: 105392, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35605793

RÉSUMÉ

Pentaclethra macroloba (Willd.) Kuntze seeds oil has been used as a topical healing agent, applied mainly to parturients and snake bites. The objective was to investigate the effects of pracaxi oil (POP) on HepG2/C3A cells under cytogenotoxicity, cell cycle and apoptosis influence, and expression of metabolism and other related cell types proliferation genes. Cytotoxicity was analyzed by MTT test and apoptosis and cell cycle interferences by flow cytometry. To identify genotoxicity were used comet and micronucleus tests. RT-qPCR investigated gene expression. PO chemical characterization has shown two significant triterpenes, identified as oleanolic acid and hederagenin. The results showed that the PO did not reduce cell viability at concentrations ranging from 31 to 500 µg/ml. Comet and micronucleus assays revealed the absence of genotoxic effects, and flow cytometry showed no cell cycle or apoptosis disturbance. RT-qPCR indicated that PO up-regulated genes related to metabolism (CYP3A4, CYP1A2, CYP1A1), cell proliferation (mTOR), and oxidative stress (GPX1). The data indicate that PO has no cytogenotoxic effects and suggest that it activated the PI3/AKT/mTOR cascade of cell growth and proliferation. Inside the cells, the PO activated xenobiotic metabolizing genes, responsible for reactive oxygen species (ROS) generation, can neutralize ROS with increased GPX1 gene expression without genetic damage, interruption of the cell cycle, or induction of apoptosis.


Sujet(s)
Stress oxydatif , Xénobiotique , Prolifération cellulaire , Altération de l'ADN , Cellules HepG2 , Humains , Espèces réactives de l'oxygène/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Xénobiotique/pharmacologie
19.
Environ Sci Pollut Res Int ; 29(49): 74335-74345, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-35635668

RÉSUMÉ

Socioeconomic and demographic factors, lifestyle and cultural characteristics may play an important role in the development of genetic damage. This damage represents a potential health risk to an individual and increases the risk of developing negative outcomes. The aim of this study was to investigate the association of a set of factors and genetic damage by gathering data from previously studied populations in southern Brazil. This study analyzed data related to genetic damage and socioeconomic, demographic, and lifestyle variables of 514 individuals aged 18 to 64 years, residing in 8 cities located in the extreme south of the Brazil. A total of twelve factors were considered in the analysis, and of these seven had some association with the frequency of micronucleus or some parameter of the comet assay. Interestingly, age was a factor weakly associated with genetic damage, while skin color, occupational exposure, drug use, exposure to radiation, and the cultural habit of consuming chimarrão were shown to be associated with genetic damage when analyzed using multivariate regression. Therefore, we suggest that yerba mate consumption is a confounding factor and should be considered in cytogenetic studies in the southern region of South America. These results reinforce the need for human biomonitoring studies to include consideration of a broad range of population and cultural characteristics when seeking to identify relevant associations.


Sujet(s)
Altération de l'ADN , Exposition professionnelle , Brésil , Test des comètes , Humains , Tests de micronucleus/méthodes
20.
Molecules ; 27(8)2022 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-35458751

RÉSUMÉ

Vernonanthura polyanthes (Spreng.) A.J. Vega & Dematt. (syn.: Vernonia polyanthes Less) is popularly known as "assa-peixe" and its leaves are used in folk medicine mainly to treat respiratory diseases. In this study, we evaluated the cytogenotoxic and anticytogenotoxic potential of the V. polyanthes leaf aqueous extract (VpLAE) and its n-butanol fraction (n-BF) in the presence or absence of doxorubicin (DXR) (pre-, co-, and post-treatments) on a murine model for 24 h or 120 h. The micronucleus test (MN) and the comet assay were used to assess the cytogenotoxic and anticytogenotoxic potential of VpLAE and n-BF (250, 500, and 1000 mg/kg) administered via gavage to Swiss Webster mice. The chemical profiles of VpLAE and n-BF were assessed by liquid chromatography coupled to mass spectrometry, and their metabolites were putatively identified. Lastly, the possible biological activities related to the (anti) cytogenotoxicity of the compounds were predicted using the PASS online webserver. The in vivo results showed that different doses of VpLAE and n-BF did not present cytotoxic activity; however, the MN test revealed a slight mutagenic activity for the 24 h treatments. Moderate genotoxic effects were demonstrated for all treatments in the comet assay. Regarding anticytotoxicity and antimutagenicity, VpLAE and n-BF presented a high cytoprotective potential against DXR toxic effects. In the co-treatment, VpLAE reduced the DXR genotoxicity by ~27%, and n-BF did not demonstrate antigenotoxic potential. In contrast, an antigenotoxic effect was observed for both VpLAE and n-BF in the pre- and post-treatments, reducing DXR genotoxicity by ~41% and ~47%, respectively. Chemical analysis of VpLAE and n-BF showed the presence of eight phenolic compounds, including seven chlorogenic acids and a flavonoid. The PASS online tool predicted antimutagenic, anticancer, antineoplastic, chemoprotective, antioxidant, and radical scavenging activities for all constituents identified in VpLAE and n-BF. V. polyanthes leaves presented a protective effect against DXR cytogenotoxicity. In general, VpLAE and n-BF showed a greater antigenotoxic potential in the pre- and post-treatments. The metabolites putatively identified in VpLAE and n-BF exhibited antioxidant and chemoprotective potential according to computational prediction analysis. Altogether, our results highlight the potential application of V. polyanthes to protect against toxic manifestations induced by DXR.


Sujet(s)
Antioxydants , Asteraceae , Animaux , Antioxydants/pharmacologie , Altération de l'ADN , Doxorubicine/effets indésirables , Doxorubicine/analyse , Chromatographie gazeuse-spectrométrie de masse , Souris , Tests de micronucleus , Composés phytochimiques/analyse , Extraits de plantes/composition chimique , Feuilles de plante/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE