Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 141
Filtrer
1.
MycoKeys ; 106: 303-325, 2024.
Article de Anglais | MEDLINE | ID: mdl-38993357

RÉSUMÉ

Species of the family Microdochiaceae (Xylariales, Sordariomycetes) have been reported from worldwide, and collected from different plant hosts. The proposed new genus and two new species, viz., Macroidriella gen. nov., M.bambusae sp. nov. and Microdochiumaustrale sp. nov., are based on multi-locus phylogenies from a combined dataset of ITS rDNA, LSU, RPB2 and TUB2 with morphological characteristics. Microdochiumsinense has been collected from diseased leaves of Phragmitesaustralis and this is the first report of the fungus on this host plant. Simultaneously, we annotated 10,372 to 11,863 genes, identified 4,909 single-copy orthologous genes, and conducted phylogenomic analysis based on genomic data. A gene family analysis was performed and it will expand the understanding of the evolutionary history and biodiversity of the Microdochiaceae. The detailed descriptions and illustrations of species are provided.

2.
Mycologia ; : 1-13, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38959129

RÉSUMÉ

Pinibarrenia chlamydospora, sp. nov. isolated from the roots of highbush blueberry in the New Jersey Pine Barrens, is described and illustrated. Based on multigene phylogenetic analysis, as well as morphological and ecological characteristics, Pinibarreniales and Pinibarreniaceae are established to accommodate this novel lineage in Sordariomycetidae, Sordariomycetes. Pinibarreniales, Tracyllalales, and Vermiculariopsiellales are proposed to be included in the subclass Sordariomycetidae. Pinibarreniales likely have a wide distribution and forms association with Ericaceae plants that live in acidic and oligotrophic environments because its DNA barcode matches with environmental sequences from other independent ecological studies. The plant-fungal interaction experiment revealed negative impacts on Arabidopsis, indicating its pathogenicity. This uncovered new fungal lineage will contribute to a better understanding of the diversity and systematics of Sordariomycetes.

3.
J Fungi (Basel) ; 10(6)2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38921368

RÉSUMÉ

Members of the fungal order Diaporthales are sac fungi that include plant pathogens (the notorious chestnut blight fungus), as well as saprobes and endophytes, and are capable of colonizing a wide variety of substrates in different ecosystems, habitats, and hosts worldwide. However, many Diaporthales species remain unidentified, and various inconsistencies within its taxonomic category remain to be resolved. Here, we aimed to identify and classify new species of Diaporthales by using combined morphological and molecular characterization and coupling this information to expand our current phylogenetic understanding of this order. Fungal samples were obtained from dead branches and diseasedleaves of Camellia (Theaceae) and Castanopsis (Fagaceae) in Fujian Province, China. Based on morphological characteristics and molecular phylogenetic analyses derived from the combined nucleotide sequences of loci of the internal transcribed spacer regions with the intervening 5.8S nrRNA gene (ITS), the 28S large subunit of nuclear ribosomal RNA gene (LSU), the translation elongation factor 1-α gene (tef1), the partial beta-tubulin gene (tub2), and partial RNA polymerase II second-largest subunit gene (rpb2), three new species of Diaporthales were identified and characterized. They are as follows: Chrysofolia camelliae sp. nov., Dendrostoma castanopsidis sp. nov., and Pseudoplagiostoma wuyishanense sp. nov. They are described and illustrated. This study extends our understanding of species diversity within the Diaporthales.

4.
MycoKeys ; 103: 129-165, 2024.
Article de Anglais | MEDLINE | ID: mdl-38584717

RÉSUMÉ

A new genus, Rostrupomyces is established to accommodate Xerocomussisongkhramensis based on multiple protein-coding genes (atp6, cox3, tef1, and rpb2) analyses of a wide taxon sampling of Boletaceae. In our phylogeny, the new genus was sister to Rubinosporus in subfamily Xerocomoideae, phylogenetically distant from Xerocomus, which was highly supported as sister to Phylloporus in the same subfamily Xerocomoideae. Rostrupomyces is different from other genera in Boletaceae by the following combination of characters: rugulose to subrugulose pileus surface, white pores when young becoming pale yellow in age, subscabrous stipe surface scattered with granulose squamules, white basal mycelium, unchanging color in any parts, yellowish brown spore print, and broadly ellipsoid to ellipsoid, smooth basidiospores. In addition, Hemileccinuminferius, also from subfamily Xerocomoideae, is newly described. Detailed descriptions and illustrations of the new genus and new species are presented.

5.
Sci Rep ; 14(1): 9298, 2024 04 23.
Article de Anglais | MEDLINE | ID: mdl-38654032

RÉSUMÉ

Agaricales, Russulales and Boletales are dominant orders among the wild mushrooms in Basidiomycota. Boletaceae, one of the major functional elements in terrestrial ecosystem and mostly represented by ectomycorrhizal symbionts of trees in Indian Himalaya and adjoining hills, are extraordinarily diverse and represented by numerous genera and species which are unexplored or poorly known. Therefore, their hidden diversity is yet to be revealed. Extensive macrofungal exploration by the authors to different parts of Himalaya and surroundings, followed by through morphological studies and multigene molecular phylogeny lead to the discovery of five new species of wild mushrooms: Leccinellum bothii sp. nov., Phylloporus himalayanus sp. nov., Phylloporus smithii sp. nov., Porphyrellus uttarakhandae sp. nov., and Retiboletus pseudoater sp. nov. Present communication deals with morphological details coupled with illustrations and phylogenetic inferences. Besides, Leccinellum sinoaurantiacum and Xerocomus rugosellus are also reported for the first time from this country.


Sujet(s)
Agaricales , Phylogenèse , Inde , Agaricales/génétique , Agaricales/classification , ADN fongique/génétique , Basidiomycota/génétique , Basidiomycota/classification
6.
MycoKeys ; 103: 71-95, 2024.
Article de Anglais | MEDLINE | ID: mdl-38560534

RÉSUMÉ

The tropical areas in southern and south-western Yunnan are rich in fungal diversity. Additionally, the diversity of seed flora in Yunnan Province is higher than in other regions in China and the abundant endemic species of woody plants provide favourable substrates for fungi. Rubber plantations in Yunnan Province are distributed over a large area, especially in Xishuangbanna. During a survey of rubber-associated fungi in Yunnan Province, China, dead rubber branches with fungal fruiting bodies were collected. Morphological characteristics and multigene phylogenetic analyses (ITS, LSU, SSU, rpb2 and tef1-α) revealed four distinct new species, described herein as Melomastiapuerensis, Nigrogranalincangensis, Pseudochaetosphaeronemalincangensis and Pseudochaetosphaeronemaxishuangbannaensis. Detailed descriptions, illustrations and phylogenetic trees are provided to show the taxonomic placements of these new species.

7.
J Fungi (Basel) ; 10(1)2024 Jan 17.
Article de Anglais | MEDLINE | ID: mdl-38248983

RÉSUMÉ

Apiospora is widely distributed throughout the world, and most of its hosts are Poaceae. In this study, Arthrinium-like strains were isolated from non-Poaceae in the Hainan and Fujian provinces of China. Based on the combined DNA sequence data of the internal transcriptional spacer (ITS), partial large subunit nuclear rDNA (LSU), translation extension factor 1-α gene (TEF1-α) and ß-tubulin (TUB2), the collected Apiospora specimens were compared with known species, and three new species were identified. Based on morphological and molecular phylogenetic analyses, Apiospora adinandrae sp. nov., A. bawanglingensis sp. nov. and A. machili sp. nov. are described and illustrated.

8.
Plant Dis ; 108(3): 599-607, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-37682223

RÉSUMÉ

Walnut is cultivated around the world for its precious woody nut and edible oil. Recently, walnut infected by Colletotrichum spp. resulted in a great yield and quality loss. In August and September 2014, walnut fruits with anthracnose were sampled from two commercial orchards in Shaanxi and Liaoning provinces, and five representative isolates were used in this study. To identify the pathogen properly, four genes per region (internal transcribed spacer, glyceraldehyde-3-phosphate dehydrogenase, actin, and chitin synthase) were sequenced and used in phylogenetic studies. Based on multilocus phylogenetic analysis, five isolates clustered with Colletotrichum fioriniae, including its ex-type, with 100% bootstrap support. The results of multilocus phylogenetic analyses, morphology, and pathogenicity confirmed that C. fioriniae was one of the walnut anthracnose pathogens in China. All 13 fungicides tested inhibited mycelial growth and spore germination. Flusilazole, fluazinam, prochloraz, and pyraclostrobin showed the strongest suppressive effects on the mycelial growth than the others, the average EC50 values ranged from 0.09 to 0.40 µg/ml, and there was not any significant difference (P < 0.05). Pyraclostrobin, thiram, and azoxystrobin were the most effective fungicides on spore germination (P < 0.05), and the EC50 values ranged from 0.01 to 0.44 µg/ml. Pyraclostrobin, azoxystrobin, fluazinam, flusilazole, mancozeb, thiram, and prochloraz exhibited a good control effect on walnut anthracnose caused by C. fioriniae, and preventive activities were greater than curative activities. Pyraclostrobin at 250 a.i. µg/ml and fluazinam at 500 a.i. µg/ml provided the highest preventive and curative efficacy, and the values ranged from 81.3 to 82.2% and from 72.9 to 73.6%, respectively. As a consequence, mancozeb and thiram could be used at the preinfection stage, and pyraclostrobin, azoxystrobin, flusilazole, fluazinam, and prochloraz could be used at the early stage for effective prevention and control of walnut anthracnose caused by C. fioriniae. The results will provide more significant instructions for controlling the disease effectively in northern China.


Sujet(s)
Aminopyridines , Fongicides industriels , Juglans , Manèbe , Pyrimidines , Silanes , Strobilurines , Triazoles , Zinèbe , Fongicides industriels/pharmacologie , Noix , Thirame , Phylogenèse , Chine
9.
Plant Dis ; 2023 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-38037207

RÉSUMÉ

Pitaya, Hylocereus costaricensis, is a species of the Cactaceae family and originated in the Americas (Ortiz & Livera, 1995). It has been cultivated in Brazil and has shown a great potential for fruit production and is currently present in several markets (Faleiro et al. 2021). In July 2018, infected plants of pitaya with symptoms of anthracnose were obtained from an orchard in Fortaleza, Ceará Brazil, (3°44'24.5"S 38°34'30.8"W), with 50% disease incidence. The symptoms observed consisted of well-defined and depressed stains, that initially appeared as reddish-orange spots and were surrounded by a border of dark-brown color. As the lesion progressed, the center became light brown or whitish in color, with black dots appearing later. Four cladodes were collected with anthracnose symptoms. The pathogen was isolated from symptomatic cladodes, which were surface disinfected with 1% v/v NaClO and 70% v/v ethanol, rinsed with sterile distilled water, transferred onto potato dextrose agar (PDA) medium and incubated under a light/dark (12h/12h) photoperiod. Two isolates were recovered from the lesions on cladodes. Pure cultures were obtained from single conidia produced on colonies grown on PDA medium, using an inoculation needle under a microscope. Colonies on PDA exhibited white aerial mycelia with an orange conidial mass. The colonies were light grey in the front and light orange in the reverse of the plate. Morphological features suggested that the isolates had the same characteristics as previously described for Colletotrichum spp. (Weir et al., 2012). In order to identify the species of the isolates, the genomic DNA of UFCM 0684 and UFCM 0685 isolates was extracted using the CTAB method and the ITS region, TUB2, ACT, GS, GAPDH gene fragments were amplified. PCR products were sequenced and the resulting sequences were submitted to phylogenetic analyses based on maximum likelihood for the combination of the genes. The isolates grouped within Colletotrichum tropicale with 99% bootstrap support. The sequences obtained in this study were deposited in GenBank as ACT (accession no. OL799311, OL799312), TUB2 (OL799313; OL799314), GAPDH (OL799315, OL799316), GS (OL799317; OL799318) and ITS (OL799319; OL799320). After that, the UFCM 0685 isolate was selected to study for further characterization. Conidia (n = 50) were 13.7 (length) × 4.7 µm (width) in average, hyaline, aseptate and cylindrical. To complete Koch's postulates, pathogenicity tests were performed in moist chamber for one week at 25°C with 80% relative humidity on a 12 h fluorescent light/dark photoperiod. The cladodes were wounded using a sterilized needle and inoculated with 10 µl of a conidial suspension (1 × 106 conidia/ml) on three cladodes with five wounds each. The same number of uninoculated cladode was used as control. The experiment was performed twice. Two weeks later, all inoculated cladodes showed necrotic symptoms, which were similar to the symptoms previously observed in the field. The uninoculated cladode remained symptomless. The fungus was reisolated from the inoculated cladode and its morphological characteristics were similar to the original isolate. Colletotrichum tropicale has been reported to cause anthracnose on H. costaricensis in Mexico (Nunez-Garcia et al. 2023), H. undatus, H. monocanthus and H. megalanthus (Evallo et al. 2022). For the best of our knowledge, this is the first report of anthracnose caused by C. tropicale in H. costaricensis in Brazil.

10.
J Fungi (Basel) ; 9(12)2023 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-38132777

RÉSUMÉ

Species of the genus Microdochium (Microdochiaceae, Xylariales) have been reported from the whole world and separated from multiple plant hosts. The primary aim of the present study is to describe and illustrate three new species isolated from the leaf spot of Bambusaceae sp. and saprophytic leaves in Hainan and Yunnan provinces, China. The proposed three species, viz., Microdochium bambusae, M. nannuoshanense and M. phyllosaprophyticum, are based on multi-locus phylogenies from a combined dataset of ITS rDNA, LSU, RPB2 and TUB2 in conjunction with morphological characteristics. Descriptions and illustrations of three new species in the genus are provided.

11.
Article de Anglais | MEDLINE | ID: mdl-37676702

RÉSUMÉ

During a survey of species diversity of Penicillium and Talaromyces in sugarcane (Saccharum officinarum) rhizosphere in the Khuzestan province of Iran [1], 195 strains were examined, from which 187 belonged to Penicillium (11 species) and eight to Talaromyces (one species). In the present study, three strains of Penicillium belonging to section Exilicaulis series Restricta, identified as P. restrictum by Ansari et al. [1], were subjected to a phylogenetic study. The multilocus phylogeny of partial ß-tubulin, calmodulin and RNA polymerase II second largest subunit genes enabled the recognition of one new phylogenetic species that is here formally described as Penicillium rhizophilum sp. nov. This species is phylogenetically distinct in series Restricta, but it does not show significant morphological differences from other species previously classified in the series. Therefore, we here placed bias on the phylogenetic species concept. The holotype of Penicillium rhizophilum sp. nov. is IRAN 18169F and the ex-type culture is LA30T (=IRAN 4042CT=CBS 149737T).


Sujet(s)
Penicillium , Saccharum , Rhizosphère , Iran , Phylogenèse , Analyse de séquence d'ADN , ARN ribosomique 16S/génétique , ADN bactérien/génétique , Techniques de typage bactérien , Composition en bases nucléiques , Acides gras/composition chimique , Grains comestibles , Penicillium/génétique
12.
3 Biotech ; 13(10): 333, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37681113

RÉSUMÉ

Lasiodiplodia species commonly thrive as endophytes, saprobes, and plant pathogens in tropical and subtropical regions. Association of Lasiodiplodia species causing stem rot in dragon fruit in the coastal belt of Odisha, eastern India, has been illustrated here. The stem rot disease was characterized by yellowing of the stem, followed by softening of the stem tissues with fungal fructifications of the pathogen in the affected tissues. On the basis of macro- and micromorphological characteristics, the four fungal isolates recovered from diseased stems were identified initially as Lasiodiplodia species. By comparing DNA sequences within the NCBI GenBank database as well as performing a multigene phylogenetic analysis involving the internal transcribed spacer region (ITS-rDNA), ß-tubulin (ß-tub), and elongation factor-alpha (EF1-α) genes, the identity of Lasiodiplodia isolates was determined. The isolate CHES-21-DFCA was identified as Lasiodiplodia iraniensis (syn: L. iranensis) and the remaining three isolates, namely CHES-22-DFCA-1, CHES-22-DFCA-2, and CHES-22-DFCA-3, as L. theobromae. Although pathogenicity studies confirmed both L. iraniensis and L. theobromae were responsible for stem rot in dragon fruit, L. iraniensis was more virulent than L. theobromae. This study established the association of Lasiodiplodia species with stem rot in dragon fruit using a polyphasic approach. Further investigations are required, particularly related to on host-pathogen-weather interaction and spatiotemporal distribution across the major dragon fruit-growing areas of the country to formulate prospective disease management strategies. This is the first report on these two species of Lasiodiplodia inflicting stem rot in Hylocereus species in India.

13.
Front Microbiol ; 14: 1188649, 2023.
Article de Anglais | MEDLINE | ID: mdl-37547690

RÉSUMÉ

Ophiocordyceps is a species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) depicting a fascinating relationship between microbes and insects. In the present study, a new species, Ophiocordyceps indica sp. nov., is discovered infecting lepidopteran larvae from tree line locations (2,202-2,653 m AMSL) of the Kullu District, Himachal Pradesh, Indian Western Himalayan region, using combinations of morphological and molecular phylogenetic analyses. A phylogeny for Ophiocordyceps based on a combined multigene (nrSSU, nrLSU, tef-1α, and RPB1) dataset is provided, and its taxonomic status within Ophiocordycipitaceae is briefly discussed. Its genome size (~59 Mb) revealed 94% genetic similarity with O. sinensis; however, it differs from other extant Ophiocordyceps species based on morphological characteristics, molecular phylogenetic relationships, and genetic distance. O. indica is identified as the second homothallic species in the family Ophiocordycipitaceae, after O. sinensis. The presence of targeted marker components, viz. nucleosides (2,303.25 µg/g), amino acids (6.15%), mannitol (10.13%), and biological activity data, suggests it to be a new potential source of nutraceutical importance. Data generated around this economically important species will expand our understanding regarding the diversity of Ophiocordyceps-like taxa from new locations, thus providing new research avenues.

14.
MycoKeys ; 99: 1-24, 2023.
Article de Anglais | MEDLINE | ID: mdl-37588799

RÉSUMÉ

While investigating the diversity of lignicolous fungi in Yunnan Province, China, six fresh collections of Torulaceae were collected and identified based on morphological examination and phylogenetic analyses of combined LSU, ITS, SSU, tef1-α, and rpb2 sequence data. Two new species, viz. Neopodoconisyunnanensis and Torulasuae, and three new records, viz. T.canangae (new freshwater habitat record), T.masonii (new host record), and T.sundara (new freshwater habitat record) are reported. Detailed descriptions, illustrations, and a phylogenetic tree to show the placement of these species are provided.

15.
Mycology ; 14(3): 190-203, 2023.
Article de Anglais | MEDLINE | ID: mdl-37583457

RÉSUMÉ

Phyllosticta (Phyllostictaceae, Botryosphaeriales) species are widely distributed globally and constitute a diverse group of pathogenic and endophytic fungi associated with a broad range of plant hosts. In this study, four new species of Phyllosticta, i.e. P. endophytica, P. jiangxiensis, P. machili, and P. xinyuensis, were described using morphological characteristics and multi-locus phylogeny based on the internal transcribed spacer region (ITS) with intervening 5.8S rRNA gene, large subunit of rRNA gene (nrLSU), translation elongation factor 1-alpha gene (tef1), actin gene (act), and glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Phyllosticta machili is the first species of this genus reported to infect plants of the Machilus genus.

16.
Pathogens ; 12(5)2023 May 02.
Article de Anglais | MEDLINE | ID: mdl-37242342

RÉSUMÉ

The pecan (Carya illinoinensis) industry in South Africa is growing rapidly, and it is becoming increasingly crucial to understand the risks posed to pecans by fungal pathogens. Black spots on leaves, shoots, and nuts in shucks caused by Alternaria species have been observed since 2014 in the Hartswater region of the Northern Cape Province of South Africa. Species of Alternaria include some of the most ubiquitous plant pathogens on earth. The aim of this study was to use molecular techniques to identify the causative agents of Alternaria black spot and seedling wilt isolated from major South African pecan-production areas. Symptomatic and non-symptomatic pecan plant organs (leaves, shoots, and nuts-in-shucks) were collected from pecan orchards, representing the six major production regions in South Africa. Thirty Alternaria isolates were retrieved from the sampled tissues using Potato Dextrose Agar (PDA) culture media and molecular identification was conducted. The phylogeny of multi-locus DNA sequences of Gapdh, Rpb2, Tef1, and Alt a 1 genes revealed that the isolates were all members of Alternaria alternata sensu stricto, forming part of the Alternaria alternata species complex. The virulence of six A. alternata isolates were tested on detached nuts of Wichita and Ukulinga cultivars, respectively, as well as detached leaves of Wichita. The A. alternata isolates were also evaluated for their ability to cause seedling wilt in Wichita. The results differed significantly between wounded and unwounded nuts of both cultivars, but not between the cultivars. Similarly, the disease lesions on the wounded detached leaves were significantly different in size from the unwounded leaves. The seedling tests confirmed that A. alternata is pathogenic and that A. alternata causes black spot disease and seedling wilt of pecans. This study is one of the first documentations of Alternaria black spot disease of pecan trees and its widespread occurrence in South Africa.

17.
J Fungi (Basel) ; 9(4)2023 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-37108898

RÉSUMÉ

The pathogen causing Fusarium wilt in banana is reported to be Fusarium oxysporum f. sp. cubense (FOC). In 2019, wilt symptoms in banana plants (cultivar: Cavendish) in the Philippines were detected, i.e., the yellowing of the leaves and discoloration of the pseudostem and vascular tissue. The fungus isolated from the vascular tissue was found to be pathogenic to Cavendish bananas and was identified as a new species, F. mindanaoense, belonging to the F. fujikuroi species complex (FFSC); species classification was assessed using molecular phylogenetic analyses based on the tef1, tub2, cmdA, rpb1, and rpb2 genes and morphological analyses. A reciprocal blast search using genomic data revealed that this fungus exclusively included the Secreted in Xylem 6 (SIX6) gene among the SIX homologs related to pathogenicity; it exhibited a highly conserved amino acid sequence compared with that of species in the FFSC, but not with that of FOC. This was the first report of Fusarium wilt in Cavendish bananas caused by a species of the genus Fusarium other than those in the F. oxysporum species complex.

18.
Front Microbiol ; 14: 1073548, 2023.
Article de Anglais | MEDLINE | ID: mdl-37032847

RÉSUMÉ

In this study, we investigated the diversity of diatrypaceous fungi from southeastern Tibet in China. The phylogenetic analyses were carried out based on ITS and ß-tubulin sequences of 75 taxa of Diatrypaceae from around the world. Based on a combination of morphological features and molecular evidence, a new genus-Alloeutypa, with three new species-A. milinensis, Diatrype linzhiensis, and Eutypella motuoensis, and a new combination-A. flavovirens, were revealed by the materials in China. Alloeutypa is characterized by stromatal interior olivaceous buff, stromata producing well-developed discrete, and ascospores allantoid, subhyaline. These characteristics separate the new genus from the similar genus Eutypa. Comprehensive morphological descriptions, illustrations, and a phylogenetic tree to show the placement of new taxa are provided. All novelties described herein are morphologically illustrated and phylogeny investigated to better integrate taxa into the higher taxonomic framework and infer their phylogenetic relationships as well as establish new genera and species. Our results indicate that the diatrypaceous fungi harbor higher species diversity in China.

19.
Med Mycol ; 61(5)2023 May 01.
Article de Anglais | MEDLINE | ID: mdl-37070928

RÉSUMÉ

This study looked for correlations between molecular identification, clinical manifestation, and morphology for Trichophyton interdigitale and Trichophyton mentagrophytes. For this purpose, a total of 110 isolates were obtained from Czech patients with various clinical manifestations of dermatophytosis. Phenotypic characters were analyzed, and the strains were characterized using multilocus sequence typing. Among the 12 measured/scored phenotypic features, statistically significant differences were found only in growth rates at 37 °C and in the production of spiral hyphae, but none of these features is diagnostic. Correlations were found between T. interdigitale and higher age of patients and between clinical manifestations such as tinea pedis or onychomychosis. The MLST approach showed that internal transcribed spacer (ITS) genotyping of T. mentagrophytes isolates has limited practical benefits because of extensive gene flow between sublineages. Based on our results and previous studies, there are few taxonomic arguments for preserving both species names. The species show a lack of monophyly and unique morphology. On the other hand, some genotypes are associated with predominant clinical manifestations and sources of infections, which keep those names alive. This practice is questionable because the use of both names confuses identification, leading to difficulty in comparing epidemiological studies. The current identification method using ITS genotyping is ambiguous for some isolates and is not user-friendly. Additionally, identification tools such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fail to distinguish these species. To avoid further confusion and to simplify identification in practice, we recommend using the name T. mentagrophytes for the entire complex. When clear differentiation of populations corresponding to T. interdigitale and Trichophyton indotineae is possible based on molecular data, we recommend optionally using a variety rank: T. mentagrophytes var. interdigitale and T. mentagrophytes var. indotineae.


Species in the T. mentagrophytes complex lack support from usual taxonomic methods and simple identification tools are missing or inaccurate. To avoid recurring confusions, we propose naming the entire complex as T. mentagrophytes and optionally use rank variety to classify the observed variability.


Sujet(s)
Teigne , Animaux , Phylogenèse , Teigne/diagnostic , Teigne/médecine vétérinaire , Typage par séquençage multilocus/médecine vétérinaire , Espaceur de l'ADN ribosomique/génétique , Espaceur de l'ADN ribosomique/composition chimique , Analyse de séquence d'ADN/médecine vétérinaire , ADN fongique/génétique , ADN fongique/composition chimique , Trichophyton , Phénotype
20.
J Fungi (Basel) ; 9(2)2023 Jan 28.
Article de Anglais | MEDLINE | ID: mdl-36836288

RÉSUMÉ

Perenniporia is an important genus of Polyporaceae. In its common acceptation, however, the genus is polyphyletic. In this study, phylogenetic analyses on a set of Perenniporia species and related genera were carried out using DNA sequences of multiple loci, including the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), the small subunit mitochondrial rRNA gene (mtSSU), the translation elongation factor 1-α gene (TEF1) and the b-tubulin gene (TBB1). Based on morphology and phylogeny, 15 new genera, viz., Aurantioporia, Citrinoporia, Cystidioporia, Dendroporia, Luteoperenniporia, Macroporia, Macrosporia, Minoporus, Neoporia, Niveoporia, Rhizoperenniporia, Tropicoporia, Truncatoporia, Vanderbyliella, and Xanthoperenniporia, are proposed; 2 new species, Luteoperenniporia australiensis and Niveoporia subrusseimarginata, are described; and 37 new combinations are proposed. Illustrated descriptions of the new species are provided. Identification keys to Perenniporia and its related genera and keys to the species of these genera are provided.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...