Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Microbiol ; 11: 1558, 2020.
Article de Anglais | MEDLINE | ID: mdl-32774331

RÉSUMÉ

Zika virus (ZIKV) is an enveloped positive stranded RNA virus belonging to the genus Flavivirus in the family Flaviviridae that emerged in recent decades causing pandemic outbreaks of human infections occasionally associated with severe neurological disorders in adults and newborns. The intracellular steps of flavivirus multiplication are associated to cellular membranes and their bound organelles leading to an extensive host cell reorganization. Importantly, the association of organelle dysfunction with diseases caused by several human viruses has been widely reported in recent studies. With the aim to increase the knowledge about the impact of ZIKV infection on the host cell functions, the present study was focused on the evaluation of the reorganization of three cell components, promyelocytic leukemia nuclear bodies (PML-NBs), mitochondria, and lipid droplets (LDs). Relevant human cell lines including neural progenitor cells (NPCs), hepatic Huh-7, and retinal pigment epithelial (RPE) cells were infected with the Argentina INEVH116141 ZIKV strain and the organelle alterations were studied by using fluorescent cell imaging analysis. Our results have shown that these three organelles are targeted and structurally modified during ZIKV infection. Considering the nuclear reorganization, the analysis by confocal microscopy of infected cells showed a significantly reduced number of PML-NBs in comparison to uninfected cells. Moreover, a mitochondrial morphodynamic perturbation with an increased fragmentation and the loss of mitochondrial membrane potential was observed in ZIKV infected RPE cells. Regarding lipid structures, a decrease in the number and volume of LDs was observed in ZIKV infected cells. Given the involvement of these organelles in host defense processes, the reported perturbations may be related to enhanced virus replication through protection from innate immunity. The understanding of the cellular remodeling will enable the design of new host-targeted antiviral strategies.

2.
Folia Morphol (Warsz) ; 79(2): 311-317, 2020.
Article de Anglais | MEDLINE | ID: mdl-31448403

RÉSUMÉ

BACKGROUND: Nuclear bodies (NB) are membrane-less subnuclear organelles that perform important functions in the cell, such as transcription, RNA splicing, processing and transport of ribosomal pre-RNA, epigenetic regulation, and others. The aim of the work was to analyse the classification of NB in the Terminologia Histologica (TH) and biological and bibliographical databases. MATERIALS AND METHODS: The semantic structure of the Nucleoplasm section in the TH was analysed and unsystematic bibliographical search was made in the PubMed, SciELO, EMBASE databases and European Bioinformatics Institute (EMBL-EBI) biology database to identify which structures are classified as NB. RESULTS: It was found that the terms Corpusculum convolutum, Macula interchromatinea and Corpusculum PML are not correctly classified in the TH, since they are subordinated under the term Chromatinum and not under Corpusculum nucleare. The bibliography consulted showed that 100%, 92.6% and 81.5% of articles mentioned Corpusculum convolutum, Macula interchromatinea and Corpusculum PML, respectively as nuclear bodies. CONCLUSIONS: It is suggested to relocate the terms Corpusculum convolutum, Macula interchromatinea and Corpusculum PML with the name of Corpusculum nucleare and the incorporation of two new entities to the Histological Terminology according to the information collected: paraspeckles and histone locus body.


Sujet(s)
Noyau de la cellule/classification , Noyau de la cellule/ultrastructure , Terminologie comme sujet , Humains
3.
Mol Plant ; 11(12): 1449-1465, 2018 12 03.
Article de Anglais | MEDLINE | ID: mdl-30296599

RÉSUMÉ

The bipartite begomoviruses (Geminiviridae family), which are DNA viruses that replicate in the nucleus of infected cells, encode the nuclear shuttle protein (NSP) to facilitate the translocation of viral DNA from the nucleus to the cytoplasm via nuclear pores. This intracellular trafficking of NSP-DNA complexes is accessorized by the NSP-interacting guanosine triphosphatase (NIG) at the cytosolic side. Here, we report the nuclear redistribution of NIG by AtWWP1, a WW domain-containing protein that forms immune nuclear bodies (NBs) against begomoviruses. We demonstrated that AtWWP1 relocates NIG from the cytoplasm to the nucleus where it is confined to AtWWP1-NBs, suggesting that the NIG-AtWWP1 interaction may interfere with the NIG pro-viral function associated with its cytosolic localization. Consistent with this assumption, loss of AtWWP1 function cuased plants more susceptible to begomovirus infection, whereas overexpression of AtWWP1 enhanced plant resistance to begomovirus. Furthermore, we found that a mutant version of AtWWP1 defective for NB formation was no longer capable of interacting with and relocating NIG to the nucleus and lost its immune function against begomovirus. The antiviral function of AtWWP1-NBs, however, could be antagonized by viral infection that induced either the disruption or a decrease in the number of AtWWP1-NBs. Collectively, these results led us to propose that AtWWP1 organizes nuclear structures into nuclear foci, which provide intrinsic immunity against begomovirus infection.


Sujet(s)
Protéines d'Arabidopsis/composition chimique , Protéines d'Arabidopsis/métabolisme , Begomovirus/physiologie , Noyau de la cellule/métabolisme , Domaines WW , Arabidopsis/cytologie , Arabidopsis/immunologie , Arabidopsis/métabolisme , Arabidopsis/virologie , Cytosol/métabolisme , dGTPases/métabolisme , Multimérisation de protéines , Transport des protéines
4.
Cell Biol Int ; 41(1): 2-7, 2017 Jan.
Article de Anglais | MEDLINE | ID: mdl-27862595

RÉSUMÉ

The advance in biochemical and microscopy techniques has revealed the complexity and intricate nucleoplasm structure. Several subcompartments were identified in nucleus and the importance of these subcompartments in processes crucial for normal nuclear activity has been demonstrated. In this mini-review, we will give an overview about the composition, function, and importance of the major nuclear subcompartments. Also, we will show the impact that perturbing these structures can cause in normal nuclear activity, and how these can contribute to the development of some human diseases.


Sujet(s)
Noyau de la cellule/métabolisme , Animaux , Cycle cellulaire , Maladie , Humains , ARN/métabolisme , Ribonucléoprotéines/biosynthèse , Fractions subcellulaires/métabolisme
5.
J Cell Biochem ; 116(12): 2755-65, 2015 Dec.
Article de Anglais | MEDLINE | ID: mdl-25959029

RÉSUMÉ

α-Dystrobrevin (α-DB) is a cytoplasmic component of the dystrophin-associated complex involved in cell signaling; however, its recently revealed nuclear localization implies a role for this protein in the nucleus. Consistent with this, we demonstrated, in a previous work that α-DB1 isoform associates with the nuclear lamin to maintain nuclei morphology. In this study, we show the distribution of the α-DB2 isoform in different subnuclear compartments of N1E115 neuronal cells, including nucleoli and Cajal bodies, where it colocalizes with B23/nucleophosmin and Nopp140 and with coilin, respectively. Recovery in a pure nucleoli fraction undoubtedly confirms the presence of α-DB2 in the nucleolus. α-DB2 redistributes in a similar fashion to that of fibrillarin and Nopp140 upon actinomycin-mediated disruption of nucleoli and to that of coilin after disorganization of Cajal bodies through ultraviolet-irradiation, with relocalization of the proteins to the corresponding reassembled structures after cessation of the insults, which implies α-DB2 in the plasticity of these nuclear bodies. That localization of α-DB2 in the nucleolus is physiologically relevant is demonstrated by the fact that downregulation of α-DB2 resulted in both altered nucleoli structure and decreased levels of B23/nucleophosmin, fibrillarin, and Nopp140. Since α-DB2 interacts with B23/nucleophosmin and overexpression of the latter protein favors nucleolar accumulation of α-DB2, it appears that targeting of α-DB2 to the nucleolus is dependent on B23/nucleophosmin. In conclusion, we show for the first time localization of α-DB2 in nucleoli and Cajal bodies and provide evidence that α-DB2 is involved in the structure of nucleoli and might modulate nucleolar functions.


Sujet(s)
Nucléole/métabolisme , Noyau de la cellule/métabolisme , Corps de Cajal/métabolisme , Protéines associées à la dystrophine/métabolisme , Neuropeptides/métabolisme , Nucléole/ultrastructure , Noyau de la cellule/ultrastructure , Protéines chromosomiques nonhistones/métabolisme , Corps de Cajal/ultrastructure , Cellules HeLa , Humains , Neurones/métabolisme , Protéines nucléaires/métabolisme , Nucléophosmine
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE