Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 192
Filtrer
1.
Carbohydr Polym ; 343: 122451, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39174130

RÉSUMÉ

Anhydride-modified starch micelles have great potential in the delivery of hydrophobic guest molecules. This study aimed to experimentally explore the effects of side-chain lengths on the structure and properties of anhydride-modified starch micelles, and to visualize the self-assembly and loading process of these micelles through Dissipative particle dynamics (DPD) simulations. Starch micelles could only form when the carbon chain length exceeded four. The highly hydrophobic C18 starch micelle exhibited the minimum particle size (65 nm) and maximum loading capability (59.10 µg/mg). For each addition carbon atom in the anhydride side chains, the critical micelle concentration (CMC) of starch micelles decreased average of 1.79 %. Thermodynamic results showed that the micellization was an entropy-dominated driven process, and longer carbon chains enhanced the stability of starch micelles. DPD results showed that the starch chains formed the small clusters then spherical aggregates and finally core-shell structure spherical micelle. Curcumin was loaded into micelles by adjoint aggregation-micellization-adsorption mechanism. Overall, this study provides microscopic insight into the micellization and drug-loading mechanisms for anhydrides modified starch micelles.

2.
Molecules ; 29(14)2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-39064871

RÉSUMÉ

The food industry extensively uses chemically modified starches and their hydrolysates, which is mainly due to their emulsification ability. Therefore, it becomes inevitable to develop new starch derivatives, including modified starch hydrolysates, and effective preparation methods to meet the increasing demands of producers, consumers, and technology. This study comprehensively researches the physical, chemical, and functional properties (such as the water-binding capacity, swelling power, solubility, and fat absorption capacity) of chemically modified biopolymers and their enzymatic hydrolysis products. We utilized oxidized and acetylated potato and waxy-corn starches with varying degrees of substitution by carboxyl and acetyl groups in our research. The process of enzymatic hydrolysis was performed in a recirculated membrane reactor (CRMR). Our findings indicated that the physicochemical properties of starch derivatives and their hydrolysates depended on the biological origin of the biopolymer and the type and degree of modification. However, the presence of carboxyl groups in the modified starch molecules is critical and affects the rheological properties and water-binding capacity of the starch preparations. For example, in the case of waxy-corn starch preparations with a lower content of carboxyl groups (i.e., derivatives with a low degree of oxidation), the water-binding capacity (WBC) increases when compared to native starch. The highest WBC value of 206.3% was noted for the doubly modified waxy-corn starch with an oxidation degree of 0.2% and an acetylation degree of 2.5%, while native waxy-corn starch shows a WBC of 161.4%. In contrast, it was observed that preparations with a higher content of carboxyl groups, i.e., derivatives with an oxidation degree of 2.5%, show a lower swelling power compared to native waxy starch.


Sujet(s)
Amidon , Amidon/composition chimique , Amidon/analogues et dérivés , Hydrolyse , Technologie alimentaire/méthodes , Solubilité , Eau/composition chimique , Oxydoréduction , Solanum tuberosum/composition chimique , Acétylation , Rhéologie
3.
Foods ; 13(13)2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38998507

RÉSUMÉ

Modifying starch allows for improvements in its properties to enable improved uses in food matrices, bioplastics, and encapsulating agents. In this research, four varieties of native potato starch were modified by acid treatment, enzymatic treatment, and ethanol precipitation, and their physicochemical, structural, thermal, and techno-functional characteristics were analyzed. According to FT-IR analysis, no influence of the modified starches on the chemical groups was observed, and by scanning electron microscopy (SEM), spherical and oval shapes were observed in the acid and enzymatic treatments, with particle sizes between 27 and 36 µm. In particular, the ethanolic precipitation treatment yielded a different morphology with a particle size between 10.9 and 476.3 nm, resulting in a significant decrease in gelatinization temperature (DSC) and more pronounced crystallites (XRD). On the other hand, the enzymatic treatment showed higher values for z-potential (ζ), and the acid treatment showed lower mass loss (TGA). Acid and ethanolic treatments affected the dough properties compared to native starches. The techno-functional properties showed a decrease in the water absorption index, an increase in the water solubility index, and varied swelling power behaviors. In conclusion, the modification of potato starches through acid, enzymatic, and ethanolic precipitation treatments alters their physicochemical properties, such as swelling capacity, viscosity, and thermal stability. This in turn affects their molecular structure, modifying morphology and the ability to form gels, which expands their applications in the food industry to improve textures, stabilize emulsions, and thicken products. Furthermore, these modifications also open new opportunities for the development of bioplastics by improving the biodegradability and mechanical properties of starch-based plastic materials.

4.
Carbohydr Polym ; 342: 122425, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39048208

RÉSUMÉ

The development of irreversible on/off switching materials is a potential strategy for unidirectional capture and encapsulation of pollutants, preventing the pollutant leakage problem resulting from the reversible dissolution of flocculants. Herein, a thermo-irreversible on/off switch starch (TISS) is prepared through modifying starch by etherification grafting glycidyl phenyl ether and 2,4-bis(dimethylamino)-6-chloro-[1,3,5]-triazine. It breaks the dissolution/precipitation dynamic equilibrium across heating-cooling cycles by thermal-induced irreversible coil-to-globule self-assembly of polymer chains, resulting in a 50-fold decrease in polymer solubility. Particularly, TISS shows a superior double-locking effect on pollutants and flocculants through its unique irreversible conformation memory capability, leading to a high-quality reuse water. 99.9 % of reactive brilliant red dye and 97.9 % of TISS remain fixed within sludge flocs even after prolonged immersion in cold water at 24 °C for 60 days. Furthermore, direct recycling and reuse of dye-bath energy can be realized through the isothermal flocculation and dyeing method, showing a 75 % decrease in energy consumption after three cycles compared to traditional dyeing techniques. This work presents a novel approach to constructing an irreversible pollutant delivery system using thermo-irreversible on/off switch starch, addressing the problems of high energy dissipation and water quality fluctuations during wastewater treatment.

5.
Int J Biol Macromol ; 275(Pt 1): 134076, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39053820

RÉSUMÉ

This study aims to enhance the physical properties and color stability of anthocyanin-based intelligent starch films. Three dual-modified starches, namely crosslinked-oxidized starch (COS), acetylated distarch phosphate (ADSP), and hydroxypropyl distarch phosphate (HDSP), were utilized as film matrices. Aronia melanocarpa anthocyanins were incorporated through three different pre-treatments (free, spray-drying microencapsulation, and freeze-drying microencapsulation) to assess the prepared films' functionality, stability, and applicability. The results indicate that the ADSP film exhibited an approximately two-fold increase in elongation at break (EAB) compared to native starch film. Specifically, the ADSP film's water contact angle (WCA) reached 90°, demonstrating excellent flexibility and hydrophobicity. Scanning electron microscopy (SEM) revealed stronger interactions between anthocyanins and the film matrix after microencapsulation. Furthermore, after 30 days of exposure to 37 °C heat and light radiation, the freeze-dried anthocyanin-based intelligent film (FDA film) exhibited minimal fading, displaying the highest stability among the tested films. Notably, during beef freshness monitoring, the intelligent films underwent significant color changes as the beef deteriorated. In conclusion, the developed FDA film, with its outstanding stability and responsive pH characteristics, holds immense potential as a novel packaging material for food applications.


Sujet(s)
Anthocyanes , Photinia , Amidon , Photinia/composition chimique , Amidon/composition chimique , Capsules/composition chimique , Anthocyanes/composition chimique , Phosphates/composition chimique , Concentration en ions d'hydrogène , Couleur , Spectroscopie infrarouge à transformée de Fourier , Thermodynamique , Matériaux intelligents/composition chimique , Interactions hydrophobes et hydrophiles , Lyophilisation
6.
Int J Biol Macromol ; 272(Pt 2): 132907, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38862318

RÉSUMÉ

The aim of this study was to develop a star fruit extract (SFE) and incorporate it into aerogels based on native and phosphorylated potato starches. The phosphorylation of starch enhances its properties by incorporating phosphate groups that increase the spaces between starch molecules, resulting in a more resilient, intact aerogel with enhanced water absorption. The bioactive aerogels based on potato starch and 10, 15, and 20 % (w/w) of SFE were characterized by their morphological and thermogravimetric properties, infrared spectra, water absorption capacity, loading capacity, and antioxidant activity. Epicatechin was the major compound present in SFE. The thermal stability of SFE increased when incorporated into phosphorylated starch aerogels at a concentration of 20 %. The water absorption capacity was higher in phosphorylated starch aerogels (reaching 1577 %) than in their native counterparts (reaching 1100 %). Native starch aerogels with 15 and 20 % SFE exhibited higher antioxidant activity against hydroxyl free radicals compared to phosphorylated starch aerogels, achieving 79.9 % and 86.4 % inhibition for the hydroxyl and nitric oxide radicals, respectively. The ideal choice of freeze-dried aerogel depends on the desired effect, either to act as an antioxidant agent by releasing bioactive compounds from SFE or as a water-absorbent agent in food products.


Sujet(s)
Antioxydants , Fruit , Gels , Extraits de plantes , Solanum tuberosum , Amidon , Solanum tuberosum/composition chimique , Gels/composition chimique , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie , Amidon/composition chimique , Phosphorylation , Antioxydants/composition chimique , Antioxydants/pharmacologie , Fruit/composition chimique , Averrhoa/composition chimique , Eau/composition chimique
7.
Anim Sci J ; 95(1): e13950, 2024.
Article de Anglais | MEDLINE | ID: mdl-38712489

RÉSUMÉ

The utilization of polyphenol-modified starch in ruminants has not undergone extensive exploration. This study aimed to investigate the impact of the complex formed between starch and Melastoma candidum D. Don fruit extract on physicochemical properties, phenol release kinetics in various buffers simulating the gastrointestinal tract, methane production, and post-rumen digestibility. The interaction between starch and M. candidum D. Don fruit extract significantly (p < 0.001) increased resistant starch and particle size diameter. The maximum phenolic release from complex between starch and M. candidum D. Don fruit extract, due to gastrointestinal tract-simulated buffers, ranged from 22.96 to 34.60 mg/100 mg tannic acid equivalent. However, rumen and abomasum-simulated buffers released more phenolic content, whereas the intestine-simulated buffer showed higher antioxidant activity (ferric ion-reducing antioxidant power). Furthermore, complex between starch and M. candidum D. Don fruit extract significantly decreased dry matter rumen digestibility (p < 0.001) and maximum methane gas production (p < 0.001).


Sujet(s)
Antioxydants , Phénomènes chimiques , Digestion , Fermentation , Melastomataceae , Extraits de plantes , Rumen , Amidon , Rumen/métabolisme , Animaux , Amidon/métabolisme , Antioxydants/métabolisme , Melastomataceae/composition chimique , Melastomataceae/métabolisme , Rhéologie , Méthane/métabolisme , Fruit/composition chimique , Techniques in vitro , Phénols/métabolisme , Phénols/analyse , Taille de particule , Polyphénols/métabolisme
8.
Drug Chem Toxicol ; : 1-16, 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38726972

RÉSUMÉ

PBAT-modified starch blended film are thermoplastic biodegradable materials with good properties and a wide range of applications. In this study, L-02 cells were used as an in vitro toxicity evaluation system for risk assessment of PBAT-modified starch films with migration studies obtained in different food simulants. Determination of total migration and organic matter revealed that the results were in accordance with the standard except for the total organic matter under 95% (v/v) ethanol food simulant which exceeded the standard. The CCK-8 assay showed that these compounds affect the cell viability of L-02 cells. It was observed that the compounds made the cells express increased AST, ALT, TNF-α, IL-6, IL-1ß, and ROS, and decreased SOD, GSH, and ATP. In addition, we explored the effect of migration in PBAT-modified starch composites on protein and gene expression levels in L-02 cells using a transcriptomic approach and found that the AMPK signaling pathway was affected. The expression of AMPK signaling pathway-related proteins was detected by Western Blot, and the expression levels of p-AMPK/AMPK were found to be upregulated, and those of p-mTOR/mTOR, SIRT1, PGC-1α, NRF1 and TFAM were downregulated. The above data suggest that the compounds migrating into the PBAT-modified starch film when exposed to food may induce oxidative stress and inflammation in hepatocytes, and may cause damage to hepatocytes through the AMPK pathway.

9.
Food Sci Biotechnol ; 33(8): 1885-1897, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38752124

RÉSUMÉ

This study assesses the impact of dual modification [octenyl succinylation (OSA) and heat-moisture treatment (HMT)] of sweet potato starch (SPS) on the physicochemical, mechanical, and permeability properties of SPS film. The intrinsic limitations of starch films, such as sensitivity to high humidity, inferior mechanical properties, and weak barrier capabilities, have restricted their use in sausage casings. Nonetheless, the dual-modified SPS film (OSA@HMT-SPS film) demonstrated significantly reduced solubility (P < 0.05), moisture content, water vapor permeability (WVP), and O2 permeability compared to the SPS film. Furthermore, its flexibility and elasticity, indicated by its elongation at break, was notably superior. When used as sausage casings, the OSA@HMT-SPS film effectively mitigated lipid oxidation in sausages better than both the SPS film and commercial collagen casings, owing to its low O2 permeability. As a result, the OSA@HMT-SPS casing presents significant promise as a plant-based sausage casing alternative.

10.
Anim Biosci ; 2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38754852

RÉSUMÉ

Objective: This study examined the effects of substituting winged bean tuber steam (WBTS) modified starches for cassava chips (CSC) in the concentrate diet on rumen fermentation, nutrient utilization, and blood metabolites in Thai-native beef cattle. Methods: Four Thai-native bulls were assigned randomly as a 4 × 4 Latin square design, which represents the amount of CSC replaced with WBTS in the concentrate mixture diets at 0, 10, 20, and 30%. Results: Increasing levels of WBTS replacement for CSC in the concentrate diets had a quadratic effect on total dry matter (DM) intake (p<0.05). Replacement of WBTS at 20% and 30% for CSC did not alter total DM intake compared to 0% WBTS, whereas 10% WBTS replacement could significantly increase total DM intake by 0.41 kg DM/day compared to the control group. In addition, neutral detergent fiber (NDF) digestibility showed a quadratic increase (p < 0.05) when CSC was substituted at various levels of WBTS in the concentrate diet (p < 0.05). Replacement of CSC with WBTS at 10% and 20% showed higher NDF digestibility when compared to 0% replacement. There was a quadratic increase in blood glucose at 4 h post-feeding, and the average blood glucose value was significantly lower (p < 0.01) when substituting CSC with WBTS. Substituting WBTS for CSC at 10% in the concentrate diet showed the highest blood glucose concentration when compared to other treatments. Replacing CSC with WBTS at 10% and 20% shows a higher concentration of C3 than those of other treatments (0% or 30%). The nitrogen (N) intake (NI) increased linearly (p<0.05) when substituting WBTS for CSC at all levels in the diet. Additionally, N retention (NR) and the ratio of N retention to N intake increased (p<0.05) when substituting WBTS for CSC at 10%, 20%, and 30% compared to 0%. The gross energy intake (GEI), digestible energy intake (DEI), and energy efficiency (DEI/GEI) were quadratically increased when substituted with various levels of WBTS for CSC in the concentrate diet. Conclusion: The findings indicate that substituting 10% of CSC in the concentrate diet with WBTS may be sufficient as an alternative feed resource for improving nutrient utilization and metabolic efficiency in beef cattle diets.

11.
Article de Anglais | MEDLINE | ID: mdl-38771725

RÉSUMÉ

INTRODUCTION: This was a single-center pilot study that sought to describe an innovative use of 4DryField® PH (premix) for preventing the recurrence of intrauterine adhesions (IUAs) after hysteroscopic adhesiolysis in patients with Asherman's syndrome (AS). MATERIAL AND METHODS: Twenty-three patients with AS were enrolled and 20 were randomized (1:1 ratio) to intrauterine application of 4DryField® PH (n = 10) or Hyalobarrier® gel (n = 10) in a single-blind manner. We evaluated IUAs (American Fertility Society [AFS] score) during initial hysteroscopy and second-look hysteroscopy one month later. Patients completed a follow-up symptoms questionnaire three and reproductive outcomes questionnaire six months later. RESULTS: The demographic and clinical characteristics, as well as severity of IUAs, were comparable in both groups. The mean initial AFS score was 9 and 8.5 in the 4DryField® PH and Hyalobarrier® gel groups, respectively (p = .476). There were no between-group differences in AFS progress (5.9 vs. 5.6, p = .675), need for secondary adhesiolysis (7 vs. 7 patients, p = 1), and the follow-up outcomes. CONCLUSION: 4DryField® PH could be a promising antiadhesive agent for preventing the recurrence of IUAs, showing similar effectiveness and safety to Hyalobarrier® gel. Our findings warrant prospective validation in a larger clinical trial. CLINICAL TRIAL REGISTRY NUMBER: ISRCTN15630617.

12.
Food Chem ; 453: 139571, 2024 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-38761741

RÉSUMÉ

The traditional strategies of chemical catalysis and biocatalysis for producing octenyl succinic anhydride modified starch can only randomly graft hydrophobic groups on the surface of starch, resulting in unsatisfactory emulsification performance. In this work, a lipase-inorganic hybrid catalytic system with multi-scale flower like structure is designed and applied to spatially selective catalytic preparation of ocenyl succinic anhydride modified starch. With the appropriate floral morphology and petal density, lipases distributed in the "flower center" can selectively catalyze the grafting of hydrophobic groups in a spatial manner, the hydrophobic groups are concentrated on one side of starch particles. The obtaining OSA starch exhibits excellent emulsifying property, and the pickering emulsion has good protective effect on the embedded curcumin. This work provides a direction for the development of high-performance starch-based emulsifiers for the food and pharmaceutical industries, which is of great significance for improving the preparation and emulsification theory research of modified starch.


Sujet(s)
Émulsions , Triacylglycerol lipase , Amidon , Amidon/composition chimique , Amidon/analogues et dérivés , Émulsions/composition chimique , Triacylglycerol lipase/composition chimique , Triacylglycerol lipase/métabolisme , Émulsifiants/composition chimique , Catalyse , Interactions hydrophobes et hydrophiles , Anhydrides succiniques/composition chimique , Taille de particule , Biocatalyse
13.
Int J Biol Macromol ; 266(Pt 2): 131206, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38574919

RÉSUMÉ

In this study, cinnamic acid modified acid-ethanol hydrolyzed starch (CAES) with different degrees of substitution (DS) was fabricated to stabilize Pickering emulsions and probed their application for encapsulating curcumin (Cur). Successful preparation of CAES (with DS from 0.016 to 0.191) was confirmed by 1H NMR and FT-IR, and their physicochemical properties were characterized by XRD, SEM, and TGA. The biosafety evaluations and surface wettability confirmed the excellent safety and amphiphilic character of CAES. CAES-stabilized Pickering emulsion (CS-PE) exhibited different emulsion stability at different DS, with CS-PE (0.031) showing the highest stability. CLSM revealed that the CAES (0.031) formed a dense barrier on the surface of the oil droplets, preventing them from coalescing. The CS-PE (0.031) achieved effective encapsulation of Cur (up to 96.2 %). Compared with free Cur, CS-PE (0.031) exhibited better photochemical stability, higher free fatty acids (FFA) release, and enhanced bioaccessibility. These studies suggested that CAES may serve as a promising emulsifier for stabilizing Pickering emulsions to encapsulate and deliver hydrophobic bioactive compounds.


Sujet(s)
Curcumine , Émulsifiants , Émulsions , Amidon , Curcumine/composition chimique , Amidon/composition chimique , Émulsions/composition chimique , Émulsifiants/composition chimique , Interactions hydrophobes et hydrophiles , Cinnamates/composition chimique , Préparation de médicament
14.
Food Chem ; 446: 138841, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38428082

RÉSUMÉ

Native starch has poor stability and usually requires modification to expand its industrial application range. Commonly used methods are physical, chemical, enzymatic and compound modification. Microwave radiation, as a kind of physical method, is promising due to its uniform energy radiation, greenness, safety, non-toxicity. It can meet the demand of consumers for safe food. Microwave-assisted modification with other methods can directly or indirectly affect the structure of starch granules to obtain modified starch with high degree of substitution and low viscosity, and the modification efficiency is greatly improved. This paper reviews the effect of microwave radiation on the physicochemical properties of starch, such as granule morphology, crystallization characteristics, and gelatinization characteristics, as well as the application of microwave radiation in starch modification and starch food processing. It provides theoretical references and suggestions for the research of microwave heating modified starch and the deep processing of starchy foods.


Sujet(s)
Micro-ondes , Amidon , Amidon/composition chimique , Viscosité , Cristallisation , Manipulation des aliments
15.
Nanomaterials (Basel) ; 14(6)2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38535657

RÉSUMÉ

The encapsulation and the oxidative stability of cod liver fish oil (CLO) within coaxial electrosprayed (ethyl cellulose/CLO) core-(octenyl succinic anhydride, OSA-modified starch) shell, and monoaxial electrosprayed ethyl cellulose/CLO microcapsules were investigated. Core-shell (H-ECLO) and monoaxial (ECLO) electrosprayed microcapsules with an average diameter of 2.8 ± 1.8 µm, and 2.2 ± 1.4 µm, respectively, were produced. Confocal microscopy confirmed not only the core-shell structure of the H-ECLO microcapsules, but also the location of the CLO in the core. However, for the ECLO microcapsules, the CLO was distributed on the microcapsules' surface, as also confirmed by Raman spectroscopy. Atomic force microscopy showed that the average surface adhesion of the H-ECLO microcapsules was significantly lower (5.41 ± 0.31 nN) than ECLO microcapsules (18.18 ± 1.07 nN), while the H-ECLO microcapsules showed a remarkably higher Young's modulus (33.84 ± 4.36 MPa) than the ECLO microcapsules (6.64 ± 0.84 MPa). Differential scanning calorimetry results confirmed that the H-ECLO microcapsules enhanced the oxidative stability of encapsulated CLO by about 15 times, in comparison to non-encapsulated oil, mainly by preventing the presence of the fish oil at the surface of the microcapsules, while ECLO microcapsules enhanced the oxidative stability of CLO about 2.9 times due to the hydrophobic interactions of the oil and ethyl cellulose. Furthermore, the finite element method was also used to evaluate the electric field strength distribution, which was substantially higher in the vicinity of the collector and lower in the proximity of the nozzle when the coaxial electrospray process was employed in comparison to the monoaxial process.

16.
Heliyon ; 10(6): e27453, 2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38509922

RÉSUMÉ

This study reviews the importance of resistant starch (RS) as the polymer of choice for biodegradable food packaging and highlights the RS types and modification methods for developing RS from native starch (NS). NS is used in packaging because of its vast availability, low cost and film forming capacity. However, application of starch is restricted due to its high moisture sensitivity and hydrophilic nature. The modification of NS into RS improves the film forming characteristics and extends the applications of starch into the formulation of packaging. The starch is blended with other bio-based polymers such as guar, konjac glucomannan, carrageenan, chitosan, xanthan gum and gelatin as well as active ingredients such as nanoparticles (NPs), plant extracts and essential oils to develop hybrid biodegradable packaging with reduced water vapor permeability (WVP), low gas transmission, enhanced antimicrobial activity and mechanical properties. Hybrid RS based active packaging is well known for its better film forming properties, crystalline structures, enhanced tensile strength, water resistance and thermal properties. This review concludes that RS, due to its better film forming ability and stability, can be utilized as polymer of choice in the formulation of biodegradable packaging.

17.
Foods ; 13(2)2024 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-38254604

RÉSUMÉ

Ensuring the stability of zein nanoparticles at different pH levels is crucial for their application as nanocarriers. In this study, octenyl succinic anhydride-modified starch (OSA-modified starch) was employed to enhance the stability of zein nanoparticles against different pH levels by forming complex nanoparticles with OSA-modified starch. The effect of preparation pH on the stability of the zein/OSA-modified starch nanoparticles was investigated. Sedimentation occurred in zein nanoparticles as the pH reached the isoelectric point. However, the stability of zein nanoparticles at various pH levels significantly improved after adding OSA-modified starch to form zein/OSA-modified starch nanoparticles regardless of whether they were prepared under acidic or alkaline pH conditions. Notably, the stability of zein/OSA-modified starch nanoparticles prepared at an acidic pH was higher than that of those prepared at an alkaline pH, thereby highlighting the critical role of the preparation pH for zein/OSA-modified starch in maintaining the stability of zein. The stable zein/OSA-modified starch nanoparticles developed in this study exhibit significant potential for use in delivery systems across various pH environments.

18.
Int J Biol Macromol ; 259(Pt 1): 129173, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38181923

RÉSUMÉ

Modified starch was prepared from japonica starch (JS) by heat-moisture treatments (HMT). Under the same moisture content and HMT temperature, the effects of various HMT times on the structural, properties of JS and its in vitro digestibility properties were investigated. The results showed that adhesion occurred between the particles of japonica starch after the HMT, and there were depressions on the surface. The size of the JS particles increased, the short-range ordering and relative crystallinity of the HMT-modified starch increased and gradually decreased, reaching a peak of 36.51 % at 6 h, as the HMT time was extended. The pasting indexes of HMT-modified starch decreased and then increased with the increase of the HMT time; compared with JS, the thermal stability of HMT-modified starch increased while the pasting enthalpy decreased. All the HMT-modified starches were weakly gelatinous systems and pseudoplastic fluids. Following HMT, the amount of resistant starch (RS) and slowly digested starch (SDS) grew initially before declining. The amount of RS in HMT-modified starch peaked at 24.28 % when the HMT time was 6 h. The results of this research can serve as a theoretical foundation for the creation of modified japonica starch and its use in the food industry.


Sujet(s)
Température élevée , Amidon , Amidon/composition chimique , Température , Thermodynamique , Amidon résistant
19.
Int J Biol Macromol ; 259(Pt 2): 129230, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38184054

RÉSUMÉ

The ultrasonically processed Eugenol (EU) and Carvacrol (CAR) nanoemulsions (NE) were successfully optimized via response surface methodology (RSM) to achieve broad spectrum antimicrobial efficacy. These NE were prepared using 2 % (w/w) purity gum ultra (i.e., succinylated starch), 10 % (v/v) oil phase, 80 % (800 W) sonication power, and 10 min of processing time as determined via RSM. The second order Polynomial method was suitable to RSM with a co-efficient of determination >0.90 and a narrow polydispersity index (PDI) ranging 0.12-0.19. NE had small droplet sizes (135.5-160 nm) and low volatility at high temperatures. The EU & CAR entrapment and heat stability (300 °C) confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Further, the volatility of EU & CAR NE was 18.18 ± 0.13 % and 12.29 ± 0.11 % respectively, being lower than that of bulk/unencapsulated EU & CAR (i.e., 23.48 ± 0.38 % and 19.11 ± 0.08 %) after 2 h at 90 °C. Interestingly, both EU & CAR NE showed sustained release behaviour till 48 h. Their digest could inhibit Salmonella typhimurium (S. typhimurium) via membrane disruption and access to cellular machinery as evident from SEM images. Furthermore, in-vivo bio-accessibility of EU & CAR in mice serum was up to 80 %. These cost-effective and short-processed EU/CAR NE have the potential as green preservatives for food industry.


Sujet(s)
Anti-infectieux , Cymènes , Eugénol , Animaux , Souris , Eugénol/pharmacologie , Eugénol/composition chimique , Salmonella typhimurium , Amidon/composition chimique , Anti-infectieux/pharmacologie , Émulsions
20.
J Agric Food Chem ; 72(1): 590-603, 2024 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-38133624

RÉSUMÉ

SBEIIb (Sobic.004G163700), SSSIIa (Sobic.010G093400), and GBSSI (Sobic.010G022600) genes that regulate starch synthesis in sorghum endosperm were transferred into Escherichia coli by transgenic technology. SBEIIb, SSSIIa, and GBSSI enzymes were separated and purified through a Ni column and analyzed by electrophoresis with molecular weights and activities of 91.57 84.57, and 66.89 kDa and 551 and 700 and 587 U/µL, respectively. Furthermore, they were applied to starch modification, yielding interesting findings: the A chain content increased from 25.79 to 89.55% for SBEIIb-treated waxy starch, while SSSIIa extended the A chain to form DPs of the B chain, with A chain content decreasing from 89.55 to 37.01%, whereas GBSSI was explicitly involved in the synthesis of B1 chain, with its content increasing from 9.59 to 48.45%. Modified starch was obtained, which could be accurately applied in various industries. For instance, we prepared a sample (containing 89.6% A chain content) with excellent antiaging and antidigestion properties through SBEIIb modification. Moreover, higher RS3 (34.25%) and SDS contents (15.75%) of starch were obtained through the joint modification of SBEIIb and SSSIIa. These findings provide valuable insights for developing sorghum starch synthesis-related enzymes and offer opportunities for improving starch properties through enzymatic approaches.


Sujet(s)
Sorghum , Amidon , Sorghum/génétique , Escherichia coli/génétique , Amylopectine , Endosperme/composition chimique , Amylose/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE