Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 521
Filtrer
1.
Bone ; : 117233, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39127437

RÉSUMÉ

Bone stress injuries (BSIs) frequently occur in the leg and foot long bones of female distance runners. A potential means of preventing BSIs is to participate in multidirectional sports when younger to build a more robust skeleton. The current cross-sectional study compared differences in tibia, fibula, and second metatarsal diaphysis size, shape, and strength between female collegiate-level athletes specialized in cross-country running (RUN, n = 16) and soccer (SOC, n = 16). Assessments were performed using high-resolution peripheral quantitative computed tomography and outcomes corrected for measures at the radius diaphysis to control for selection bias and systemic differences between groups. The tibia in SOC had a 7.5 % larger total area than RUN, with a 29.4 % greater minimum second moment of area (IMIN) and 8.2 % greater estimated failure load (all p ≤ 0.02). Tibial values in SOC exceeded reference data indicating positive adaptation. In contrast, values in RUN were similar to reference data suggesting running induced limited tibial adaptation. RUN did have a larger ratio between their maximum second moment of area (IMAX) and IMIN than both SOC and reference values. This suggests the unidirectional loading associated with running altered tibial shape with material distributed more in the anteroposterior (IMAX) direction as opposed to the mediolateral (IMIN) direction. Comparatively, SOC had a similar IMAX/IMIN ratio to reference data suggesting the larger tibia in SOC resulted from multiplane adaptation. In addition to enhanced size and strength of their tibia, SOC had enhanced structure and strength of their fibula and second metatarsal. At both sites, polar moment of inertia was approximately 25 % larger in SOC compared to RUN (all p = 0.03). These data support calls for young female athletes to delay specialization in running and participate in multidirectional sports, like soccer, to build a more robust skeleton that is potentially more protected against BSIs.

2.
Bone ; 187: 117206, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39029608

RÉSUMÉ

Children with type 1 diabetes (T1D) experience an increased risk of fracture, which may be related to altered bone development. We aimed to assess differences in bone, muscle and physical activity (PA), and explore if better muscle and PA measures would mitigate bone differences between children and adolescents with T1D and typically developing peers (TDP). We matched 56 children and adolescents with T1D (mean age 11.9 yrs) and 56 TDP (11.5 yrs) by sex and maturity from 171 participants with T1D and 66 TDP (6-17 yrs). We assessed the distal radius and tibia with high-resolution peripheral quantitative computed tomography (HR-pQCT), and the radius and tibia shaft bone and muscle with pQCT. We also measured muscle function from force-related measures in neuromuscular performance tests (push-up, grip test, countermovement and long jump). We compared PA based on questionnaire scores and accelerometers between groups. Bone, muscle, and neuromuscular performance measures were compared using MANOVA. We used mediation to explore the role of PA and muscle in bone differences. Children and adolescents with T1D had 6-10 % lower trabecular density, bone volume fraction, thickness and number at both distal radius and tibia, and 11 % higher trabecular separation at the distal radius than TDP. They also had 3-16 % higher cortical and tissue mineral density, and cortical thickness at the distal radius, 5-7 % higher cortical density and 1-3 % higher muscle density at both shaft sites compared to TDP. PA mediated the between-group difference in trabecular number (indirect effect -0.04) at the distal radius. Children and adolescents with T1D had lower trabecular bone density and deficits in trabecular micro-architecture, but higher cortical bone density and thickness at the radius and tibia compared to TDP. They engaged in less PA but had comparable muscle measures to those of TDP. PA participation may assist in mitigating deficit in trabecular number observed in children and adolescents with T1D.

3.
Bone ; 187: 117144, 2024 Jun 02.
Article de Anglais | MEDLINE | ID: mdl-38834103

RÉSUMÉ

Standard microarchitectural analysis of bone using micro-computed tomography produces a large number of parameters that quantify the structure of the trabecular network. Analyses that perform statistical tests on many parameters are at elevated risk of making Type I errors. However, when multiple testing correction procedures are applied, the risk of Type II errors is elevated if the parameters being tested are strongly correlated. In this article, we argue that four commonly used trabecular microarchitectural parameters (thickness, separation, number, and bone volume fraction) are interdependent and describe only two independent properties of the trabecular network. We first derive theoretical relationships between the parameters based on their geometric definitions. Then, we analyze these relationships with an aggregated in vivo dataset with 2987 images from 1434 participants and a synthetically generated dataset with 144 images using principal component analysis (PCA) and linear regression analysis. With PCA, when trabecular thickness, separation, number, and bone volume fraction are combined, we find that 92 % to 97 % of the total variance in the data is explained by the first two principal components. With linear regressions, we find high coefficients of determination (0.827-0.994) and fitted coefficients within expected ranges. These findings suggest that to maximize statistical power in future studies, only two of trabecular thickness, separation, number and bone volume fraction should be used for statistical testing.

4.
J Bone Miner Res ; 39(7): 906-917, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38709885

RÉSUMÉ

Osteoporosis and cardiovascular disease frequently occur together in older adults; however, a causal relationship between these 2 common conditions has not been established. By the time clinical cardiovascular disease develops, it is often too late to test whether vascular dysfunction developed before or after the onset of osteoporosis. Therefore, we assessed the association of vascular function, measured by tonometry and brachial hemodynamic testing, with bone density, microarchitecture, and strength, measured by HR-pQCT, in 1391 individuals in the Framingham Heart Study. We hypothesized that decreased vascular function (pulse wave velocity, primary pressure wave, brachial pulse pressure, baseline flow amplitude, and brachial flow velocity) contributes to deficits in bone density, microarchitecture and strength, particularly in cortical bone, which is less protected from excessive blood flow pulsatility than the trabecular compartment. We found that individuals with increased carotid-femoral pulse wave velocity had lower cortical volumetric bone mineral density (tibia: -0.21 [-0.26, -0.15] standardized beta [95% CI], radius: -0.20 [-0.26, -0.15]), lower cortical thickness (tibia: -0.09 [-0.15, -0.04], radius: -0.07 [-0.12, -0.01]) and increased cortical porosity (tibia: 0.20 [0.15, 0.25], radius: 0.21 [0.15, 0.27]). However, these associations did not persist after adjustment for age, sex, height, and weight. These results suggest that vascular dysfunction with aging may not be an etiologic mechanism that contributes to the co-occurrence of osteoporosis and cardiovascular disease in older adults. Further study employing longitudinal measures of HR-pQCT parameters is needed to fully elucidate the link between vascular function and bone health.


Osteoporosis and heart disease are both medical conditions that commonly develop in older age. It is not known whether abnormal functioning of blood vessels contributes to the development of bone fragility with aging. In this study, we investigated the relationship between impaired blood vessel function and bone density and micro-structure in a group of 1391 people enrolled in the Framingham Heart Study. Blood vessel function was measured using specialized tools to assess blood flow and pressure. Bone density and micro-structure were measured using advanced imaging called HR-pQCT. We found that people with impaired blood vessel function tended to have lower bone density and worse deterioration in bone micro-structure. However, once we statistically controlled for age and sex and other confounders, we did not find any association between blood vessel function and bone measures. Overall, our results showed that older adults with impaired blood vessel function do not exhibit greater deterioration in the skeleton.


Sujet(s)
Densité osseuse , Hémodynamique , Manométrie , Humains , Femelle , Mâle , Sujet âgé , Adulte d'âge moyen , Artère brachiale/imagerie diagnostique , Artère brachiale/physiopathologie , Os et tissu osseux/imagerie diagnostique , Os et tissu osseux/physiologie , Analyse de l'onde de pouls
5.
Arch Osteoporos ; 19(1): 40, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38773042

RÉSUMÉ

This study compared the bone parameters of adolescents with persistent cow's milk allergy (CMA) with those of healthy adolescents. Adolescents with CMA had compromised bone parameters (lower bone mineral density, impaired trabecular microarchitecture, and lower bone strength). Partial exclusion diet was associated with better bone parameters than total exclusion diet. BACKGROUND: Persistent immunoglobulin E (IgE)-mediated cow's milk allergy (CMA) may impair bone parameters and increase the risk of fractures. High-resolution peripheral quantitative computed tomography (HR-pQCT) is a novel methodology that not only assesses trabecular and cortical bone compartments and volumetric density measurements, but also evaluates bone microarchitecture and estimates biomechanical properties through finite element analysis (FEA). Both HR-pQCT and bone strength parameters derived from FEA have shown a strong correlation with fracture risk. PURPOSE: To assess the bone density, microarchitecture, and bone strength of adolescents with persistent IgE-mediated CMA (IgE-CMA). METHODS: This was an observational, cross-sectional study with female adolescents with persistent IgE-CMA and healthy control participants matched by female sex and sexual maturation. Bone parameters were assessed by areal bone mineral density (aBMD) through dual-energy X-ray absorptiometry (DXA), bone microarchitecture by HR-pQCT at the radius and tibia, and laboratory markers related to bone metabolism. RESULTS: The median age of adolescents with persistent IgE-CMA (n = 26) was 13.0 years (interquartile range (IQR) 11.4-14.7) and of healthy control participants (n = 28) was 13.6 years (IQR 11.9-14.9). Adolescents with IgE-CMA ingested 27.4% less calcium (p = 0.012) and 28.8% less phosphorus (p = 0.009) than controls. Adolescents with IgE-CMA had lower bone mineral content (BMC) (38.83 g vs. 44.50 g) and aBMD (0.796 g/cm2 vs. 0.872 g/cm2) at lumbar spine, and lower BMC (1.11 kg vs. 1.27 kg) and aBMD (0.823 g/cm2 vs. 0.877 g/cm2) at total body less head (TBLH) (p < 0.05). However, Z-scores BMC and Z-scores aBMD at lumbar spine and TBLH, when adjusted for Z-score height/age, were not significantly different between the groups. Moreover, CMA adolescents had lower bone strength at the distal tibia (S 169 kN/mm vs. 194 kN/mm; F Load 8030 N vs. 9223 N) (p < 0.05). Pairing of groups by the presence of menarche showed compromised parameters at the tibia-lower total volumetric BMD (Tt.vBMD) (293.9 mg HA/cm3 vs. 325.9 mg HA/cm3) and trabecular vBMD (Tb.vBMD) (170.8 mg HA/cm3 vs. 192.2 mg HA/cm3), along with lower cortical thickness (Ct.th) (1.02 mm vs. 1.16 mm) and bone strength (S 174 kN vs. 210 kN; F Load 8301 N vs. 9950 N)-and at the radius (S 61 kN/mm vs. 71 kN/mm; F Load 2920 N vs. 3398 N) (p < 0.05) among adolescents with IgE-CMA. Adolescents with IgE-CMA on a total exclusion diet (n = 12) showed greater impairment of bone features than those on a partial exclusion diet (n = 14), with lower lumbar spine Z-score BMC (- 0.65 vs. 0.18; p = 0.013), lumbar spine trabecular bone score (TBS) (1.268 vs. 1.383; p = 0.005), Z-score TBS (0.03 vs. 1.14; p = 0.020), TBLH Z-score BMC (- 1.17 vs. - 0.35; p = 0.012), TBLH Z-score aBMD (- 1.13 vs. - 0.33; p = 0.027), Tt.vBMD at the tibia (259.0 mg HA/cm3 vs. 298.7 mg HA/cm3; p = 0.021), Ct.th at the tibia (0.77 mm vs. 1.04 mm; p = 0.015) and Ct.th at the radius (0.16 mm vs. 0.56 mm; p = 0.033). CONCLUSION: Adolescents with persistent IgE-CMA had lower aBMD and compromised microarchitecture (impaired trabecular microarchitecture and lower bone strength). Adolescents on a partial exclusion diet had better bone parameters than those on a total exclusion diet.


Sujet(s)
Densité osseuse , Immunoglobuline E , Hypersensibilité au lait , Humains , Femelle , Adolescent , Immunoglobuline E/sang , Études transversales , Hypersensibilité au lait/physiopathologie , Hypersensibilité au lait/immunologie , Hypersensibilité au lait/imagerie diagnostique , Enfant , Tomodensitométrie , Absorptiométrie photonique , Études cas-témoins , Animaux , Tibia/imagerie diagnostique , Tibia/physiopathologie
6.
J Bone Miner Metab ; 42(3): 352-360, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38664255

RÉSUMÉ

INTRODUCTION: Trabecular bone score (TBS) estimates bone microstructure, which is directly measured by high-resolution peripheral quantitative computed tomography (HRpQCT). We evaluated the correlation between these methods and TBS influence on fracture risk assessed by FRAX. MATERIALS AND METHODS: We evaluated 129 individuals (82 women, 43 postmenopausal) 20 to 82.3 years without prevalent clinical or non-clinical morphometric vertebral fractures, using DXA (spine and hip), HR-pQCT at distal radius (R) and tibia (T) and TBS which classifies bone microarchitecture as normal (TBS ≥ 1.350), partially degraded (1.200 < TBS < 1.350), or degraded (TBS ≤ 1.200). RESULTS: Spine and hip BMD and HR-pQCT parameters at cortical bone: area (T), density (R,T) thickness (T) and trabecular bone: density (R,T), number (T) and thickness (R) were significantly better in the 78 individuals with normal TBS (group 1) versus the 51 classified as partially degraded (n = 42) or degraded microarchitecture (n = 9) altogether (group 2). TBS values correlated with age (r = - 0.55), positively with spine and hip BMD and all cortical and trabecular bone density and microstructure parameters evaluated, p < 0.05 all tests. Binary logistic regression defined age (p = 0.008) and cortical thickness (p = 0.018) as main influences on TBS, while ANCOVA demonstrated that HR-pQCT data corrected for age were not different between TBS groups 1 and 2. TBS adjustment increased FRAX risk for major osteoporotic fractures and hip fractures. CONCLUSION: We describe significant association between TBS and both trabecular and cortical bone parameters measured by HR-pQCT, consistent with TBS influence on fracture risk estimation by FRAX, including hip fractures, where cortical bone predominates.


Sujet(s)
Densité osseuse , Os spongieux , Os cortical , Tomodensitométrie , Humains , Femelle , Sujet âgé , Adulte d'âge moyen , Os cortical/imagerie diagnostique , Os spongieux/imagerie diagnostique , Mâle , Sujet âgé de 80 ans ou plus , Adulte , Absorptiométrie photonique , Jeune adulte
7.
J Bone Miner Res ; 39(1): 17-29, 2024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38630881

RÉSUMÉ

Older men with high bone turnover have faster bone loss. We assessed the link between the baseline levels of bone turnover markers (BTMs) and the prospectively assessed bone microarchitecture decline in men. In 825 men aged 60-87 yr, we measured the serum osteocalcin (OC), bone alkaline phosphatase (BAP), N-terminal propeptide of type I procollagen (PINP), and C-terminal telopeptide of type I collagen (CTX-I), and urinary total deoxypyridinoline (tDPD). Bone microarchitecture and strength (distal radius and distal tibia) were estimated by high-resolution pQCT (XtremeCT, Scanco Medical) at baseline and then after 4 and 8 yr. Thirty-seven men took medications affecting bone metabolism. Statistical models were adjusted for age and BMI. At the distal radius, the decrease in the total bone mineral density (Tt.BMD), cortical BMD (Ct.BMD), cortical thickness (Ct.Thd), and cortical area (Ct.Ar) and failure load was faster in the highest vs the lowest CTX-I quartile (failure load: -0.94 vs -0.31% yr-1, P < .001). Patterns were similar for distal tibia. At the distal tibia, bone decline (Tt.BMD, Ct.Thd, Ct.Ar, Ct.BMD, and failure load) was faster in the highest vs the lowest tDPD quartile. At each skeletal site, the rate of decrease in Tb.BMD differed between the extreme OC quartiles (P < .001). Men in the highest BAP quartile had a faster loss of Tt.BMD, Tb.BMD, reaction force, and failure load vs the lowest quartile. The link between PINP and bone decline was poor. The BTM score is the sum of the nos. of the quartiles for each BTM. Men in the highest quartile of the score had a faster loss of cortical bone and bone strength vs the lowest quartile. Thus, in the older men followed prospectively for 8 yr, the rate of decline in bone microarchitecture and estimated bone strength was 50%-215% greater in men with high bone turnover (highest quartile, CTX-I above the median) compared to the men with low bone turnover (lowest quartile, CTX-I below the median).


Sujet(s)
Densité osseuse , Os et tissu osseux , Mâle , Humains , Sujet âgé , Femelle , Études prospectives , Remodelage osseux , Radius
8.
Bone Rep ; 21: 101752, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38590390

RÉSUMÉ

High-resolution peripheral quantitative computed tomography (HR-pQCT) based micro-finite element (µFE) analysis allows accurate prediction of stiffness and ultimate load of standardised (∼1 cm) distal radius and tibia sections. An alternative homogenized finite element method (hFE) was recently validated to compute the ultimate load of larger (∼2 cm) distal radius sections that include Colles' fracture sites. Since the mechanical integrity of the weight-bearing distal tibia is gaining clinical interest, it has been shown that the same properties can be used to predict the strength of both distal segments of the radius and the tibia. Despite the capacity of hFE to predict structural properties of distal segments of the radius and the tibia, the limitations of such homogenization scheme remain unclear. Therefore, the objective of this study is to build a complete mechanical data set of the compressive behavior of distal segments of the tibia and to compare quantitatively the structural properties with the hFE predictions. As a further aim, it is intended to verify whether hFE is also able to capture the post-yield strain localisation or fracture zones in such a bone section, despite the absence of strain softening in the constitutive model. Twenty-five fresh-frozen distal parts of tibias of human donors were used in this study. Sections were cut corresponding to an in-house triple-stack protocol HR-pQCT scan, lapped, and scanned using micro computed tomography (µCT). The sections were tested in compression until failure, unloaded and scanned again in µCT. Volumetric bone mineral density (vBMD) and bone mineral content (BMC) were correlated to compression test results. hFE analysis was performed in order to compare computational predictions (stiffness, yield load and plastic deformation field pattern) with the compressive experiment. Namely, strain localization was assessed based on digital volume correlation (DVC) results and qualitatively compared to hFE predictions by comparing mid-slices patterns. Bone mineral content (BMC) showed a good correlation with stiffness (R2 = 0.92) and yield (R2 = 0.88). Structural parameters also showed good agreement between the experiment and hFE for both stiffness (R2 = 0.96, slope = 1.05 with 95 % CI [0.97, 1.14]) and yield (R2 = 0.95, slope = 1.04 [0.94, 1.13]). The qualitative comparison between hFE and DVC strain localization patterns allowed the classification of the samples into 3 categories: bad (15 sections), semi (8), and good agreement (2). The good correlations between BMC or hFE and experiment for structural parameters were similar to those obtained previously for the distal part of the radius. The failure zones determined by hFE corresponded to registration only in 8 % of the cases. We attribute these discrepancies to local elastic/plastic buckling effects that are not captured by the continuum-based FE approach exempt from strain softening. A way to improve strain localization hFE prediction would be to use longer distal segments with intact cortical shells, as done for the radius. To conclude, the used hFE scheme captures the elastic and yield response of the tibia sections reliably but not the subsequent failure process.

9.
Article de Anglais | MEDLINE | ID: mdl-38605469

RÉSUMÉ

CONTEXT: We previously reported that sequential teriparatide followed by denosumab substantially increases BMD in premenopausal idiopathic osteoporosis (PremenIOP). OBJECTIVE: To determine whether administration of bisphosphonates after denosumab cessation is associated with stable BMD in PremenIOP. DESIGN: Open-label extension study. PARTICIPANTS: 24 PremenIOP Teriparatide-Denosumab Study participants. INTERVENTIONS: Oral alendronate (ALN), 70mg weekly, or IV zoledronic acid (ZOL), 5mg once (patient choice), was administered 7 months (M) after final denosumab dose. OUTCOMES: BMD by DXA and serum C-telopeptide (CTX) q6M; vertebral fracture assessment (VFA) and HR-pQCT q12M. RESULTS: 24 women with PremenIOP (aged 43 ± 8 years), severely affected with low trauma adult fractures (range 0-12; 9 with vertebral fractures) and/or very low BMD, had large BMD increases on sequential teriparatide-denosumab (spine: 25 ± 9%; total hip: 11 ± 6%). During the Bisphosphonate Extension, mean BMD and CTX changes in the entire group were small and not statistically significant at 6 or 12M.Women choosing ZOL (n = 6) versus ALN (n = 18) did not differ by baseline age, BMI, fractures, BMD, or CTX. On ZOL, there were small LSBMD declines and CTX increases, particularly between 6M and 12M, while greater stability was observed on ALN.Changes in BMD and CTX did not differ by duration of denosumab (36M vs <36M) or between 20 women who remained premenopausal and 4 who transitioned into menopause. Higher pre-teriparatide CTX, likely reflecting baseline remodeling status, predicted more spine and hip bone loss. No new vertebral (clinical or VFA screening) or non-vertebral fractures occurred. CONCLUSION: BMD remained stable in women with PremenIOP who received bisphosphonates after sequential teriparatide-denosumab therapy.

10.
Bone Rep ; 21: 101764, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38681747

RÉSUMÉ

Osteoporosis occurs in every third individual after simultaneous pancreas kidney transplantation (SPKT). Currently used bone measures insufficiently predict their fracture risk. Lumbar spine Trabecular bone score (TBS) and distal radius areal and volumetric bone mineral density (BMD) were monitored for the first time in patients with type 1 diabetes and chronic renal failure after SPKT with steroid-sparing protocol. In 33 subjects (mean age 43.4 ± 9.8 years), dual-energy X-ray absorptiometry and peripheral quantitative computed tomography were performed just after SPKT (baseline) and one and three years later. While TBS Z-scores increased (-1.1 ± 1.2 and -0.3 ± 1.0; p˂0.001, at baseline and year three, respectively), trabecular volumetric BMD Z-scores at distal radius metaphysis did not change during the study (-1.3 ± 1.3 and -1.3 ± 1.0; p = 0.38). Similarly, areal BMD Z-scores increased at lumbar spine, total hip and femoral neck (all p < 0.01), but not at the distal radius. SPKT induced bone measures' improvement at lumbar spine and hip but not at distal radius. Before suggesting changes in current clinical care, predictive value of individual bone measures or its combination for fracture risk assessment remains to be elucidated.

11.
Bone ; 182: 117066, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38438097

RÉSUMÉ

BACKGROUND: The use of proton pump inhibitors (PPIs) has been associated with an increased fracture risk in observational studies. However, the reported association between PPI use and bone mineral density (BMD), bone microarchitecture, and bone strength is inconsistent. This study aims to assess the association between PPI use and bone microarchitecture and strength using high-resolution peripheral quantitative CT (HR-pQCT) in a three-year follow-up study in patients with a recent fracture visiting the Fracture Liaison Service (FLS). METHODS: This three-year prospective cohort study included FLS patients aged ≥ 50 years with a recent fracture (median age 62 [IQR 56-69] years, 68.7 % females) and without anti-osteoporosis treatment indication. HR-pQCT scans (distal radius and tibia) were obtained at baseline (T0) and three-year follow-up (T3). Volumetric bone mineral density and bone area, microarchitecture, and strength (micro-finite element analysis) were determined. The association between three-year continuous PPI use and the percentage change in HR-pQCT parameters between T0 and T3 was assessed using sex-stratified multivariate linear regression analyses. Covariates included age, BMI, vitamin-D deficiency (< 50 nmol/l), glucocorticoid use, and cardiovascular co-morbidity (males and females) fracture type (major/hip vs. all others, only males) and probable sarcopenia (only females). RESULTS: In total, 282 participants had available medication data throughout follow-up, of whom 20.6 % were continuous PPI users. In both males and females with complete HR-pQCT follow-up data (males: N = 69 radius, N = 84 tibia; females: N = 147 radius, N = 168 tibia), PPI use was not associated with the percentage change of any of the bone microarchitecture or strength parameters between T0 and T3 at the radius and tibia as compared to non-use. CONCLUSION: Compared to non-use, PPI use was not associated with the change of bone microarchitecture and strength in FLS patients at three years of follow-up. These results do not support that an altered bone microarchitecture or strength may contribute to the increased fracture risk associated with PPI use, as reported in observational studies.


Sujet(s)
Fractures osseuses , Mâle , Femelle , Humains , Adulte d'âge moyen , Études de suivi , Études prospectives , Fractures osseuses/imagerie diagnostique , Densité osseuse , Os et tissu osseux , Tibia , Radius
12.
Bone Rep ; 20: 101745, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38444830

RÉSUMÉ

Introduction: Fracture risk is elevated in type 2 diabetes (T2D) despite normal or even high bone mineral density (BMD). Microvascular disease (MVD) is a diabetic complication, but also associated with other diseases, for example chronic kidney disease. We hypothesize that increased fracture risk in T2D could be due to increased cortical porosity (Ct.Po) driven by expansion of the vascular network in MVD. The purpose of this study was to investigate associations of T2D and MVD with cortical microstructure and intracortical vessel parameters. Methods: The study group consisted of 75 participants (38 with T2D and 37 without T2D). High-resolution peripheral quantitative CT (HR-pQCT) and dynamic contrast-enhanced MRI (DCE-MRI) of the ultra-distal tibia were performed to assess cortical bone and intracortical vessels (outcomes). MVD was defined as ≥1 manifestation including neuropathy, nephropathy, or retinopathy based on clinical exams in all participants. Adjusted means of outcomes were compared between groups with/without T2D or between participants with/without MVD in both groups using linear regression models adjusting for age, sex, BMI, and T2D as applicable. Results: MVD was found in 21 (55 %) participants with T2D and in 9 (24 %) participants without T2D. In T2D, cortical pore diameter (Ct.Po.Dm) and diameter distribution (Ct.Po.Dm.SD) were significantly higher by 14.6 µm (3.6 %, 95 % confidence interval [CI]: 2.70, 26.5 µm, p = 0.017) and by 8.73 µm (4.8 %, CI: 0.79, 16.7 µm, p = 0.032), respectively. In MVD, but not in T2D, cortical porosity was significantly higher by 2.25 % (relative increase = 12.9 %, CI: 0.53, 3.97 %, p = 0.011) and cortical BMD (Ct.BMD) was significantly lower by -43.6 mg/cm3 (2.6 %, CI: -77.4, -9.81 mg/cm3, p = 0.012). In T2D, vessel volume and vessel diameter were significantly higher by 0.02 mm3 (13.3 %, CI: 0.004, 0.04 mm3, p = 0.017) and 15.4 µm (2.9 %, CI: 0.42, 30.4 µm, p = 0.044), respectively. In MVD, vessel density was significantly higher by 0.11 mm-3 (17.8 %, CI: 0.01, 0.21 mm-3, p = 0.033) and vessel volume and diameter were significantly lower by -0.02 mm3 (13.7 %, CI: -0.04, -0.004 mm3, p = 0.015) and - 14.6 µm (2.8 %, CI: -29.1, -0.11 µm, p = 0.048), respectively. Conclusions: The presence of MVD, rather than T2D, was associated with increased cortical porosity. Increased porosity in MVD was coupled with a larger number of smaller vessels, which could indicate upregulation of neovascularization triggered by ischemia. It is unclear why higher variability and average diameters of pores in T2D were accompanied by larger vessels.

13.
J Bone Miner Res ; 39(3): 271-286, 2024 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-38477754

RÉSUMÉ

Data on bone microarchitecture in osteogenesis imperfecta (OI) are scarce. The aim of this cross-sectional study was to assess bone microarchitecture and strength in a large cohort of adults with OI using high-resolution peripheral quantitative computed tomography (HR-pQCT) and to evaluate challenges of using HR-pQCT in this cohort. Second-generation HR-pQCT scans were obtained at the distal radius and tibia in 118 men and women with Sillence OI type I, III, or IV using an extremity-length-dependent scan protocol. In total, 102 radius and 105 tibia scans of sufficient quality could be obtained, of which 11 radius scans (11%) and 14 tibia scans (13%) had a deviated axial scan angle as compared with axial angle data of 13 young women. In the scans without a deviated axial angle and compared with normative HR-pQCT data, Z-scores at the radius for trabecular bone mineral density (BMD), number, and separation were -1.6 ± 1.3, -2.5 ± 1.4, and -2.7 (IQR: 2.7), respectively. They were -1.4 ± 1.5 and -1.1 ± 1.2 for stiffness and failure load and between ±1 for trabecular thickness and cortical bone parameters. Z-scores were significantly lower for total and trabecular BMD, stiffness, failure load, and cortical area and thickness at the tibia. Additionally, local microarchitectural inhomogeneities were observed, most pronounced being trabecular void volumes. In the scans with a deviated axial angle, the proportion of Z-scores <-4 or >4 was significantly higher for trabecular BMD and separation (radius) or most total and trabecular bone parameters (tibia). To conclude, especially trabecular bone microarchitecture and bone strength were impaired in adults with OI. HR-pQCT may be used without challenges in most adults with OI, but approximately 12% of the scans may have a deviated axial angle in OI due to bone deformities or scan positioning limitations. Furthermore, standard HR-pQCT parameters may not always be reliable due to microarchitectural inhomogeneities nor fully reflect all inhomogeneities.


OI is a rare condition with large clinical heterogeneity. One of the major characteristics associated with OI is the increased fracture risk due to defects in bone structure and material. Data on the defects in bone structure at the micrometer level (i.e. bone microarchitecture) are scarce. Bone microarchitecture can be assessed noninvasively using HR-pQCT, but its use in OI has not extensively been described. Yet, potential challenges may arise related to among others the occurrence of short extremities and skeletal deformities in OI. We assessed bone microarchitecture and strength in 118 adults with OI types I, III, or IV using HR-pQCT with an extremity-length-dependent scan protocol. Additionally, we evaluated potential challenges of using HR-pQCT in this cohort. Our results demonstrated that predominantly trabecular microarchitecture­especially trabecular number and separation­and overall bone strength were impaired in adults with OI as compared with normative data. Furthermore, we observed various microarchitectural inhomogeneities, most pronounced being trabecular void volumes. Regarding applicability, HR-pQCT could be used without challenges in most adults with OI. However, deviations in scan region may potentially influence HR-pQCT parameters, and standard HR-pQCT analyses may not always give accurate results due to microarchitectural inhomogeneities nor fully reflect all microarchitectural inhomogeneities.


Sujet(s)
Ostéogenèse imparfaite , Adulte , Mâle , Humains , Femelle , Ostéogenèse imparfaite/imagerie diagnostique , Études transversales , Densité osseuse , Os et tissu osseux/imagerie diagnostique , Tibia/imagerie diagnostique , Radius/imagerie diagnostique , Membre supérieur , Absorptiométrie photonique
14.
JBMR Plus ; 8(2): ziae003, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38505529

RÉSUMÉ

Diabetes, a disease marked by consistent high blood glucose levels, is associated with various complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Notably, skeletal fragility has emerged as a significant complication in both type 1 (T1D) and type 2 (T2D) diabetic patients. This review examines noninvasive imaging studies that evaluate skeletal outcomes in adults with T1D and T2D, emphasizing distinct skeletal phenotypes linked with each condition and pinpointing gaps in understanding bone health in diabetes. Although traditional DXA-BMD does not fully capture the increased fracture risk in diabetes, recent techniques such as quantitative computed tomography, peripheral quantitative computed tomography, high-resolution quantitative computed tomography, and MRI provide insights into 3D bone density, microstructure, and strength. Notably, existing studies present heterogeneous results possibly due to variations in design, outcome measures, and potential misclassification between T1D and T2D. Thus, the true nature of diabetic skeletal fragility is yet to be fully understood. As T1D and T2D are diverse conditions with heterogeneous subtypes, future research should delve deeper into skeletal fragility by diabetic phenotypes and focus on longitudinal studies in larger, diverse cohorts to elucidate the complex influence of T1D and T2D on bone health and fracture outcomes.

15.
J Bone Miner Res ; 39(2): 116-129, 2024 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-38477742

RÉSUMÉ

Tumor-induced osteomalacia (TIO) poses a significant diagnostic challenge, leading to increased disease duration and patient burden also by missing clinical suspicion. Today, diagnosis of osteomalacia relies on invasive iliac crest biopsy, if needed. Therefore, a noninvasive method would be beneficial for patients with severe osteomalacia, such as TIO, to inform their clinical management and address specific needs, like estimating the regeneration capacity at high osteoid volumes (OVs) or the potential of a hungry bone syndrome after tumor removal. Furthermore, given the lack of comprehensive histological characterization of TIO, there is a need for additional tissue characterization. Therefore, our assessment encompassed iliac crest biopsies that were examined using quantitative electron backscattered microscopy, Raman spectroscopy, micro-computed tomography, and histology to analyze the biopsy tissue. Our clinical assessment encompassed DXA and high-resolution peripheral quantitative computed tomography (HR-pQCT) alongside with biochemical analyses and clinical evaluations. Combining imaging and clinical data, we established a model to predict the OV. We compared 9 TIO patients with 10 osteoporosis (OPO) patients and 10 healthy controls. Histological analyses confirmed a pronounced OV in TIO patients (OPO: 1.20% ± 1.23% vs TIO: 23.55% ± 12.23%, P < .0005), and spectroscopy revealed lower phosphate levels in TIO biopsies. By combining HR-pQCT and laboratory diagnostics, we developed a linear regression model to noninvasively predict the OV revealing significantly higher modeled OV/BVmodel values of 24.46% ± 14.22% for TIO compared to the control group (5.952% ± 3.44%, P ≤ .001). By combining laboratory diagnostics, namely, ALP and Tt.BMDRadius measured by HR-pQCT, we achieved the calculation of the virtual osteoid volume to bone volume ratio (OV/BVmodel) with a significant correlation to histology as well as reliable identification of TIO patients compared to OPO and control. This novel approach is potentially helpful for predicting OV by noninvasive techniques in diagnostic procedures and improving the clinical management of TIO.


Osteomalacia, a bone mineralization disease, results in soft bones due to a lack of calcium or phosphate. Tumor-induced osteomalacia (TIO) is an acquired and challenging form of osteomalacia due to low serum phosphate levels that often lead to prolonged patient suffering. Current diagnosis of osteomalacia involves surgical bone biopsies, but a noninvasive approach would be beneficial, improving clinical management and addressing specific needs like estimating the bone's quality and ability to recover. We used advanced techniques like electron microscopy, spectroscopy, and high-resolution CT to study bone samples from 9 TIO patients. Additionally, we assessed their bone health through sophisticated imaging and blood analyses. Microscopy confirmed huge amounts of soft bone tissue due to a severe mineralization defect. By combining imaging and blood analysis, we developed a noninvasive method to predict the amount of soft tissue (osteoid) to understand soft bones without the need for surgical interventions. In conclusion, our innovative approach, combining blood diagnostics (alkaline phosphatase) with total BMD from high-resolution 3D clinical imaging of the lower arm, allows us to predict the osteoid amount virtually. This method can also compare TIO patients with controls or those with osteoporosis and might be helpful in the future.


Sujet(s)
Ostéomalacie , Humains , Ostéomalacie/imagerie diagnostique , Ostéomalacie/anatomopathologie , Femelle , Adulte d'âge moyen , Mâle , Adulte , Syndromes paranéoplasiques/imagerie diagnostique , Syndromes paranéoplasiques/anatomopathologie , Sujet âgé , Ilium/anatomopathologie , Ilium/imagerie diagnostique
16.
Int J Rheum Dis ; 27(2): e15068, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38334245

RÉSUMÉ

PURPOSE: Osteoarthritis (OA), rheumatoid arthritis (RA), and psoriatic arthritis (PsA) can all lead to the formation of bony proliferations (BP). This systematic review aimed to examine the characteristics of BPs in patients with RA, PsA, OA, and healthy controls (HC) using high-resolution peripheral quantitative computed tomography (HR-pQCT). Secondarily, we examined any treatment-related effect on BP number and size. METHODS: A systematic literature search was conducted in PubMed and Embase, and a total of 15 studies were included. RESULTS: Seven studies demonstrated a disease-specific variation in BP location. One study showed no difference in the number of BPs between patients with PsA and OA. The number of BPs was greater in patients with PsA compared to RA in one study, and to HC in another study, while one study documented no difference in the number of BPs between patients with RA and HC. Five studies showed larger BPs in patients with PsA compared to HC, and one study larger BPs in patients with PsA compared to RA. One study showed no difference in BP size between patients with PsA and OA. Secukinumab may have a potential effect on arresting BP progression. Otherwise, no other treatment was reported to influence BP size and progression. No standard definitions or measurement techniques for BPs using HR-pQCT have been identified. CONCLUSION: BPs showed disease-specific variations in location, size, and number. Results regarding treatment-related effects are sparse. An agreement on the definition and measurement technique for BPs using HR-pQCT is warranted for diagnostic accuracy, disease comparability, and monitoring potential.


Sujet(s)
Arthrite psoriasique , Polyarthrite rhumatoïde , Arthrose , Humains , Arthrite psoriasique/imagerie diagnostique , Arthrite psoriasique/traitement médicamenteux , Polyarthrite rhumatoïde/imagerie diagnostique , Polyarthrite rhumatoïde/traitement médicamenteux , Arthrose/imagerie diagnostique , Tomographie
17.
Joint Bone Spine ; 91(4): 105699, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38309517

RÉSUMÉ

OBJECTIVE: To assist the development of future treatments in systemic sclerosis (SSc), the development of reliable outcome measures is pivotal. We aimed to evaluate the use of high-resolution peripheral quantitative CT (HR-pQCT) for visualization and gradation of acro-osteolysis (AO) and calcinosis compared to conventional hand radiographs (CR) in patients with SSc. METHODS: HR-pQCT scans of the 2nd to 4th fingers, CR, nail fold capillaroscopy, and a clinical examination were conducted. Images were reviewed for the presence and degree of AO and calcinosis according to semiquantitative grading scales. RESULTS: Forty patients were included. Fourteen had AO according to CR, whereas HR-pQCT revealed AO in 18 patients. The sensitivity and specificity of classifying patients as having AO by HR-pQCT when CR was used as reference were 93% (95% CI: 66-99%) and 80% (95% CI: 59-93%), respectively. By CR and with HR-pQCT as reference, the sensitivity and specificity were 72% (95% CI: 47-90%) and 95% (95% CI: 76-99%). Patients with AO had more or larger calcifications than patients without AO according to the proposed HR-pQCT grading system, with a median grade of 2 (IQR: 1-3) versus 0 (IQR: 0-1) (P<0.01). Grade 3 changes were observed exclusively in patients with AO (n=6/14, 42.9%). Assessment of AO and calcinosis by HR-pQCT demonstrated moderate to excellent test-retest reliability. CONCLUSION: HR-pQCT allowed precise and reliable classification and grading of acro-osteolysis and acral calcinosis. The modality could prove helpful for detecting and monitoring these lesions as well as facilitating early diagnosis and guide treatment of these patients.


Sujet(s)
Acro-ostéolyse , Calcinose , Sclérodermie systémique , Tomodensitométrie , Humains , Sclérodermie systémique/complications , Sclérodermie systémique/imagerie diagnostique , Calcinose/imagerie diagnostique , Acro-ostéolyse/imagerie diagnostique , Acro-ostéolyse/étiologie , Femelle , Mâle , Adulte d'âge moyen , Tomodensitométrie/méthodes , Sujet âgé , Adulte , Sensibilité et spécificité , Indice de gravité de la maladie
18.
Bone ; 181: 117012, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38216077

RÉSUMÉ

Military training increases tibial density and size. Female sex hormones may influence the adaption of bone to loading, but it is unknown if women using different hormonal contraceptives adapt similarly to military training. One hundred and sixteen women (57 women not using hormonal contraceptives [non-users], 38 combined oral contraceptive pill [COCP] users, 21 depot medroxyprogesterone acetate [DMPA] users) completed this study. Tibial volumetric bone mineral density (vBMD) and geometry were measured by peripheral quantitative computed tomography (4 %, 14 %, 38 %, and 66 % sites) at the start (week 1) and end (week 14) of British Army basic training. Circulating markers of bone and calcium metabolism were measured at weeks 1, 2, 4, 6, 10, and 14. Training increased trabecular vBMD at the 4 % site, periosteal perimeter at the 14 % and 66 % sites, and total area, cortical area, cortical thickness, and bone strength at all sites (0.1 to 1.6 %, p ≤ 0.009), with no differences between hormonal contraceptive groups (p ≥ 0.127). Trabecular vBMD increased at the 14 % site in non-users (0.8 %, p = 0.005), but not in COCP or DMPA users (p ≥ 0.205). Periosteal perimeter increased at the 38 % site in COCP (0.4 %, p < 0.001) and DMPA (0.5 %, p < 0.001) users, but not in non-users (p = 0.058). Training had no effect on periosteal perimeter at the 4 % site or cortical vBMD or endosteal perimeter at any site (p ≥ 0.168). ßCTX decreased and PINP increased during training with no difference between hormonal contraceptive groups. Training increased iPTH in non-users, but not COCP or DMPA users. Hormonal contraceptives may exert site-specific effects on the mechanobiology of bone, with higher endogenous oestradiol promoting trabecularisation and inhibiting periosteal expansion in non-users compared with hormonal contraceptive users.


Sujet(s)
Contraceptifs oraux combinés , Acétate de médroxyprogestérone , Personnel militaire , Femelle , Humains , Densité osseuse/physiologie , Études de cohortes , Contraceptifs oraux combinés/pharmacologie , Acétate de médroxyprogestérone/pharmacologie
19.
Endocrine ; 83(1): 214-226, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37673836

RÉSUMÉ

PURPOSE: People living with the human immunodeficiency virus (PLWH) developed higher life expectancy along with chronic bone disease over the past years. Our purpose is to evaluate bone mineral density, bone microarchitecture and fractures in young PLWH and understand the disease's contribution to bone derangements and fracture risk. METHODS: Eighty-one HIV-infected and 54 control young (20-50 years) male and female subjects were enrolled in this study. Methods for patient evaluation included DXA-VFA (dual energy X-rays and vertebral fracture assessment), HR-pQCT (high resolution peripheral quantitative computed tomography), biochemistry and FRAX. RESULTS: Fifty participants from each group completed all exams. Median age was 40 (25-49) vs. 36.5 (22-50) for the HIV and control groups, respectively (p 0.120). Ethnicity, body mass index, serum phosphorus, 25-hydroxyvitamin D, PTH and CTX were similar between groups, although ALP and OC suggested higher bone turnover in PLWH. VFA identified morphometric vertebral fractures in 12% of PLWH. PLWH had lower values for lumbar spine areal BMD and Z score, volumetric BMD, trabecular bone fraction (BV/TV) and trabecular number measured at the distal tibia by HR-pQCT; as a consequence, trabecular separation and heterogeneity were higher (all p < 0.05). The FRAX-estimated risk for hip and major osteoporotic fractures was statistically higher in PLWH (p < 0.001). CONCLUSION: Our results confirm severe bone impairment and fractures associated with HIV in young patients. Thus, we developed a screening protocol for young PLWH to detect bone fragility, reduce skeletal disease progression and morbimortality, decrease fracture risk, and increase quality of life.


Sujet(s)
Infections à VIH , Fractures ostéoporotiques , Fractures du rachis , Humains , Mâle , Femelle , Adulte , Densité osseuse , VIH (Virus de l'Immunodéficience Humaine) , Qualité de vie , Fractures ostéoporotiques/imagerie diagnostique , Fractures ostéoporotiques/épidémiologie , Fractures ostéoporotiques/étiologie , Infections à VIH/complications , Absorptiométrie photonique , Radius
20.
J Clin Endocrinol Metab ; 109(2): e513-e521, 2024 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-37804103

RÉSUMÉ

CONTEXT: Serum 25-hydroxyvitamin D (25(OH)D) is the current marker of vitamin D adequacy, but its relationship with bone health has been inconsistent. The ratio of 24,25-dihydroxyvitamin D3 to 25(OH)D3 (vitamin D metabolite ratio or VMR) is a marker of vitamin D that has been associated with longitudinal changes in bone mineral density (BMD) and fracture risk. OBJECTIVE: High-resolution peripheral quantitative computed tomography (HR-pQCT) provides information on bone health beyond standard dual-energy x-ray absorptiometry, in that it measures volumetric BMD (vBMD) as well bone strength. The relationship of the VMR with vBMD and bone strength remains unknown. METHODS: We evaluated the associations of the VMR and 25(OH)D3 with vBMD and bone strength in the distal radius and tibia, assessed by HR-pQCT in 545 older men participating in the Osteoporotic Fractures in Men (MrOS) Study. Primary outcomes were vBMD and estimated failure load (EFL, a marker of bone strength) at the distal radius and tibia. RESULTS: The mean age was 84 ± 4 years, 88.3% were White, and 32% had an estimated glomerular filtration rate <60 mL/min/1.73 m2. In adjusted models, each twofold higher VMR was associated with a 9% (3%, 16%) higher total vBMD and a 13% (5%, 21%) higher EFL at the distal radius. Results were similar at the distal tibia. 25(OH)D3 concentrations were not associated with any of the studied outcomes. CONCLUSION: Among older men, a higher VMR was associated with greater vBMD and bone strength while 25(OH)D3 was not. The VMR may serve as a valuable marker of skeletal health in older men.


Sujet(s)
Densité osseuse , Fractures osseuses , Mâle , Humains , Sujet âgé , Sujet âgé de 80 ans ou plus , Fractures osseuses/imagerie diagnostique , Fractures osseuses/étiologie , Vitamine D , Vitamines , Absorptiométrie photonique , Tibia , Calcifédiol , Radius/imagerie diagnostique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE