Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 50
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Neurosci Lett ; 842: 137958, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39218292

RÉSUMÉ

BACKGROUND: 40 Hz light flickering has shown promise as a non-invasive therapeutic approach for alleviating both pathological features and cognitive impairments in Alzheimer's disease (AD) model mice and AD patients. Additionally, vision may influence olfactory function through cross-modal sensory interactions. OBJECTIVE: To investigate the impact of 40 Hz light flickering on olfactory behavior in AD model mice and to explore the underlying mechanisms of this intervention. METHODS: We used immunofluorescence techniques to observe the activation of the olfactory bulb (OB) in C57BL/6J mice under 40 Hz light flickering. A buried food test was conducted to evaluate olfactory behavior in AD mice. Additionally, RNA sequencing technology was employed to detect transcriptional alterations in the OBs of AD mice following light stimulation. RESULTS: 40 Hz light flickering was found to effectively activate the OB. This stimulation led to enhanced olfactory behavior and did not alter P-tau protein mRNA levels within the OBs of AD mice. RNA sequencing revealed significant transcriptional changes in the OBs under flickering, particularly related to immune responses. CONCLUSION: Vision can influence olfactory function through cross-modal sensory interactions in rodent models. 40 Hz light stimulation improved olfactory performance in AD mice. However, the improvement in olfaction in AD mice is not related to changes in P-tau mRNA levels. Instead, it may be associated with an altered immune response, providing a scientific basis for the clinical treatment of olfactory disorders in Alzheimer's disease.

2.
Front Neurosci ; 18: 1461178, 2024.
Article de Anglais | MEDLINE | ID: mdl-39280263

RÉSUMÉ

Mechanistic target of rapamycin (mTOR) plays an important role in brain development and synaptic plasticity. Dysregulation of the mTOR pathway is observed in various human central nervous system diseases, including tuberous sclerosis complex, autism spectrum disorder (ASD), and neurodegenerative diseases, including Parkinson's disease and Huntington's disease. Numerous studies focused on the effects of hyperactivation of mTOR on cortical excitatory neurons, while only a few studies focused on inhibitory neurons. Here we generated transgenic mice in which mTORC1 signaling is hyperactivated in inhibitory neurons in the striatum, while cortical neurons left unaffected. The hyperactivation of mTORC1 signaling increased GABAergic inhibitory neurons in the striatum. The transgenic mice exhibited the upregulation of dopamine receptor D1 and the downregulation of dopamine receptor D2 in medium spiny neurons in the ventral striatum. Finally, the transgenic mice demonstrated impaired motor learning and dysregulated olfactory preference behavior, though the basic function of olfaction was preserved. These findings reveal that the mTORC1 signaling pathway plays an essential role in the development and function of the striatal inhibitory neurons and suggest the critical involvement of the mTORC1 pathway in the locomotor abnormalities in neurodegenerative diseases and the sensory defects in ASD.

3.
Pestic Biochem Physiol ; 202: 105910, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38879293

RÉSUMÉ

The extraordinary adaptability and dispersal abilities have allowed Hyphantria cunea to expand its range, posing a great threat to urban landscapes and natural ecosystems. Searching for safe, efficient, and low-cost control methods may provide new strategies for pest management in H. cunea spread areas. In this study, based on the attraction of insects by preferred hosts, it was found that the response rates of virgin H. cunea female adults to Salix matsudana, Juglans mandshurica and Ulmus pumila were 89.17%, 97.92% and 93.98%, respectively. It was further found that this significant preference was mainly related to the volatiles m-xylene, o-xylene, dodecane and tetradecane found in the three species. Even though all four compounds at 10 µL/mL and 100 µL/mL had significant attractive effects on the virgin H. cunea female adults, m-xylene and dodecane at 100 µL/mL elicited significant EAG responses and tending behaviors by stimulating the olfactory receptor neurons (ORN A) of females, with response rates of 83.13% and 84.17%, while also having significant attractive effects on virgin male adults with rates of 65.74% and 67.51%. Therefore, both m-xylene and dodecane which at concentrations of 100 µL/mL had strong attractions to adults, could be used as the first choice of attractants for both sexes of H. cunea. This has important practical significance in reducing the frequency of H. cunea generations, limiting their population, controlling their spread range, and improving the efficiency of pest management in epidemic areas.


Sujet(s)
Composés organiques volatils , Animaux , Femelle , Mâle , Composés organiques volatils/pharmacologie , Juglans
4.
Sci Total Environ ; 935: 173418, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-38788938

RÉSUMÉ

Flupyradifurone (FPF) has been reported to have a potential risk to terrestrial and aquatic ecosystems. In the present study, the effects of chronic FPF exposure on bees were systematically investigated at the individual behavioral, tissue, cell, enzyme activity, and the gene expression levels. Chronic exposure (14 d) to FPF led to reduced survival (12 mg/L), body weight gain (4 and 12 mg/L), and food utilization efficiency (4 and 12 mg/L). Additionally, FPF exposure (12 mg/L) impaired sucrose sensitivity and memory of bees. Morphological analysis revealed significant cellular and subcellular changes in brain neurons and midgut epithelial cells, including mitochondrial damage, nuclear disintegration, and apoptosis. FPF exposure (4 and 12 mg/L) led to oxidative stress, as evidenced by increased lipid peroxidation and alterations in antioxidant enzyme activity. Notably, gene expression analysis indicated significant dysregulation of apoptosis, immune, detoxification, sucrose responsiveness and memory-related genes, suggesting the involvement of different pathways in FPF-induced toxicity. The multiple stresses and potential mechanisms described here provide a basis for determining the intrinsic toxicity of FPF.


Sujet(s)
Stress oxydatif , Animaux , Abeilles/effets des médicaments et des substances chimiques , Abeilles/physiologie , Stress oxydatif/effets des médicaments et des substances chimiques , Stress physiologique , 4-Butyrolactone/toxicité , 4-Butyrolactone/analogues et dérivés
5.
Front Neurosci ; 18: 1309482, 2024.
Article de Anglais | MEDLINE | ID: mdl-38435057

RÉSUMÉ

Alzheimer's disease (AD) is a prevalent form of dementia that affects an estimated 32 million individuals globally. Identifying early indicators is vital for screening at-risk populations and implementing timely interventions. At present, there is an urgent need for early and sensitive biomarkers to screen individuals at risk of AD. Among all sensory biomarkers, olfaction is currently one of the most promising indicators for AD. Olfactory dysfunction signifies a decline in the ability to detect, identify, or remember odors. Within the spectrum of AD, impairment in olfactory identification precedes detectable cognitive impairments, including mild cognitive impairment (MCI) and even the stage of subjective cognitive decline (SCD), by several years. Olfactory impairment is closely linked to the clinical symptoms and neuropathological biomarkers of AD, accompanied by significant structural and functional abnormalities in the brain. Olfactory behavior examination can subjectively evaluate the abilities of olfactory identification, threshold, and discrimination. Olfactory functional magnetic resonance imaging (fMRI) can provide a relatively objective assessment of olfactory capabilities, with the potential to become a promising tool for exploring the neural mechanisms of olfactory damage in AD. Here, we provide a timely review of recent literature on the characteristics, neuropathology, and examination of olfactory dysfunction in the AD continuum. We focus on the early changes in olfactory indicators detected by behavioral and fMRI assessments and discuss the potential of these techniques in MCI and preclinical AD. Despite the challenges and limitations of existing research, olfactory dysfunction has demonstrated its value in assessing neurodegenerative diseases and may serve as an early indicator of AD in the future.

6.
Plants (Basel) ; 13(4)2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38498446

RÉSUMÉ

Odorant-binding proteins (OBPs) play important roles in the insect olfactory system since they bind external odor molecules to trigger insect olfactory responses. Previous studies have identified some plant-derived volatiles that attract the pervasive insect pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), such as phenylacetaldehyde, benzyl acetate, 1-heptanol, and hexanal. To characterize the roles of CmedOBPs in the recognition of these four volatiles, we analyzed the binding abilities of selected CmedOBPs to each of the four compounds, as well as the expression patterns of CmedOBPs in different developmental stages of C. medinalis adult. Antennaes of C. medinalis adults were sensitive to the studied plant volatile combinations. Expression levels of multiple CmedOBPs were significantly increased in the antennae of 2-day-old adults after exposure to volatiles. CmedOBP1, CmedOBP6, CmedPBP1, CmedPBP2, and CmedGOBP2 were significantly up-regulated in the antennae of volatile-stimulated female and male adults when compared to untreated controls. Fluorescence competition assays confirmed that CmedOBP1 could strongly bind 1-heptanol, hexanal, and phenylacetaldehyde; CmedOBP15 strongly bound benzyl acetate and phenylacetaldehyde; and CmedOBP26 could weakly bind 1-heptanol. This study lays a theoretical foundation for further analysis of the mechanisms by which plant volatiles can attract C. medinalis. It also provides a technical basis for the future development of efficient plant volatile attractants of C. medinalis.

7.
Pest Manag Sci ; 80(2): 874-884, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37814777

RÉSUMÉ

BACKGROUND: Rice dwarf virus (RDV)-induced rice plant volatiles (E)-ß-caryophyllene and 2-heptanol modulate the olfactory behavior of RDV insect vectors that promote viral acquisition and transmission. However, it remains elusive whether these two volatiles could influence the behaviors of the natural enemies of RDV insect vectors. Herein, we determined the effects of these two volatiles on the olfactory and predatory behaviors of Cyrtorhinus lividipennis (Hemiptera: Miridae), an important predator of RDV insect vectors in rice paddies. RESULTS: The results showed that C. lividipennis preferred RDV-infected rice plant odors over RDV-free rice plant odors. C. lividipennis was attracted by (E)-ß-caryophyllene, but showed no behavioral responses to 2-heptanol. The attraction of (E)-ß-caryophyllene towards C. lividipennis was further confirmed using oscas1 rice plants, which do not release (E)-ß-caryophyllene in response to RDV infection, through a series of complementary assays. The oviposition preference of the RDV vector insect Nephotettix cincticeps (Hemiptera: Cicadellidae) showed no significant difference between RDV-infected and RDV-free wild-type plants, nor between oscas1-RDV and oscas1 plants. However, the predation rate of C. lividipennis for N. cincticeps eggs on RDV-infected plants was higher than that on RDV-free plants, whereas there was no significant difference between oscas1-RDV and oscas1 plants. CONCLUSION: (E)-ß-caryophyllene induced by RDV attracted more C. lividipennis to prey on N. cincticeps eggs and played a crucial role in plant-virus-vector-enemy interactions. These novel findings will promote the design of new strategies for disease control by controlling the populations of insect vectors, for example recruiting more natural enemies by virus-induced plant volatiles. © 2023 Society of Chemical Industry.


Sujet(s)
Hemiptera , Heteroptera , Oryza , Virus des plantes , Sesquiterpènes polycycliques , Reoviridae , Animaux , Femelle , Heptan-1-ol , Hemiptera/physiologie , Vecteurs insectes
8.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-38139113

RÉSUMÉ

The successful mating of the hoverfly and the search for prey aphids are of great significance for biological control and are usually mediated by chemical cues. The odorant receptor co-receptor (Orco) genes play a crucial role in the process of insect odor perception. However, the function of Orco in the mating and prey-seeking behaviors of the hoverfly remains relatively unexplored. In this study, we characterized the Orco gene from the hoverfly, Eupeodes corollae, a natural enemy insect. We used the CRISPR/Cas9 technique to knock out the Orco gene of E. corollae, and the EcorOrco-/- homozygous mutant was verified by the genotype analysis. Fluorescence in situ hybridization showed that the antennal ORN of EcorOrco-/- mutant lack Orco staining. Electroantennogram (EAG) results showed that the adult mutant almost lost the electrophysiological response to 15 odorants from three types. The two-way choice assay and the glass Y-tube olfactometer indicated that both the larvae and adults of hoverflies lost their behavioral preference to the aphid alarm pheromone (E)-ß-farnesene (EBF). In addition, the mating assay results showed a significant decrease in the mating rate of males following the knock out of the EcorOrco gene. Although the mating of females was not affected, the amount of eggs being laid and the hatching rate of the eggs were significantly reduced. These results indicated that the EcorOrco gene was not only involved in the detection of semiochemicals in hoverflies but also plays a pivotal role in the development of eggs. In conclusion, our results expand the comprehension of the chemoreceptive mechanisms in the hoverflies and offers valuable insights for the advancement of more sophisticated pest management strategies.


Sujet(s)
Diptera , Récepteurs olfactifs , Animaux , Femelle , Mâle , Odorisants , Récepteurs olfactifs/génétique , Hybridation fluorescente in situ , Diptera/génétique , Insectes/génétique , Phéromones , Mutagenèse , Protéines d'insecte/génétique
9.
Cell Rep ; 42(5): 112398, 2023 05 30.
Article de Anglais | MEDLINE | ID: mdl-37083330

RÉSUMÉ

Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.


Sujet(s)
Neurorécepteurs olfactifs , Animaux , Souris , Axones/métabolisme , Souris knockout , Molécules d'adhérence cellulaire neurales/métabolisme , Neurogenèse/génétique , Bulbe olfactif , Neurorécepteurs olfactifs/métabolisme , Terminaisons présynaptiques/métabolisme
10.
J Agric Food Chem ; 71(12): 4789-4801, 2023 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-36920281

RÉSUMÉ

Insects have evolved an extremely sensitive olfactory system that is essential for a series of physiological and behavioral activities. Some carboxylesterases (CCEs) comprise a major subfamily of odorant-degrading enzymes (ODEs) playing a crucial role in odorant signal inactivation to maintain the odorant receptor sensitivity. In this study, 93 CCEs were annotated in the genome of the German cockroach Blattella germanica, a serious urban pest. Phylogenetic and digital tissue expression pattern analyses identified two antenna-enriched CCEs, BgerCCE021e3 and BgerCCE021d1, as candidate ODEs. RNA interference (RNAi)-mediated knockdown of BgerCCE021e3 and BgerCCE021d1 resulted in partial anosmia with experimental insects exhibiting reduced attraction to ester volatile resources and slower olfactory responses than controls. Furthermore, enzymatic conversion of geranyl acetate by crude male antennal extracts from BgerCCE021e3 and BgerCCE021d1 RNAi insects was also significantly reduced. Our results provide evidence for CCE function in German cockroach olfaction and provide a basis for further exploring behavioral inhibitors that target olfactory-related CCEs.


Sujet(s)
Blattellidae , Animaux , Mâle , Blattellidae/génétique , Carboxylic ester hydrolases/génétique , Odorat , Esters , Phylogenèse , Allergènes
11.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-36675290

RÉSUMÉ

Rice dwarf virus (RDV) is transmitted by insect vectors Nephotettix virescens and Nephotettix cincticeps (Hemiptera: Cicadellidae) that threatens rice yield and results in substantial economic losses. RDV induces two volatiles ((E)-ß-caryophyllene (EBC) and 2-heptanol) to emit from RDV-infected rice plants. However, the effects of the two volatiles on the olfactory behavior of both non-viruliferous and viruliferous N. virescens are unknown, and whether the two volatiles could facilitate the spread and dispersal of RDV remains elusive. Combining the methods of insect behavior, chemical ecology, and molecular biology, we found that EBC and 2-heptanol influenced the olfactory behavior of non-viruliferous and viruliferous N. virescens, independently. EBC attracted non-viruliferous N. virescens towards RDV-infected rice plants, promoting virus acquisition by non-viruliferous vectors. The effect was confirmed by using oscas1 mutant rice plants (repressed EBC synthesis), but EBC had no effects on viruliferous N. virescens. 2-heptanol did not attract or repel non-viruliferous N. virescens. However, spraying experiments showed that 2-heptanol repelled viruliferous N. virescens to prefer RDV-free rice plants, which would be conducive to the transmission of the virus. These novel results reveal that rice plant volatiles modify the behavior of N. virescens vectors to promote RDV acquisition and transmission. They will provide new insights into virus-vector-plant interactions, and promote the development of new prevention and control strategies for disease management.


Sujet(s)
Hemiptera , Oryza , Virus des plantes , Reoviridae , Animaux , Heptan-1-ol , Vecteurs insectes , Maladies des plantes
12.
Nutr Neurosci ; 26(8): 706-719, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-35694841

RÉSUMÉ

BACKGROUND AND OBJECTIVE: We recently showed that perinatal exposure to diets with unbalanced n-6:n-3 polyunsaturated fatty acid (PUFA) ratios affects the olfactory mucosa (OM) fatty acid composition. To assess the repercussions of these modifications, we investigated the impact of diets unbalanced in n-3 PUFAs on the molecular composition and functionality of the OM in young mice. METHODS: After mating, female mice were fed diets either deficient in α-linolenic acid (LOW diet) or supplemented with n-3 long-chain PUFAs (HIGH diet) during the perinatal period. Weaned male offspring were then fed ad libitum with the same experimental diets for 5 weeks. At 8 weeks of age, olfactory behavior tests were performed in young mice. The fatty acid composition of OM and olfactory cilia, as well as the expression of genes involved in different cellular pathways, were analyzed. The electroolfactograms induced by odorant stimuli were recorded to assess the impact of diets on OM functionality. RESULTS AND CONCLUSION: Both diets significantly modified the fatty acid profiles of OM and olfactory cilia in young mice. They also induced changes in the expression of genes involved in olfactory signaling and in olfactory neuron maturation. The electroolfactogram amplitudes were reduced in mice fed the LOW diet. Nevertheless, the LOW diet and the HIGH diet did not affect mouse olfactory behavior. Our study demonstrated that consumption of diets deficient in or supplemented with n-3 PUFAs during the perinatal and postweaning periods caused significant changes in young mouse OM. However, these modifications did not impair their olfactory capacities.


Sujet(s)
Acides gras omega-3 , Grossesse , Souris , Animaux , Mâle , Femelle , Acides gras omega-3/pharmacologie , Acides gras/métabolisme , Régime alimentaire , Compléments alimentaires , Muqueuse olfactive/métabolisme
13.
Insect Sci ; 30(5): 1493-1506, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-36458978

RÉSUMÉ

Olfaction plays a crucial role for arthropods in foraging, mating, and oviposition. The odorant-binding protein (OBP) gene is considered one of the most important olfactory genes. However, little is known about its functions in predatory mites. Here, we used Neoseiulus barkeri, an important commercialized natural pest control, to explore the chemosensory characteristics of OBP. In this study, N. barkeri was attracted by methyl salicylate (MeSA) and showed higher crawling speeds under MeSA treatment. Then, we identified and cloned an OBP gene named Nbarobp2 and analyzed its expression profiles in the predatory mite. Nbarobp2 was 663 bp, was highly expressed in larval and nymphal stages, and was significantly upregulated in N. barkeri under MeSA treatment. Nbarobp2 encoded 202 amino acid residues with a molecular weight of 23 kDa (after removing the signal peptide). Sequence comparisons revealed that the OBPs in Arachnida shared 6 conserved cysteine sites, but were distinguishable from the OBPs of Insecta on the phylogenetic tree. RNA interference, Western blotting, and binding affinity assays further proved that Nbarobp2 was involved in volatile perception in predatory mites. This study shed light on the functional characteristics of OBPs in predatory mites, providing a new insight for better biological control.

14.
Insects ; 13(11)2022 Oct 22.
Article de Anglais | MEDLINE | ID: mdl-36354797

RÉSUMÉ

As important pollinators, honeybees and bumblebees present a pollination behavior that is influenced by flower volatiles through the olfactory system. In this study, volatile compounds from melon flowers were isolated and identified by headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), and their effects on Apis mellifera and Bombus terrestris were investigated by electroantennogram (EAG) and behavior tests (Y-tube olfactometer). The results showed that 77 volatile compounds were detected in melon flowers, among which the relative content of aldehydes was the highest (61.34%; 82.09%). A. mellifera showed a strong EAG response to e-2-hexenal, e-2-octenal, and 1-nonanal. B. terrestris showed a strong EAG response to e-2-hexenal, e-2-octenal, 2,5-dimethyl-benzaldehyde, benzaldehyde and benzenepropanal. In behavior tests, the volatiles with the highest attractive rate to A. mellifera were e-2-hexenal (200 µg/µL, 33.33%) and e-2-octenal (300 µg/µL, 33.33%), and those to B. terrestris were e-2-hexenal (10 µg/µL, 53.33%) and 2,5-dimethyl-benzaldehyde (100 µg/µL, 43.33%). E-2-hexenal and e-2-octenal were more attractive to A. mellifera than B. terrestris, respectively (10 µg/µL, 10 µg/µL, 200 µg/µL). In conclusion, the volatiles of melon flowers in facilities have certain effects on the electrophysiology and behavior of bees, which is expected to provide theoretical and technical support for the pollination of A. mellifera and B. terrestris in facilities.

15.
Front Behav Neurosci ; 16: 835680, 2022.
Article de Anglais | MEDLINE | ID: mdl-35548690

RÉSUMÉ

Inter-individual differences in behavioral responses, anatomy or functional properties of neuronal populations of animals having the same genotype were for a long time disregarded. The majority of behavioral studies were conducted at a group level, and usually the mean behavior of all individuals was considered. Similarly, in neurophysiological studies, data were pooled and normalized from several individuals. This approach is mostly suited to map and characterize stereotyped neuronal properties between individuals, but lacks the ability to depict inter-individual variability regarding neuronal wiring or physiological characteristics. Recent studies have shown that behavioral biases and preferences to olfactory stimuli can vary significantly among individuals of the same genotype. The origin and the benefit of these diverse "personalities" is still unclear and needs to be further investigated. A perspective taken into account the inter-individual differences is needed to explore the cellular mechanisms underlying this phenomenon. This review focuses on olfaction in the vinegar fly Drosophila melanogaster and summarizes previous and recent studies on odor-guided behavior and the underlying olfactory circuits in the light of inter-individual variability. We address the morphological and physiological variabilities present at each layer of the olfactory circuitry and attempt to link them to individual olfactory behavior. Additionally, we discuss the factors that might influence individuality with regard to olfactory perception.

16.
Brain Sci ; 12(5)2022 May 06.
Article de Anglais | MEDLINE | ID: mdl-35624994

RÉSUMÉ

Olfactory dysfunction is considered a pre-cognitive biomarker of Alzheimer's disease (AD). Because the olfactory system is highly conserved across species, mouse models corresponding to various AD etiologies have been bred and used in numerous studies on olfactory disorders. The olfactory behavior test is a method required for early olfactory dysfunction detection in AD model mice. Here, we review the olfactory evaluation of AD model mice, focusing on traditional olfactory detection methods, olfactory behavior involving the olfactory cortex, and the results of olfactory behavior in AD model mice, aiming to provide some inspiration for further development of olfactory detection methods in AD model mice.

17.
Pest Manag Sci ; 78(8): 3305-3313, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35485855

RÉSUMÉ

BACKGROUND: Harmonia axyridis Pallas (Coleoptera: Coccinellidae) is an important natural enemy of aphids. Plant species and plant health conditions can affect the behavior of H. axyridis. To determine plant effects on this lady beetle, we examined beetle responses to four cover crops: coriander (Coriadrum sativum L., Apiales: Apiaceae), marigold (Tagetes erecta L., Asterales: Asteraceae), sweet alyssum (Lobularia maritima L., Brassicales: Brassicaceae), and alfalfa (Medicago sativa L., Fabales: Fabaceae). Our goal was to better understand this predator's ovipositional behavior in response to different plants and its olfactory response to the aphid-induced volatiles from these plants. RESULTS: We found that this lady beetle did not have any significant oviposition preference among the four plant species, but H. axyridis preferred to lay eggs on the lower surface of leaves, regardless of the plant species. H. axyridis females had a significant preference for aphid-infested marigolds, but were not attracted by any of the other three cover plants or marigolds without aphid damage. Compared to the uninfested marigold plants, the emission of 12 compounds significantly increased on the aphid-infested marigolds, and two of them were attractive to H. axyridis under suitable concentrations. CONCLUSION: H. axyridis did not show any significant oviposition preference among the four cover crops. Aphid-infested marigolds can attract H. axyridis. Indole and terpinen-4-ol mediated lady beetle attraction. These synomones have potential for manipulating populations of H. axyridis as a component of conservation biological control. © 2022 Society of Chemical Industry.


Sujet(s)
Aphides , Coléoptères , Animaux , Aphides/physiologie , Coléoptères/physiologie , Produits agricoles , Femelle , Humains , Oviposition , Phéromones/pharmacologie , Comportement prédateur , Odorat
18.
Front Behav Neurosci ; 16: 983421, 2022.
Article de Anglais | MEDLINE | ID: mdl-36817409

RÉSUMÉ

The oxytocin receptor (OXTR) knockout mouse is a model of autism spectrum disorder, characterized by abnormalities in social and olfactory behaviors and learning. Previously, we demonstrated that OXTR plays a crucial role in regulating aversive olfactory behavior to butyric acid odor. In this study, we attempted to determine whether coffee aroma affects the abnormal olfactory behavior of OXTR-Venus knock-in heterozygous mice [heterozygous OXTR (±) mice] using a set of behavioral and molecular experiments. Four-week repeated exposures of heterozygous OXTR (±) mice to coffee odor, containing three kairomone alkylpyrazines, rescued the abnormal olfactory behaviors compared with non-exposed wild-type or heterozygous OXTR (±) mice. Increased Oxtr mRNA expression in the olfactory bulb and amygdala coincided with the rescue of abnormal olfactory behaviors. In addition, despite containing the kairomone compounds, both the wild-type and heterozygous OXTR (±) mice exhibited a preference for the coffee odor and exhibited no stress-like increase in the corticotropin-releasing hormone, instead of a kairomone-associated avoidance response. The repeated exposures to the coffee odor did not change oxytocin and estrogen synthetase/receptors as a regulator of the gonadotropic hormone. These data suggest that the rescue of abnormal olfactory behaviors in heterozygous OXTR (±) mice is due to the coffee odor exposure-induced OXTR expression.

19.
Diabetes Metab Syndr Obes ; 14: 3097-3107, 2021.
Article de Anglais | MEDLINE | ID: mdl-34267530

RÉSUMÉ

AIM: Few studies have investigated the associations between diabetic peripheral neuropathy (DPN) and cognitive decline. Olfactory impairment is related to neurodegenerative diseases and type 2 diabetes mellitus (T2DM); however, the cognitive alterations of patients with DPN and the role of olfactory function in DPN are not known. We explored alterations in cognition with DPN and the associations of neuropathy parameters with cognition and olfaction. METHODS: Healthy controls (HCs) and patients with T2DM underwent nerve-conduction tests, detailed cognitive assessment, olfactory-behavior tests, and odor-induced functional magnetic resonance imaging (fMRI). T2DM patients were divided into two groups (non-DPN [NDPN] and DPN). Olfactory brain regions showing different activation between the two groups were selected for functional connectivity (FC) analyses. A structural equation model (SEM) was also generated to demonstrate the association among cognition, olfactory, and neuropathy parameters. RESULTS: One hundred individuals (36 HCs, 36 NDPN, and 28 DPN) were matched for age, sex, and educational level. Compared with the NDPN group, the DPN group had significantly lower scores for memory and processing speed, as well as lower olfactory identification and memory scores, decreased activation of the left frontal lobe, and reduced seed-based functional connectivity in the right insula. The nerve conduction velocity in patients with T2DM was associated with cognitive functions. The association between nerve conduction and executive function was mediated by olfactory behavior. CONCLUSION: Patients with DPN had worse cognition than the NDPN patients in the domains of memory and processing speed. Cognitive dysfunction could be predicted by olfactory-behavior tests and electrophysiological examination.

20.
Curr Biol ; 31(15): 3382-3390.e7, 2021 08 09.
Article de Anglais | MEDLINE | ID: mdl-34111404

RÉSUMÉ

Numerous hematophagous insects are attracted to ammonia, a volatile released in human sweat and breath.1-3 Low levels of ammonia also attract non-biting insects such as the genetic model organism Drosophila melanogaster and several species of agricultural pests.4,5 Two families of ligand-gated ion channels function as olfactory receptors in insects,6-10 and studies have linked ammonia sensitivity to a particular olfactory receptor in Drosophila.5,11,12 Given the widespread importance of ammonia to insect behavior, it is surprising that the genomes of most insects lack an ortholog of this gene.6 Here, we show that canonical olfactory receptors are not necessary for responses to ammonia in Drosophila. Instead, we demonstrate that a member of the ancient electrogenic ammonium transporter family, Amt, is likely a new type of olfactory receptor. We report two hitherto unidentified olfactory neuron populations that mediate neuronal and behavioral responses to ammonia in Drosophila. Their endogenous ammonia responses are lost in Amt mutant flies, and ectopic expression of either Drosophila or Anopheles Amt confers ammonia sensitivity. These results suggest that Amt is the first transporter known to function as an olfactory receptor in animals and that its function may be conserved across insect species.


Sujet(s)
Composés d'ammonium , Protéines de Drosophila , Drosophila melanogaster , Neurorécepteurs olfactifs , Récepteurs olfactifs , Ammoniac , Animaux , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Récepteurs olfactifs/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE