Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 58
Filtrer
1.
Curr Top Med Chem ; 2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38591201

RÉSUMÉ

Neurodegenerative diseases are emerging as a global health concern in the current sce-nario, and their association with mitochondrial defects has been a potential area of research. Mi-tochondria, one of the essential organelles of the cell, serve as the cell's powerhouse, producing energy and ensuring cellular health. Neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and Pelizaeus-Merzbacher disease have been found to be primarily triggered by mitochondrial malfunction. One of the key byproducts of mitochondrial respiration, reactive oxygen species, also contributes significantly to mitochondrial DNA muta-tions that eventually cause mitochondrial breakdown. This review paper comprehensively examines the potential of therapeutic biomolecules, specifi-cally mitochondria-specific antioxidants, in mitigating the impact of mitochondrial defects on neurodegenerative diseases. It provides a detailed analysis of the mechanisms involved in mito-chondrial dysfunction, the potential therapeutic targets of these biomolecules, and their structure-activity relationship information are also discussed in this review. Various research articles and publications were used extensively in compiling the data, and the structures of biomolecules were prepared using software such as ChemDraw and ChemSketch. Crucial elements triggering mitochondrial abnormalities were identified and a tabular compilation of bioactive antioxidant compounds along with their therapeutic targets, was presented. Mitochondria-specific antioxidant therapy is an innovative and promising strategy for the man-agement of neurodegenerative diseases associated with mitochondrial defects. This review pro-vides a thorough summary of the current state of research and promising avenues of research and development in this field, emphasizing the importance of further investigations and clinical trials to elucidate their therapeutic benefits.

2.
J Biomed Sci ; 30(1): 70, 2023 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-37605213

RÉSUMÉ

BACKGROUND: Myoclonic epilepsy with ragged-red fibers (MERRF) syndrome is a rare inherited mitochondrial disease mainly caused by the m.8344A > G mutation in mitochondrial tRNALys gene, and usually manifested as complex neurological disorders and muscle weakness. Currently, the pathogenic mechanism of this disease has not yet been resolved, and there is no effective therapy for MERRF syndrome. In this study, MERRF patients-derived iPSCs were used to model patient-specific neurons for investigation of the pathogenic mechanism of neurological disorders in mitochondrial disease. METHODS: MERRF patient-derived iPSCs were differentiated into excitatory glutamatergic neurons to unravel the effects of the m.8344A > G mutation on mitochondrial bioenergetic function, neural-lineage differentiation and neuronal function. By the well-established differentiation protocol and electrophysiological activity assay platform, we examined the pathophysiological behaviors in cortical neurons of MERRF patients. RESULTS: We have successfully established the iPSCs-derived neural progenitor cells and cortical-like neurons of patients with MERRF syndrome that retained the heteroplasmy of the m.8344A > G mutation from the patients' skin fibroblasts and exhibited the phenotype of the mitochondrial disease. MERRF neural cells harboring the m.8344A > G mutation exhibited impaired mitochondrial bioenergetic function, elevated ROS levels and imbalanced expression of antioxidant enzymes. Our findings indicate that neural immaturity and synaptic protein loss led to the impairment of neuronal activity and plasticity in MERRF neurons harboring the m.8344A > G mutation. By electrophysiological recordings, we monitored the in vivo neuronal behaviors of MERRF neurons and found that neurons harboring a high level of the m.8344A > G mutation exhibited impairment of the spontaneous and evoked potential-stimulated neuronal activities. CONCLUSIONS: We demonstrated for the first time the link of mitochondrial impairment and synaptic dysfunction to neurological defects through impeding synaptic plasticity in excitatory neurons derived from iPSCs of MERRF patients harboring the m.8344A > G mutation. This study has provided new insight into the pathogenic mechanism of the tRNALys gene mutation of mtDNA, which is useful for the development of a patient-specific iPSCs platform for disease modeling and screening of new drugs to treat patients with MERRF syndrome.


Sujet(s)
Syndrome MERRF , Cellules souches neurales , Humains , Syndrome MERRF/génétique , ARN de transfert de la lysine , Neurones , Mitochondries/génétique
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166804, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37429560

RÉSUMÉ

Mitochondrial diseases are a group of clinical disorders caused by mutations in the genes encoded by either the nuclear or the mitochondrial genome involved in mitochondrial oxidative phosphorylation. Disorders become evident when mitochondrial dysfunction reaches a cell-specific threshold. Similarly, the severity of disorders is related to the degree of gene mutation. Clinical treatments for mitochondrial diseases mainly rely on symptomatic management. Theoretically, replacing or repairing dysfunctional mitochondria to acquire and preserve normal physiological functions should be effective. Significant advances have been made in gene therapies, including mitochondrial replacement therapy, mitochondrial genome manipulation, nuclease programming, mitochondrial DNA editing, and mitochondrial RNA interference. In this paper, we review the recent progress in these technologies by focusing on advancements that overcome limitations.


Sujet(s)
Génome mitochondrial , Maladies mitochondriales , Humains , Génome mitochondrial/génétique , ADN mitochondrial/génétique , Maladies mitochondriales/génétique , Maladies mitochondriales/thérapie , Mitochondries/génétique , Mutation
4.
Forensic Sci Int Genet ; 66: 102912, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37451073

RÉSUMÉ

The significance of mtDNA heteroplasmy in forensic and medical genetics has increased recently because massively parallel sequencing (MPS) technologies enable more accurate and precise detection of minority nucleotide variants. Recent reports have shown that detection of low-level substitutions may depend on library preparation or sequencing protocol, and can vary for different MPS platforms. The MiSeq (Illumina) and Ion S5 (Thermo Fisher Scientific) are mainly used for heteroplasmy detection, but no data are available regarding the iSeq 100, an Illumina platform of the smallest throughput. Notably, unlike the other systems, the machine utilizes sequencing by synthesis one-channel chemistry to determine DNA sequences. Thus, it is important to verify the capability of the iSeq 100 system to determine mitochondrial haplotypes and detect heteroplasmic substitutions. In this study, previously determined entire mitochondrial genomes were sequenced with the iSeq 100 system. Each mitogenome was sequenced twice, giving approximately 2000x and 10,000x coverage. All homoplasmic mutations and minority variants above the 19 % level detected with the iSeq 100 system were also observed after dideoxy sequencing. Moreover, all heteroplasmic substitutions above the 2 % level were consistently detected with SBS one-channel chemistry. However, detection of low-level mtDNA variants may require additional, confirmatory experiments. In summary, the iSeq 100 system enables reproducible and accurate sequencing of human mitochondrial genomes. Detection of mtDNA minority variants depends on the laboratory protocol and sequencing platform used, but homoplasmic mutations and heteroplasmy above the 2 % level can be correctly detected with the iSeq 100 system.


Sujet(s)
Génome mitochondrial , Humains , Analyse de séquence d'ADN , ADN mitochondrial/génétique , Séquençage nucléotidique à haut débit/méthodes , Génétique légale/méthodes
5.
Toxicol Res (Camb) ; 12(1): 133-142, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36866208

RÉSUMÉ

Hexanitrohexaazaisowurtzitane (CL-20) is a high-energy elemental explosive widely used in chemical and military fields. CL-20 harms environmental fate, biosafety, and occupational health. However, there is little known about the genotoxicity of CL-20, in particular its molecular mechanisms. Therefore, this study was framed to investigate the genotoxic mechanisms of CL-20 in V79 cells and evaluate whether the genotoxicity could be diminished by pretreating the cells with salidroside. The results showed that CL-20-induced genotoxicity in V79 cells primarily through oxidative damage to DNA and mitochondrial DNA (mtDNA) mutation. Salidroside could significantly reduce the inhibitory effect of CL-20 on the growth of V79 cells and reduce the levels of reactive oxygen species (ROS), 8-hydroxy-2 deoxyguanosine (8-OHdG), and malondialdehyde (MDA). Salidroside also restored CL-20-induced superoxide dismutase (SOD) and glutathione (GSH) in V79 cells. As a result, salidroside attenuated the DNA damage and mutations induced by CL-20. In conclusion, oxidative stress may be involved in CL-20-induced genotoxicity in V79 cells. Salidroside could protect V79 cells from oxidative damage induced by CL-20, mechanism of which may be related to scavenging intracellular ROS and increasing the expression of proteins that can promote the activity of intracellular antioxidant enzymes. The present study for the mechanisms and protection of CL-20-mediated genotoxicity will help further to understand the toxic effects of CL-20 and provide information on the therapeutic effect of salidroside in CL-20-induced genotoxicity.

6.
Anal Biochem ; 669: 115122, 2023 05 15.
Article de Anglais | MEDLINE | ID: mdl-36948236

RÉSUMÉ

Mitochondrial diseases (MDs) are genetic and clinical heterogeneous diseases caused by mitochondrial oxidative phosphorylation defects. It is not only one of the most common genetic diseases, but also the only genetic disease involving two different genomes in humans. As a result of the complicated genetic condition, the pathogenesis of MDs is not entirely elucidated at present, and there is a lack of effective treatment in the clinic. Establishing the ideal animal models is the critical preclinical platform to explore the pathogenesis of MDs and to verify new therapeutic strategies. However, the development of animal modeling of mitochondrial DNA (mtDNA)-related MDs is time-consuming due to the limitations of physiological structure and technology. A small number of animal models of mtDNA mutations have been constructed using cell hybridization and other methods. However, the diversity of mtDNA mutation sites and clinical phenotypes make establishing relevant animal models tricky. The development of gene editing technology has become a new hope for establishing animal models of mtDNA-related mitochondrial diseases.


Sujet(s)
ADN mitochondrial , Maladies mitochondriales , Animaux , Humains , ADN mitochondrial/génétique , Maladies mitochondriales/génétique , Maladies mitochondriales/anatomopathologie , Maladies mitochondriales/thérapie , Mitochondries/génétique , Mutation , Modèles animaux de maladie humaine
7.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-36769001

RÉSUMÉ

In 25% of patients with mitochondrial myopathies, pathogenic mitochondrial DNA (mtDNA) mutation are the cause. For heteroplasmic mtDNA mutations, symptoms manifest when the mutation load exceeds a tissue-specific threshold. Therefore, lowering the mutation load is expected to ameliorate disease manifestations. This can be achieved by fusing wild-type mesoangioblasts with mtDNA mutant myotubes. We have tested this in vitro for female carriers of the m.3271T>C or m.3291T>C mutation (mutation load >90%) using wild-type male mesoangioblasts. Individual fused myotubes were collected by a newly-developed laser capture microdissection (LCM) protocol, visualized by immunostaining using an anti-myosin antibody. Fusion rates were determined based on male-female nuclei ratios by fluorescently labelling the Y-chromosome. Using combined 'wet' and 'air dried' LCM imaging improved fluorescence imaging quality and cell yield. Wild-type mesoangioblasts fused in different ratios with myotubes containing either the m.3271T>C or the m.3291T>C mutation. This resulted in the reduction of the mtDNA mutation load proportional to the number of fused wild-type mesoangioblasts for both mtDNA mutations. The proportional reduction in mtDNA mutation load in vitro after fusion is promising in the context of muscle stem cell therapy for mtDNA mutation carriers in vivo, in which we propose the same strategy using autologous wild-type mesoangioblasts.


Sujet(s)
ADN mitochondrial , Fibres musculaires squelettiques , Humains , Mâle , Femelle , ADN mitochondrial/génétique , Mutation , Mitochondries/génétique , Chromosome Y
8.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article de Anglais | MEDLINE | ID: mdl-36499488

RÉSUMÉ

The kidney is a mitochondria-rich organ, and kidney diseases are recognized as mitochondria-related pathologies. Intact mitochondrial DNA (mtDNA) maintains normal mitochondrial function. Mitochondrial dysfunction caused by mtDNA damage, including impaired mtDNA replication, mtDNA mutation, mtDNA leakage, and mtDNA methylation, is involved in the progression of kidney diseases. Herein, we review the roles of mtDNA damage in different setting of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). In a variety of kidney diseases, mtDNA damage is closely associated with loss of kidney function. The level of mtDNA in peripheral serum and urine also reflects the status of kidney injury. Alleviating mtDNA damage can promote the recovery of mitochondrial function by exogenous drug treatment and thus reduce kidney injury. In short, we conclude that mtDNA damage may serve as a novel biomarker for assessing kidney injury in different causes of renal dysfunction, which provides a new theoretical basis for mtDNA-targeted intervention as a therapeutic option for kidney diseases.


Sujet(s)
Atteinte rénale aigüe , ADN mitochondrial , Humains , ADN mitochondrial/métabolisme , Mitochondries/génétique , Mitochondries/anatomopathologie , Rein/métabolisme , Atteinte rénale aigüe/anatomopathologie , Marqueurs biologiques/métabolisme , Altération de l'ADN
9.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article de Anglais | MEDLINE | ID: mdl-36361713

RÉSUMÉ

Mitochondria are an important energy source in skeletal muscle. A main function of mitochondria is the generation of ATP for energy through oxidative phosphorylation (OXPHOS). Mitochondrial defects or abnormalities can lead to muscle disease or multisystem disease. Mitochondrial dysfunction can be caused by defective mitochondrial OXPHOS, mtDNA mutations, Ca2+ imbalances, mitochondrial-related proteins, mitochondrial chaperone proteins, and ultrastructural defects. In addition, an imbalance between mitochondrial fusion and fission, lysosomal dysfunction due to insufficient biosynthesis, and/or defects in mitophagy can result in mitochondrial damage. In this review, we explore the association between impaired mitochondrial function and skeletal muscle disorders. Furthermore, we emphasize the need for more research to determine the specific clinical benefits of mitochondrial therapy in the treatment of skeletal muscle disorders.


Sujet(s)
Mitochondries , Maladies musculaires , Humains , Mitochondries/génétique , Mitochondries/métabolisme , Phosphorylation oxydative , Mitophagie , Dynamique mitochondriale , Maladies musculaires/métabolisme , Muscles squelettiques/métabolisme , Protéines mitochondriales/métabolisme , ADN mitochondrial/génétique
10.
Cureus ; 14(10): e30198, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-36381806

RÉSUMÉ

Mitochondrial DNA (mtDNA) is responsible for encoding 13 subunits of the respiratory chain. These subunits are crucial in providing reducing equivalents for the energy-intensive intracellular processes. Leber hereditary optic neuropathy (LHON) is a mitochondrial illness that causes carcinogenesis due to oxidative stress and painless loss of central vision as a result of selective degradation of retinal ganglion cells as well as their axons. We present a case of a 23-year-old male patient who was diagnosed with subacute LHON. The mutation in our patient was found in a less commonly mutated exon sequence of MT-NDL4, which codes for NADH (nicotinamide adenine dinucleotide hydrogen, reduced) dehydrogenase subunit 4L. The MT-ND4L exon is located immediately upstream of the MTD4 exon on the human mtDNA. The take-home message is to always perform a comprehensive mitochondrial genome analysis for identifying rare mutations when LHON is suspected.

11.
Life (Basel) ; 12(8)2022 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-36013333

RÉSUMÉ

Chronic human diseases, especially age-related disorders, are often associated with chronic inflammation. It is currently not entirely clear what factors are responsible for the sterile inflammatory process becoming chronic in affected tissues. This process implies impairment of the normal resolution of the inflammatory response, when pro-inflammatory cytokine production ceases and tissue repair process begins. The important role of the mitochondria in the correct functioning of innate immune cells is currently well recognized, with mitochondrial signals being an important component of the inflammatory response regulation. In this work, we propose a hypothesis according to which mitochondrial DNA (mtDNA) mutations may play a key role in rendering certain cells prone to prolonged pro-inflammatory activation, therefore contributing to chronification of inflammation. The affected cells become sites of constant pro-inflammatory stimulation. The study of the distribution of atherosclerotic lesions on the surface of the arterial wall samples obtained from deceased patients revealed a focal distribution of lesions corresponding to the distribution of cells with altered morphology that are affected by mtDNA mutations. These observations support the proposed hypothesis and encourage further studies.

12.
BMC Nephrol ; 23(1): 87, 2022 03 04.
Article de Anglais | MEDLINE | ID: mdl-35246049

RÉSUMÉ

BACKGROUND: MtDNA 3243 A > G mutation leads to mitochondrial myopathies with predominant hyperlactatemia. Given the ubiquitous nature of mitochondria, cellular dysfunction can also appear in tissues with high metabolic turnover; thus, there can be cardiac, digestive, ophthalmologic, and kidney complications. MtDNA 3243 A > G mutation has been shown to be with renal involvement in the previous cases of which are FSGS and tubularinterstitial nephritis. CASE PRESENTATION: We report a case of patient who had the mitochondrial myopathy with mitochondrial DNA (mtDNA) 3243 A > G mutation diagnosed membranous nephropathy by kidney biopsy, which was never reported before. Our patient was found to have chest tightness and shortness of breath with hyperlactatemia and was diagnosed mitochondrial myopathy with mtDNA 3243 A > G mutation 11 months ago. Acute kidney injury occurred with hyperuricemia (urid acid 1011umol/L) which may be associated with mtDNA mutation. Since then, persistent proteinuria was also found and the 24-h urine protein quantitative was around 2 g. Kidney biopsy was performed and the result was consistent with membranous nephropathy, with abnormal mitochondria seen in renal tubules by electron microscopy. CONCLUSIONS: Patients with mitochondrial myopathy could also have renal presentation of membranous nephropathy. Patients with mtDNA mutation may have various renal manifestations so that more attention should be paid on their kidneys.


Sujet(s)
Glomérulonéphrite extra-membraneuse , Hyperlactatémie , Myopathies mitochondriales , ADN mitochondrial/génétique , Femelle , Glomérulonéphrite extra-membraneuse/complications , Glomérulonéphrite extra-membraneuse/diagnostic , Glomérulonéphrite extra-membraneuse/génétique , Humains , Hyperlactatémie/complications , Hyperlactatémie/anatomopathologie , Rein/anatomopathologie , Mâle , Myopathies mitochondriales/complications , Myopathies mitochondriales/diagnostic , Myopathies mitochondriales/génétique
13.
Mol Biol Rep ; 49(5): 3609-3616, 2022 May.
Article de Anglais | MEDLINE | ID: mdl-35118571

RÉSUMÉ

BACKGROUND: Idiopathic male infertility can be attributed to genetic predispositions that affect sperm performance and function. Genetic alterations in the mitochondrial DNA (mtDNA) have been linked to certain types of male infertility and abnormal sperm function. Mutations in the mitochondrial cytochrome B (MT-CYB) gene might lead to some deficiencies in mitochondrial function. Thus, in the current study, we aimed to investigate the effect of mutations in the MT-CYB gene on sperm motility and male infertility. METHODS AND RESULTS: Semen specimens were collected from 111 men where 67 men were subfertile and 44 were fertile. QIAamp DNA Mini Kit and REPLI-g Mitochondrial DNA Kit from QIAGEN were used to isolate and amplify the mitochondrial DNA. Followed by PCR and Sanger sequencing for the target sequence in the MT-CYP gene. Sequencing of the MT-CYB gene revealed a total of thirteen single nucleotide polymorphisms (SNPs). Eight SNPs were non-synonymous variant (missense variant) including: rs2853508, rs28357685, rs41518645, rs2853507, rs28357376, rs35070048, rs2853506, and rs28660155. While five SNPs were Synonymous variant: rs527236194, rs28357373, rs28357369, rs41504845, and rs2854124. Among these SNPs, three variants showed a significant difference in the frequency of the genotypes between subfertile and fertile groups: rs527236194 (T15784C) (P = 0.0005), rs28357373 (T15629C) (P = 0.0439), and rs41504845 (C15833T) (P = 0.0038). Moreover, two SNPs showed a significant association between allelic frequencies of rs527236194 (T15784C) (P = 0.0014) and rs41504845 (C15833T) (P = 0.0147) and male subfertility. CONCLUSION: The current study showed a significant association between the MT-CYB gene polymorphisms and the development of male infertility. In particular, rs527236194, rs28357373 and rs41504845 variants were found to be the most related to the subfertility group. Further studies on larger and other populations are required to reveal the exact role of this gene in the development of male infertility. In addition, functional studies will be helpful to elucidate the molecular impact of the MT-CYP polymorphisms on mitochondrial function.


Sujet(s)
Cytochromes b , Infertilité masculine , Cytochromes b/génétique , ADN mitochondrial/génétique , Humains , Infertilité masculine/génétique , Mâle , Nucléotides , Polymorphisme de nucléotide simple , Mobilité des spermatozoïdes/génétique
14.
Mol Genet Metab ; 135(1): 93-101, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34969639

RÉSUMÉ

Mitochondrial disease diagnosis requires interrogation of both nuclear and mitochondrial (mtDNA) genomes for single-nucleotide variants (SNVs) and copy number alterations, both in the proband and often maternal relatives, together with careful phenotype correlation. We developed a comprehensive mtDNA sequencing test ('MitoGenome') using long-range PCR (LR-PCR) to amplify the full length of the mtDNA genome followed by next generation sequencing (NGS) to accurately detect SNVs and large-scale mtDNA deletions (LSMD), combined with droplet digital PCR (ddPCR) for LSMD heteroplasmy quantification. Overall, MitoGenome tests were performed on 428 samples from 394 patients with suspected or confirmed mitochondrial disease. The positive yield was 11% (43/394), including 34 patients with pathogenic or likely pathogenic SNVs (the most common being m.3243A > G in 8/34 (24%) patients), 8 patients with single LSMD, and 3 patients with multiple LSMD exceeding 10% heteroplasmy levels. Two patients with both LSMD and pathogenic SNV were detected. Overall, this LR-PCR/NGS assay provides a highly accurate and comprehensive diagnostic method for simultaneous mtDNA SNV detection at heteroplasmy levels as low as 1% and LSMD detection at heteroplasmy levels below 10%. Inclusion of maternal samples for variant classification and ddPCR to quantify LSMD heteroplasmy levels further enables accurate pathogenicity assessment and clinical correlation interpretation of mtDNA genome sequence variants and copy number alterations.


Sujet(s)
Génome mitochondrial , Maladies mitochondriales , ADN mitochondrial/génétique , Génome mitochondrial/génétique , Séquençage nucléotidique à haut débit/méthodes , Humains , Mitochondries/génétique , Maladies mitochondriales/diagnostic , Maladies mitochondriales/génétique
15.
Front Neurol ; 13: 946559, 2022.
Article de Anglais | MEDLINE | ID: mdl-36686502

RÉSUMÉ

Case: We report the sperm characteristics of a male patient who developed, when he was 18 years old, a Leber hereditary optic neuropathy, a hereditary optic neuropathy due to mtDNA mutation as well as variants in the nuclear DNA. At the age of 30 years-old, he complained of infertility lasting for 2 years. Semen analyses showed low motility spermatozoa and a high percentage of morphological or ultrastructural abnormalities. Levels of epididymal markers were strongly atypical. Idebenone was prescribed as treatment of his Leber hereditary optic neuropathy in order to improve his visual acuity. After 5 months of this treatment, motility of spermatozoa increased, and their vitality improved. A natural conception occurred. Outcome: This case is the first description of an anomaly of spermatozoas and of the epididymis epithelium in a patient with Leber hereditary optic neuropathy. It draws attention to sperm pathologies in patients with mitochondrial disorders. The role of the mtDNA mutations must be suspected since it plays an important role in the development and motility of spermatozoa. In addition, idebenone can by-pass the complex I and transfer electrons to complex III. It has been suspected to have a favorable effect on spermatogenesis. Conclusion: This case confirms the possibility of sperm dysfunction in Leber hereditary optic neuropathy and the interest of idebenone as a treatment for infertility due to mtDNA mutations in human.

16.
J Clin Med ; 10(8)2021 Apr 20.
Article de Anglais | MEDLINE | ID: mdl-33924201

RÉSUMÉ

Mutations in mitochondrial DNA (mtDNA) cause disruption of the oxidative phosphorylation chain and impair energy production in cells throughout the human body. Primary mitochondrial disorders due to mtDNA mutations can present with symptoms from adult-onset mono-organ affection to death in infancy due to multi-organ involvement. The heterogeneous phenotypes that patients with a mutation of mtDNA can present with are thought, at least to some extent, to be a result of differences in mtDNA mutation load among patients and even among tissues in the individual. The most common symptom in patients with mitochondrial myopathy (MM) is exercise intolerance. Since mitochondrial function can be assessed directly in skeletal muscle, exercise studies can be used to elucidate the physiological consequences of defective mitochondria due to mtDNA mutations. Moreover, exercise tests have been developed for diagnostic purposes for mitochondrial myopathy. In this review, we present the rationale for exercise testing of patients with MM due to mutations in mtDNA, evaluate the diagnostic yield of exercise tests for MM and touch upon how exercise tests can be used as tools for follow-up to assess disease course or effects of treatment interventions.

17.
Bioessays ; 43(6): e2000265, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-33763872

RÉSUMÉ

Much research has focused on the effects of pathogenic mitochondrial mutations on health. Notwithstanding, the mechanisms regulating the link between these mutations and their effects remain elusive in several cases. Here, we propose that certain mitochondrial mutations may disrupt function of a set of mitochondrial-transcribed small RNAs, perturbing communication between mitochondria and nucleus, leading to disease. Our hypothesis synthesises two lines of supporting evidence. First, several mitochondrial mutations cannot be directly linked to effects on energy production or protein synthesis. Second, emerging studies have described the existence of small RNAs encoded by the mitochondria and proposed their involvement in RNA interference. We present a roadmap to testing this hypothesis.


Sujet(s)
Noyau de la cellule , Mitochondries , Noyau de la cellule/génétique , Noyau de la cellule/métabolisme , ADN mitochondrial/métabolisme , Régulation de l'expression des gènes , Humains , Mitochondries/génétique , Mutation , ARN/génétique , ARN/métabolisme , ARN mitochondrial/génétique
18.
Life (Basel) ; 11(2)2021 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-33672784

RÉSUMÉ

Mitochondrial dysfunction is associated with a wide range of chronic human disorders, including atherosclerosis and diabetes mellitus. Mitochondria are dynamic organelles that undergo constant turnover in living cells. Through the processes of mitochondrial fission and fusion, a functional population of mitochondria is maintained, that responds to the energy needs of the cell. Damaged or excessive mitochondria are degraded by mitophagy, a specialized type of autophagy. These processes are orchestrated by a number of proteins and genes, and are tightly regulated. When one or several of these processes are affected, it can lead to the accumulation of dysfunctional mitochondria, deficient energy production, increased oxidative stress and cell death-features that are described in many human disorders. While severe mitochondrial dysfunction is known to cause specific and mitochondrial disorders in humans, progressing damage of the mitochondria is also observed in a wide range of other chronic diseases, including cancer and atherosclerosis, and appears to play an important role in disease development. Therefore, correction of mitochondrial dynamics can help in developing new therapies for the treatment of these conditions. In this review, we summarize the recent knowledge on the processes of mitochondrial turnover and the proteins and genes involved in it. We provide a list of known mutations that affect mitochondrial function, and discuss the emerging therapeutic approaches.

19.
Heliyon ; 7(3): e06372, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-33732926

RÉSUMÉ

The study aimed to determine the addition of green tea extract (GTE) in extender on the quality and DNA mutation of post-thawed Kacang buck sperm. The sperm DNA mutation was observed on nicotinamide adenine dinucleotide hydride (NADH) dehydrogenase 1 (ND1) of mitochondrial Deoxyribonucleic Acid (mtDNA). A pool of 12 Kacang buck ejaculates was diluted in skim milk-egg yolk extender contained 0, 0.05, 0.10, and 0.15 mg of GTE/100 mL for T0, T1, T2, and T3 group, respectively. Each of the aliquot groups was packaged in 0.25 mL French mini straw contained 60 million alive sperm and froze according to the protocol. The ND1 mtDNA amplification of samples was carried out Polymerase Chain Reaction machine, followed by DNA sequencing using the Sanger method. Meanwhile, the phylogenetic tree was constructed using the neighbor-joining (NJ) method with MEGA 7.0 software. The results showed that the T2 group maintained the highest quality for Kacang buck post-thawed semen. There was the highest percentages of sperms viability, motility, intact plasma membrane (IPM), the lowest of malondialdehyde (MDA) concentration, sperm DNA fragmentation (SDF), the total and types of ND1 mtDNA mutation frequency. The phylogenetic tree analysis revealed that the clade of the T2 group was most closely related to the sequence reference. However, there was no correlation between the semen quality parameters (sperm viability, motility, IPM, MDA concentration, and SDF) with ND1 mtDNA mutation of post-thawed Kacang buck semen. It could be concluded that GTE was useful as an antioxidant for Kacang buck semen extender for frozen sperm.

20.
Mitochondrion ; 58: 59-63, 2021 05.
Article de Anglais | MEDLINE | ID: mdl-33639270

RÉSUMÉ

Mitochondrial DNA (mtDNA) mutations cause severe maternally inherited disorders, although mechanisms regulating mother-to-offspring transmission have not yet been elucidated. To investigate if mtDNA mutations affect embryonic development, we compared morphology, viability and mtDNA content in control (n = 165) and mitochondrial (n = 16) human embryos at the cleavage-stage. mtDNA copy number (CN) was assessed in one or two embryonic cells, by real-time PCR. The presence of a maternal or embryonic mtDNA mutation did not impact on either embryonic quality or viability. mtDNA CN was not altered by mtDNA mutations, suggesting that mtDNA defects do not modify mtDNA metabolism at this early stage.


Sujet(s)
ADN mitochondrial/génétique , Développement embryonnaire/génétique , Mutation , Femelle , Humains , Âge maternel , Réserve ovarienne , Grossesse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...