Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Angew Chem Int Ed Engl ; 63(37): e202407575, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-38899382

RÉSUMÉ

Crown ethers (CEs), known for their exceptional host-guest complexation, offer potential as linkers in covalent organic frameworks (COFs) for enhanced performance in catalysis and host-guest binding. However, their highly flexible conformation and low symmetry limit the diversity of CE-derived COFs. Here, we introduce a novel C3-symmetrical azacrown ether (ACE) building block, tris(pyrido)[18]crown-6 (TPy18C6), for COF fabrication (ACE-COF-1 and ACE-COF-2) via reticular synthesis. This approach enables precise integration of CEs into COFs, enhancing Ni2+ ion immobilization while maintaining crystallinity. The resulting Ni2+-doped COFs (Ni@ACE-COF-1 and Ni@ACE-COF-2) exhibit high discharge capacity (up to 1.27 mAh ⋅ cm-2 at 8 mA ⋅ cm-2) and exceptional cycling stability (>1000 cycles) as cathode materials in aqueous alkaline nickel-zinc batteries. This study serves as an exemplar of the seamless integration of macrocyclic chemistry and reticular chemistry, laying the groundwork for extending the macrocyclic-synthon driven strategy to a diverse array of COF building blocks, ultimately yielding advanced materials tailored for specific applications.

2.
J Colloid Interface Sci ; 627: 483-491, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-35870401

RÉSUMÉ

Hierarchical superstructures in nano/microsize can provide improved transport of ions, large surface area, and highly robust structure for electrochemical applications. Herein, a facile solution precipitation method is presented for synthesizing a hierarchical nickel oxalate (Ni-OA) superstructure composed of 1D nanorods under the control of mixed solvent and surfactant of sodium dodecyl sulfate (SDS). The growth process of the hierarchical Ni-OA superstructure was studied and indicated that the product had good stability in mixed solvent. Owing to smaller size, shorter pathway of ion diffusion, and abundant interfacial contact with electrolytes, hierarchical Ni-OA superstructure (Ni-OA-3) showed higher specific capacity than aggregated micro-cuboids (Ni-OA-1) and self-assembled micro/nanorods (Ni-OA-2). Moreover, the assembled Ni-OA-3//Zn battery showed good cyclic stability in aqueous electrolytes, and achieved a maximum energy density of 0.42 mWh cm-2 (138.75 Wh kg-1), and a peak power density of 5.36 mW cm-2 (1.79 kW kg-1). This work may provide a new idea for the investigation of hierarchical nickel oxalate-based materials for electrochemical energy storage.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE