Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Colloid Interface Sci ; 668: 319-334, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38678887

RÉSUMÉ

Wrinkled coatings are a potential drug-free method for mitigating bacterial attachment and biofilm formation on materials such as medical and food grade steel. However, their fabrication typically requires multiple steps and often the use of a stimulus to induce wrinkle formation. Here, we report a facile plasma-based method for rapid fabrication of thin (<250 nm) polymer coatings from a single environmentally friendly precursor, where wrinkle formation and fractal pattern development are controlled solely by varying the deposition time from 3 s to 60 s. We propose a mechanism behind the observed in situ development of wrinkles in plasma, as well as demonstrate how introducing specific topographical features on the surface of the substrata can result int the formation of even more complex, ordered wrinkle patterns arising from the non-uniformity of plasma when in contact with structured surfaces. Thus-fabricated wrinkled surfaces show good adhesion to substrate and an antifouling activity that is not observed in the equivalent smooth coatings and hence is attributed to the specific pattern of wrinkles.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123017, 2023 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-37354853

RÉSUMÉ

Glyphosate (GLP) is the herbicide with the highest level of global commercialization and historical use. Even though numerous studies have found this substance to be harmless, current research demonstrates that GLP might affect human health. For this reason, researcher efforts are concentrating on alternatives for analytical quantification, such as Surface Enhanced Raman Spectroscopy (SERS). In this work, a DVD-R@AgNPs SERS substrate was produced by the Cathodic Cage Plasma Deposition (CCPD) technique, which allowed a thin film layer deposition of silver nanoparticles (AgNPs) on the PC grating structure from Digital Video/Versatile Disc Recordable (DVD-R). Scanning Electron Microscopy with energy-dispersive X-ray spectroscopy was used to characterize the substrate and chemical changes on the surface after AgNPs deposition. The DVD-R@AgNPs substrate was used to detect standard crystal violet (CV), GLP, and RoundupTM GLP (GLP-RU) using Raman Spectroscopy. The CV was used as a control sample for SERS measurement, allowing the calculation of the substrate enhancement factor, which was in the order of âˆ¼ 105. To evaluate the efficiency of the SERS substrate, the limit of detection was calculated and showed values of âˆ¼ 10-10 mol/L for CV, 10-7 and 10-8 mol/L for GLP, and 10-6 mol/L for GLP-RU. Thus, the DVD-R@AgNPs SERS sensor is a low-cost substrate that analyzes traces of pesticides such as commercial GLP, demonstrating high SERS sensitivities and many applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE