Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 35
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Philos Trans A Math Phys Eng Sci ; 382(2278): 20230372, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39069766

RÉSUMÉ

Periodic wave barriers have been widely used to manipulate elastic waves propagating in saturated and single-phase soil due to their attenuation zone properties. However, it is difficult to promote application of periodic barriers in unsaturated soils due to their complex constitutive relationship. In this study, manipulation of surface waves by periodic in-filled trench barriers in unsaturated soil has been studied based on the periodic theory. The dispersion relations of a periodic structure for surface waves in unsaturated soil are determined. The attenuation mechanism of evanescent surface waves is revealed. Next, the effects of several key parameters of unsaturated soil on the attenuation zones of the periodic in-filled trench barriers are comprehensively discussed. It is found that in a particular range for material parameter, the surface waves are attenuated over the entire frequency range due to the viscosity of fluid. Finally, a periodic in-filled trench barrier is designed according to a field test of ground vibration induced by a train, and its performances in mitigating surface waves propagating in unsaturated and saturated soils are conducted and compared by conducting analysis in time domain. This investigation provides a new insight for manipulating surface waves by periodic barriers. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 1)'.

2.
Sci Rep ; 14(1): 9173, 2024 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-38649397

RÉSUMÉ

In this study, we examine multiple perspectives on soliton solutions to the (3+1)-dimensional Boussinesq model by applying the unified Riccati equation expansion (UREE) approach. The Boussinesq model examines wave propagation in shallow water, which is derived from the fluid dynamics of a dynamical system. The UREE approach allows us to derive a range of distinct solutions, such as single, periodic, dark, and rational wave solutions. Furthermore, we present the bifurcation, chaotic, and sensitivity analysis of the proposed model. We use planar dynamical system theory to analyze the structure and characteristics of the system's phase portraits. The current study depends on a dynamic structure that has novel and unexplored results for this model. In addition, we display the behaviors of associated physical models in 3-dimensional, density, and 2-dimensional graphical structures. Our findings demonstrate that the UREE technique is a valuable mathematical tool in engineering and applied mathematics for studying wave propagation in nonlinear evolution equations.

3.
Materials (Basel) ; 16(12)2023 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-37374646

RÉSUMÉ

Terahertz (THz) plasmonic metamaterial, based on a metal-wire-woven hole array (MWW-HA), is investigated for the distinct power depletion in the transmittance spectrum of 0.1-2 THz, including the reflected waves from metal holes and woven metal wires. Woven metal wires have four orders of power depletion, which perform sharp dips in a transmittance spectrum. However, only the first-order dip at the metal-hole-reflection band dominates specular reflection with a phase retardation of approximately π. The optical path length and metal surface conductivity are modified to study MWW-HA specular reflection. This experimental modification shows that the first order of MWW-HA power depletion is sustainable and sensitively correlated with a bending angle of the woven metal wire. Specularly reflected THz waves are successfully presented in hollow-core pipe wave guidance specified from MWW-HA pipe wall reflectivity.

4.
Polymers (Basel) ; 15(5)2023 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-36904358

RÉSUMÉ

This paper proposes an approach of stacking prepreg periodically for carbon fiber-reinforced polymer composites (CFRP) laminate. This paper will discuss the natural frequency, modal damping, and vibration characteristics of CFRP laminate with one-dimensional periodic structures. The damping ratio of CFRP laminate is calculated using the semi-analytical method which combines modal strain energy with the finite element method. The finite element method is used to calculate the natural frequency and bending stiffness which are verified with experiments. The numerical results of the damping ratio, natural frequency, and bending stiffness are in good agreement with the experiment results. Finally, the bending vibration characteristics of CFRP laminate with one-dimensional periodic structures and traditional CFRP laminate are investigated with experiments. The finding confirmed that the CFRP laminate with one-dimensional periodic structures exists band gaps. This study provides theoretical support for the promotion and application of CFRP laminate in the field of vibration and noise.

5.
Heliyon ; 9(3): e14191, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36938450

RÉSUMÉ

This paper describes one-dimensional periodic shell structures that have variable cross sections, a new type of periodic shell structures made from photopolymer. This paper will discuss the stiffness of periodic sub-cells that have variable cross sections and the band gaps of Bragg scattering shell structures based on numerical analysis and a series of experiments. This paper uses the Bloch theorem and lumped-mass method to create a band gap model for periodic shell structures. In this paper, an equivalent stiffness model for sub-cells is also created based on the principle of superposition and validated by experiments. Numerical studies and experiments are conducted to examine the effects of geometrical parameters, number of sub-cells, and stiffness of sub-cells on band gaps of one-dimensional periodic shell structures and to test the effectiveness of the models. The findings in this paper prove that by varying the stiffness of sub-cells under a fixed lattice constant, band gaps of one-dimensional periodic shell structures can be decreased. The findings also confirmed that the initial band gap of one-dimensional periodic shell structures can be lowered by increasing the number of sub-cells in a period. Unlike other types of Bragg scattering periodic structures, one-dimensional periodic shell structures allow their longitudinal band gaps to be adjusted under a fixed lattice constant. Those findings serve as a theoretical foundation for the application of Bragg scattering periodic shell structures in low-frequency vibration.

6.
Polymers (Basel) ; 15(3)2023 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-36772034

RÉSUMÉ

This study aims to enhance and tune wave-propagation properties (Bandgaps) of periodic structures featuring magnetorheological elastomers (MREs). For this purpose, first, a basic model of periodic structures (square unit cell with cross-shaped arms), which does not possess noise filtering properties in the conventional configuration, is considered. A passive attenuation zone is then proposed by adding a cylindrical core mass to the center of the conventional geometry and changing arm angles, which permitted new bandgap areas. It was shown that better wave-filtering performance may be achieved by introducing a large radius of the cylindrical core as well as low negative cross-arm angles. The modified configuration of the unit cell was subsequently utilized as the basic model for the development of magnetoactive metamaterial using a MRE capable of varying the bandgaps areas upon application of an external magnetic field. The finite element model of the proposed MRE-based periodic unit cell was developed, and the Bloch theorem was employed to systematically investigate the ability of the proposed adaptive periotic structure to attenuate low-frequency noise and vibration. Results show that the proposed MRE-based periodic wave filter can provide wide bandgap areas which can be adaptively changed and tuned using the applied magnetic field. The findings in this study can provide an essential guide for the development of novel adaptive periodic structures to filter low-frequency noises in the wide frequency band.

7.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article de Anglais | MEDLINE | ID: mdl-36674946

RÉSUMÉ

Metal nanostructure-treated polymers are widely recognized as the key material responsible for a specific antibacterial response in medical-based applications. However, the finding of an optimal bactericidal effect in combination with an acceptable level of cytotoxicity, which is typical for metal nanostructures, prevents their expansion from being more significant so far. This study explores the possibility of firmly anchoring silver nanoparticles (AgNPs) into polyetherether ketone (PEEK) with a tailored surface morphology that exhibits laser-induced periodic surface structures (LIPSS). We demonstrated that laser-induced forward transfer technology is a suitable tool, which, under specific conditions, enables uniform decoration of the PEEK surface with AgNPs, regardless of whether the surface is planar or LIPSS structured. The antibacterial test proved that AgNPs-decorated LIPSS represents a more effective bactericidal protection than their planar counterparts, even if they contain a lower concentration of immobilized particles. Nanostructured PEEK with embedded AgNPs may open up new possibilities in the production of templates for replication processes in the construction of functional bactericidal biopolymers or may be directly used in tissue engineering applications.


Sujet(s)
Nanoparticules métalliques , Nanoparticules métalliques/composition chimique , Argent/composition chimique , Polyéthylène glycols/composition chimique , Cétones/composition chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique
8.
Beilstein J Nanotechnol ; 14: 1225-1237, 2023.
Article de Anglais | MEDLINE | ID: mdl-38170148

RÉSUMÉ

Scanning probe microscopy (SPM) techniques are widely used to study the structure and properties of surfaces and interfaces across a variety of disciplines in chemistry and physics. One of the major artifacts in SPM is (thermal) drift, an unintended movement between sample and probe, which causes a distortion of the recorded SPM data. Literature holds a multitude of strategies to compensate for drift during the measurement (online drift correction) or afterwards (offline drift correction). With the currently available software tools, however, offline drift correction of SPM data is often a tedious and time-consuming task. This is particularly disadvantageous when analyzing long image series. Here, we present unDrift, an easy-to-use scientific software for fast and reliable drift correction of SPM images. unDrift provides three different algorithms to determine the drift velocity based on two consecutive SPM images. All algorithms can drift-correct the input data without any additional reference. The first semi-automatic drift correction algorithm analyzes the different distortion of periodic structures in two consecutive up and down (down and up) images, which enables unDrift to correct SPM images without stationary features or overlapping scan areas. The other two algorithms determine the drift velocity from the apparent movement of stationary features either by automatic evaluation of the cross-correlation image or based on positions identified manually by the user. We demonstrate the performance and reliability of unDrift using three challenging examples, namely images distorted by a very high drift velocity, only partly usable images, and images exhibiting an overall weak contrast. Moreover, we show that the semi-automatic analysis of periodic images can be applied to a long series containing hundreds of images measured at the calcite-water interface.

9.
Philos Trans A Math Phys Eng Sci ; 380(2237): 20220074, 2022 Nov 28.
Article de Anglais | MEDLINE | ID: mdl-36209803

RÉSUMÉ

The Herschel-Quincke (HQ) tube concept for transmission loss in pipe systems is expanded to include cases of branches with modulated properties. Modulated waveguides, featuring corrugations in their geometry or speed of sound, are known to produce significant reflection even without the parallel branch of the HQ tube. The HQ tube, in its classical form, produces narrow banded transmission loss at frequencies related to the length, wavenumber and cross-section area of the parallel branch. The modulated Herschel-Quincke (MHQ) tube combines these attributes to produce enhanced transmission loss characteristics in terms of both width and number of transmission loss bands. Several modulated profiles for the speed of sound in different branches of the tube are considered and analytical expressions for the transmission loss and resonant conditions are derived. Detailed analysis of periodically stratified branch profiles demonstrates the effectiveness of the MHQ tube for fluid-borne noise attenuation in pipe systems. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)'.


Sujet(s)
Modèles théoriques , Bruit
10.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-36142868

RÉSUMÉ

Although many noble metals are known for their antibacterial properties against the most common pathogens, such as Escherichia coli and Staphylococcus epidermidis, their effect on healthy cells can be toxic. For this reason, the choice of metals that preserve the antibacterial effect while being biocompatible with health cells is very important. This work aims to validate the effect of gold on the biocompatibility of Au/Ag nanowires, as assessed in our previous study. Polyethylene naphthalate (PEN) was treated with a KrF excimer laser to provide specific laser-induced periodic structures. Then, Au was deposited onto the modified PEN via a vacuum evaporation method. Atomic force microscopy and scanning electron microscopy revealed the dependence of the surface morphology on the incidence angle of the laser beam. A resazurin assay cytotoxicity test confirmed safety against healthy human cells and even cell proliferation was observed after 72 h of incubation. We have obtained satisfactory results, demonstrating that monometallic Au nanowires can be applied in biomedical applications and provide the biocompatibility of bimetallic Au/AgNWs.


Sujet(s)
Nanofils , Antibactériens/pharmacologie , Escherichia coli , Or/composition chimique , Or/pharmacologie , Humains , Lasers , Nanofils/composition chimique , Naphtalènes , Polyéthylènes
11.
Nanomaterials (Basel) ; 12(7)2022 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-35407337

RÉSUMÉ

As polymeric materials are already used in many industries, the range of their applications is constantly expanding. Therefore, their preparation procedures and the resulting properties require considerable attention. In this work, we designed the surface of polyethylene naphthalate (PEN) introducing copper nanowires. The surface of PEN was transformed into coherent ripple patterns by treatment with a KrF excimer laser. Then, Cu deposition onto nanostructured surfaces by a vacuum evaporation technique was accomplished, giving rise to nanowires. The morphology of the prepared structures was investigated by atomic force microscopy and scanning electron microscopy. Energy dispersive spectroscopy and X-ray photoelectron spectroscopy revealed the distribution of Cu in the nanowires and their gradual oxidation. The optical properties of the Cu nanowires were measured by UV-Vis spectroscopy. The sessile drop method revealed the hydrophobic character of the Cu/PEN surface, which is important for further studies of biological responses. Our study suggests that a combination of laser surface texturing and vacuum evaporation can be an effective and simple method for the preparation of a Cu/polymer nanocomposite with potential exploitation in bioapplications; however, it should be borne in mind that significant post-deposition oxidation of the Cu nanowire occurs, which may open up new strategies for further biological applications.

12.
Materials (Basel) ; 15(7)2022 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-35407785

RÉSUMÉ

Highly efficient optical diffraction can be realized with the help of micrometer-thin liquid crystal (LC) layers with a periodic modulation of the director orientation. Electrical tunability is easily accessible due to the strong stimuli-responsiveness in the LC phase. By using well-designed photoalignment patterns at the surfaces, we experimentally stabilize two dimensional periodic LC configurations with switchable hexagonal diffraction patterns. The alignment direction follows a one-dimensional periodic rotation at both substrates, but with a 60° or 120° rotation between both grating vectors. The resulting LC configuration is studied with the help of polarizing optical microscopy images and the diffraction properties are measured as a function of the voltage. The intricate bulk director configuration is revealed with the help of finite element Q-tensor simulations. Twist conflicts induced by the surface anchoring are resolved by introducing regions with an out-of-plane tilt in the bulk. This avoids the need for singular disclinations in the structures and gives rise to voltage induced tuning without hysteretic behavior.

13.
Acta Crystallogr A Found Adv ; 78(Pt 2): 155-157, 2022 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-35230271

RÉSUMÉ

The conjecture of Grosse-Kunstleve et al. [(1996), Acta Cryst. A52, 879-889], that coordination sequences of periodic structures in n-dimensional Euclidean space are rational, is proved. This has been recently proven by Nakamura et al. [(2021), Acta Cryst. A77, 138-148]; however, the proof presented here is a straightforward application of classic techniques from automata theory.

14.
Sensors (Basel) ; 21(19)2021 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-34640912

RÉSUMÉ

This paper illustrates the application of CORPS (coherently radiating periodic structures) for feeding 2-D phased arrays with a reduced number of phase shifter (PS) devices. Three design configurations using CORPS are proposed for 2-D phased arrays. The design model of phased array for these configurations considers the cophasal excitation required for this structure to set a strategic way for feeding the antenna elements and reducing the number of PS devices. Blocks of 2 × 3 and 4 × 7 CORPS networks depending on the configuration in the 2-D phased array are set strategically in the feeding network to generate the cophasal excitation required in the antenna elements. These design configurations used for feeding the antenna elements in the planar array geometry provide several advantages with respect to others in the scanning capability and the reduction of the number of PS devices of the array system. The full-wave simulation results for the proposed configurations in 2-D phased arrays provide a reduction in the number of PSs of until 69% for a scanning range of ±25° in elevation and ±40° in azimuth. The application of the raised cosine amplitude distribution could generate radiation patterns with a SLL_PEAK ≈ -19 dB and SLL_PEAK ≈ -23 dB for the design proposed configurations in all the scanning range.


Sujet(s)
Simulation numérique
15.
Adv Sci (Weinh) ; 8(15): e2100402, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-34047069

RÉSUMÉ

Periodic porous structures have been introduced into functional films to meet the requirements of various applications. Though many approaches have been developed to generate desired structures in polymeric films, few of them can effectively and dynamically achieve periodic porous structures. Here, a facile way is proposed to introduce periodic stratified porous structures into polyelectrolyte films. A photo-crosslinkable polyelectrolyte film of poly(ethylenimine) (PEI) and photoreactive poly(acrylic acid) derivative (PAA-N3 ) is prepared by layer-by-layer (LbL) self-assembly. Stratified crosslinking of the PEI/PAA-N3 film is generated basing on standing-wave optics. The periodic stratified porous structure is constructed by forming pores in noncrosslinked regions in the film. Thanks to the dynamic mobility of polyelectrolytes, this structural controlment can be repeated several times. The size of pores corresponding to the layer spacing of the film contributes to the structural colors. Furthermore, structural color patterns are fabricated in the film by selective photo-crosslinking using photomasks. Although the large-scale structural controlment in thick (micron-scale and above) films needs to be explored further, this work highlights the periodic structural controlment in polymeric films and thus presents an approach for application potentials in sensor, detection, and ink-free printing.

16.
Acta Crystallogr A Found Adv ; 77(Pt 2): 130-137, 2021 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-33646199

RÉSUMÉ

Crystallographic descriptions of isogonal piecewise linear embeddings of 1-periodic weaves and links (chains) are presented. These are composed of straight segments (sticks) that meet at corners (2-valent vertices). Descriptions are also given of some plaits - woven periodic bands, three simple periodic knots and isogonal interwoven rods.

17.
ACS Appl Mater Interfaces ; 13(1): 1921-1929, 2021 Jan 13.
Article de Anglais | MEDLINE | ID: mdl-33393774

RÉSUMÉ

Specific control on the mid-infrared (mid-IR) emission properties is attracting increasing attention for thermal camouflage and passive cooling applications. Metal-dielectric-metal (MDM) structures are well known to support strong magnetic polariton resonances in the optical and near-infrared range. We extend the current understanding of such an MDM structure by specifically designing Au disc arrays on top of ZnS-Au-Si substrates and pushing their resonances to the mid-IR regime. Therefore, we combine fabrication via lift-off photolithography with the finite element method and an inductance-capacitance model. With this combination of techniques, we demonstrate that the magnetic polariton resonance of the first order strongly depends on the individual disc diameter. Furthermore, the fabrication of multiple discs within one unit cell allows a linear combination of the fundamental resonances to conceive broadband absorptance. Quite importantly, even in mixed resonator cases, the absorptance spectra can be fully described by a superposition of the individual disc properties. Our contribution provides rational guidance to deterministically design mid-IR emitting materials with specific narrow- or broadband properties.

18.
Sensors (Basel) ; 20(23)2020 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-33271813

RÉSUMÉ

Recently, there has been an increased interest in exploring periodic structures with higher symmetry due to various possibilities of utilizing them in novel electromagnetic applications. The aim of this paper is to discuss design issues related to the implementation of holey glide-symmetric periodic structures in waveguide-based components. In particular, one can implement periodic structures with glide symmetry in one or two directions, which we differentiate as 1D and 2D glide symmetry, respectively. The key differences in the dispersion and bandgap properties of these two realizations are presented and design guidelines are indicated, with special care devoted to practical issues. Focusing on the design of gap waveguide-based components, we demonstrate using simulated and measured results that in practice it is often sufficient to use 1D glide symmetry, which is also simpler to mechanically realize, and if larger attenuation of lateral waves is needed, a diagonally directed 2D glide symmetric structure should be implemented. Finally, an analysis of realistic holes with conical endings is performed using a developed effective hole depth method, which combined with the presented analysis and results can serve as a valuable tool in the process of designing novel electrically-large waveguide-based components.

19.
Proc Math Phys Eng Sci ; 476(2242): 20200568, 2020 Oct.
Article de Anglais | MEDLINE | ID: mdl-33223951

RÉSUMÉ

Strategies for the generation of periodic discrete structures with identical two-point correlation-called 2PC-equivalent-are developed. It is shown that starting from a set of 2PC-equivalent root structures, 2PC-equivalent child structures of arbitrary resolution and number of phases (e.g. material phases) can be generated based on phase extension through trivial embeddings, kernel-based extension and phase coalescence. Proofs are provided by means of discrete Fourier transform theory. A Python 3 implementation is offered for reproduction of examples and future applications.

20.
Polymers (Basel) ; 11(12)2019 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-31817649

RÉSUMÉ

The possibility of the application of acrylate compositions and Bayfol HX photopolymers in holographic technologies is considered. The holographic characteristics of materials, their advantages, and limitations in relation to the tasks of obtaining holographic elements based on periodic structures are given. The conditions for obtaining controlled two and multichannel diffraction beam splitters are determined with advantages in terms of the simplicity of the fabrication process. The diffraction and selective properties of volume and hybrid periodic structures by radiation incidence in a wide range of angles in three-dimensional space are investigated, and new properties are identified that are of interest for the development of elements of holographic solar concentrators with advantages in the material used and the range of incidence angles. A new application of polymer materials in a new method of holographic 3D printing for polymer objects with arbitrary shape fabrication based on the projection of a holographic image of the object into the volume of photopolymerizable material is proposed, the advantage of which, relative to additive 3D printing technologies, is the elimination of the sequential synthesis of a three-dimensional object. The factors determining the requirements for the material, fabrication conditions, and properties of three-dimensional objects are identified and investigated.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE