Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 40
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Small ; 20(12): e2306313, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-37948422

RÉSUMÉ

Ion resource recovery from organic wastewater is beneficial for achieving emission peaks and carbon neutrality targets. Advanced organic solvent-resistant anion exchange membranes (AEMs) for treating organic wastewater via electrodialysis (ED) are of significant interest. Herein, a kind of 3D network AEM based on poly(arylene ether sulfone) cross-linked with a flexible cross-linker (DBH) for ion resource recovery via ED in organic solvent system is reported. Investigations demonstrate that the as-prepared AEMs show excellent dimensional stability in 60% DMSO (aq.), 60% ethanol (aq.), and 60% acetone (aq.), respectively. For example, the optimized AEM shows very low swelling ratios of 1.04-1.10% in the organic solvents. ED desalination ratio can reach 99.1% after exposure of the AEM to organic solvents for 30 days, and remain > 99% in a mixture solution containing organic solvents and 0.5 m NaCl. Additionally, at a current density of 2.5 mA cm-2, the optimized AEM soaked in organic solvents for 30 days shows a high perm-selectivity (Cl-/SO4 2-) of 133.09 (vs 13.11, Neosepta ACS). The superior ED performance is attributed to the stable continuous sub-nanochannels within AEM confirmed by SAXS, rotational energy barriers, etc. This work shows the potential application of cross-linked AEMs for resource recovery in organic wastewater.

2.
Des Monomers Polym ; 26(1): 140-149, 2023.
Article de Anglais | MEDLINE | ID: mdl-37139095

RÉSUMÉ

The high-frequency and high-speed communication in the 5 G era puts forward requirements for the dielectric properties of polymers. Introducing fluorine into poly(ary ether ketone) can improve its dielectric properties. In this work, by introducing the fluorine group strategy, we successfully designed and synthesized three novel trifluoromethyl (-CF3) or trifluoromethoxy (-OCF3)-containing bisphenol monomers and their F-substitution PEK-based polymers (PEK-Ins). All these PEK-Ins exhibited good thermal, mechanical and dielectric properties. The T d5% of the three polymers is all higher than 520℃. The free volume fraction of novel polymers increased from 3.75% to 5.72%. Among the three polymers, exhibited the lowest dielectric constant of the films is 2.839, and the dielectric loss is 0.0048, ascribing to the increasing free volume. The Young's modulus of the polymer film is as high as 2.9 GPa and the tensile strength is as high as 84 MPa. PEK-Ins reduced the dielectric constant by introducing a low fluorine content. This study provides a new way to design PEK to synthesize low dielectric constant polymers.

3.
ACS Appl Mater Interfaces ; 15(20): 24517-24527, 2023 May 24.
Article de Anglais | MEDLINE | ID: mdl-37186810

RÉSUMÉ

Branched sulfonated polymers present considerable potential for application as proton exchange membranes, yet investigation of branched polymers containing sulfonated branched centers remains to be advanced. Herein, we report a series of polymers with ultradensely sulfonated branched centers, namely, B-x-SPAEKS, where x represents the degree of branching. In comparison with the analogous polymers bearing sulfonated branched arms, B-x-SPAEKS showed a reduced water affinity, resulting in less swelling and lower proton conductivity. The water uptake, swelling ratio (in-plane), and proton conductivity of B-10-SPAEKS at 80 °C were 52.2%, 57.7%, and 23.6% lower than their counterparts, respectively. However, further analysis revealed that B-x-SPAEKS featured significantly better proton conduction under the same water content due to the formation of larger hydrophilic clusters (∼10 nm) that promoted efficient proton transportation. B-12.5-SPAEKS exhibited a proton conductivity of 138.8 mS cm-1 and a swelling ratio (in-plane) of only 11.6% at 80 °C, both of which were superior to Nafion 117. In addition, a decent single-cell performance of B-12.5-SPAEKS was also achieved. Consequently, the decoration of sulfonic acid groups on the branched centers represents a very promising strategy, enabling outstanding proton conductivity and dimensional stability simultaneously even with low water content.

4.
Molecules ; 28(7)2023 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-37049891

RÉSUMÉ

Proton exchange membranes (PEMs) are an important type of vanadium redox flow battery (VRFB) separator that play the key role of separating positive and negative electrolytes while transporting protons. In order to lower the vanadium ion permeability and improve the proton selectivity of PEMs for enhancing the Coulombic efficiency of VRFBs, herein, various amounts of nano-sized SiO2 particles were introduced into a previously optimized sulfonated poly(arylene ether) (SPAE) PEMs through the acid-catalyzed sol-gel reaction of tetraethyl orthosilicate (TEOS). The successful incorporation of SiO2 was confirmed by FT-IR spectra. The scanning electron microscopy (SEM) images revealed that the SiO2 particles were well distributed in the SPAE membrane. The ion exchange capacity, water uptake, and swelling ratio of the PEMs were decreased with the increasing amount of SiO2, while the mechanical properties and thermal stability were improved significantly. The proton conductivity was reduced gradually from 93.4 to 76.9 mS cm-1 at room temperature as the loading amount of SiO2 was increased from 0 to 16 wt.%; however, the VO2+ permeability was decreased dramatically after the incorporation of SiO2 and reached a minimum value of 2.57 × 10-12 m2 s-1 at 12 wt.% of SiO2. As a result, the H+/VO2+ selectivity achieved a maximum value of 51.82 S min cm-3 for the composite PEM containing 12 wt.% of SiO2. This study demonstrates that the properties of PEMs can be largely tuned by the introduction of SiO2 with low cost for VRFB applications.

5.
Polymers (Basel) ; 15(23)2023 Nov 25.
Article de Anglais | MEDLINE | ID: mdl-38231952

RÉSUMÉ

Confronting the pressing challenge of freshwater scarcity, polymeric membrane-based water treatment technology has emerged as an essential and effective approach. Poly(arylene ether)s (PAEs) polymers, a class of high-performance engineering thermoplastics, have garnered attention in recent decades as promising membrane materials for advanced water treatment approaches. The PAE-Based membranes are employed to resist the shortages of most common polymeric membranes, such as chemical instability, structural damage, membrane fouling, and shortened lifespan when deployed in harsh environments, owing to their excellent comprehensive performance. This article presents the advancements in the research of several typical PAEs, including poly(ether ether ketone) (PEEK), polyethersulfone (PES), and poly(arylene ether nitrile) (PEN). Techniques for membrane formation, modification strategies, and applications in water treatment have been reviewed. The applications encompass processes for oil/water separation, desalination, and wastewater treatment, which involve the removal of heavy metal ions, dyes, oils, and other organic pollutants. The commendable performance of these membranes has been summarized in terms of corrosion resistance, high-temperature resistance, anti-fouling properties, and durability in challenging environments. In addition, several recommendations for further research aimed at developing efficient and robust PAE-based membranes are proposed.

6.
Polymers (Basel) ; 14(24)2022 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-36559872

RÉSUMÉ

With the recognition of the multiple advantages of sulfonated hydrocarbon-based polymers that possess high chemical and mechanical stability with significant low cost, we employed molecular dynamics simulation to explore the morphological effects of side chain length in sulfonated polystyrene grafted poly(arylene ether sulfone)s (SPAES) proton exchange membranes. The calculated diffusion coefficients of hydronium ions (H3O+) are in range of 0.61-1.15 × 10-7 cm2/s, smaller than that of water molecules, due to the electrical attraction between the oppositely charged sulfonate group and H3O+. The investigation into the radial distribution functions suggests that phase segregation in the SPAES membrane is more probable with longer side chains. As the hydration level of the membranes in this study is relatively low (λ = 3), longer side chains correspond to more water molecules in the amorphous cell, which provides better solvent effects for the distribution of sulfonated side chains. The coordination number of water molecules and hydronium ions around the sulfonate group increases from 1.67 to 2.40 and from 2.45 to 5.66, respectively, with the increase in the side chain length. A significant proportion of the hydronium ions appear to be in bridging configurations coordinated by multiple sulfonate groups. The microscopic conformation of the SPAES membrane is basically unaffected by temperature during the evaluated temperature range. Thus, it can be revealed that the side chain length plays a key role in the configuration of the polymer chain and would contribute to the formation of the microphase separation morphology, which profits proton transport in the hydrophilic domains.

7.
Membranes (Basel) ; 12(6)2022 May 31.
Article de Anglais | MEDLINE | ID: mdl-35736289

RÉSUMÉ

In this study, a series of high molecular weight ionomers of hexaarylbenzene- and fluorene-based poly(arylene ether)s were synthesized conveniently through condensation and post-sulfonation modification. The use a of blending method might increase the stacking density of chains and affect the formation both of interchain and intrachain proton transfer clusters. Multiscale phase separation caused by the dissolution and compatibility differences of blend ionomer in high-boiling-point solvents was examined through analysis and simulations. The blend membranes produced in this study exhibited a high proton conductivity of 206.4 mS cm−1 at 80 °C (increased from 182.6 mS cm−1 for precursor membranes), excellent thermal resistance (decomposition temperature > 200 °C), and suitable mechanical properties with a tensile strength of 73.8−77.4 MPa. As a proton exchange membrane for fuel cell applications, it exhibits an excellent power efficiency of approximately 1.3 W cm−2. Thus, the ionomer membranes have strong potential for use in proton exchange membrane fuel cells and other electrochemical applications.

8.
ACS Nano ; 16(3): 4629-4641, 2022 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-35226457

RÉSUMÉ

Ion-conductive polymers having a well-defined phase-separated structure show the potential application of separating mono- and bivalent ion separation. In this work, three side-chain-type poly(arylene ether sulfone)-based anion exchange membranes (AEMs) have been fabricated to investigate the effect of the stiffness of the polymer backbone within AEMs on the Cl-/NO3- and Cl-/SO42- separation performance. Our investigations via small-angle X-ray scattering (SAXS), positron annihilation, and differential scanning calorimetry (DSC) demonstrate that the as-prepared AEM with a rigid benzimidazole structure in the backbone bears subnanometer ion channels resulting from the arrangement of the rigid polymer backbone. In particular, SAXS results demonstrate that the rigid benzimidazole-containing AEM in the wet state has an ion cluster size of 0.548 nm, which is smaller than that of an AEM with alkyl segments in the backbone (0.760 nm). Thus, in the electrodialysis (ED) process, the former exhibits a superior capacity of separating Cl-/SO42- ions relative to latter. Nevertheless, the benzimidazole-containing AEM shows an inability to separate the Cl-/NO3- ions, which is possibly due to the similar ion size of the two. The higher rotational energy barrier (4.3 × 10-3 Hartree) of benzimidazole units and the smaller polymer matrix free-volume (0.636%) in the AEM significantly contribute to the construction of smaller ion channels. As a result, it is believed that the rigid benzimidazole structure of this kind is a benefit to the construction of stable subnanometer ion channels in the AEM that can selectively separate ions with different sizes.

9.
Molecules ; 27(2)2022 Jan 07.
Article de Anglais | MEDLINE | ID: mdl-35056678

RÉSUMÉ

Alkaline stable anion exchange membranes based on the cross-linked poly(arylene ether sulfone) grafted with dual quaternary piperidine (XPAES-DP) units were synthesized. The chemical structure of the synthesized PAES-DP was validated using 1H-NMR and FT-IR spectroscopy. The physicochemical, thermal, and mechanical properties of XPAES-DP membranes were compared with those of two linear PAES based membranes grafted with single piperidine (PAES-P) unit and conventional trimethyl amine (PAES-TM). XPAES-DP membrane showed the ionic conductivity of 0.021 S cm-1 at 40 °C which was much higher than that of PAES-P and PAES-TM because of the possession of more quaternary ammonium groups in the cross-linked structure. This cross-linked structure of the XPAES-DP membrane resulted in a higher tensile strength of 18.11 MPa than that of PAES-P, 17.09 MPa. In addition, as the XPAES-DP membrane shows consistency in the ionic conductivity even after 96 h in 3 M KOH solution with a minor change, its chemical stability was assured for the application of anion exchange membrane fuel cell. The single-cell assembled with XPAES-DP membrane displayed a power density of 109 mWcm-2 at 80 °C under 100% relative humidity.

10.
Membranes (Basel) ; 13(1)2022 Dec 21.
Article de Anglais | MEDLINE | ID: mdl-36676814

RÉSUMÉ

Cross-linked membranes for polymer electrolyte membrane fuel cell application are prepared using highly sulfonated poly(arylene ether sulfone) (SPAES) and polymeric cross-linkers having different hydrophilicities by facile in-situ casting and heating processes. From the advantage of the cross-linked structures made with the use of polymeric cross-linkers, a stable membrane can be obtained even though the polymer matrix with a very high degree of sulfonation was used. In particular, hydrophilic cross-linker is found to be effective in improving physicochemical properties of the cross-linked membranes and at the same time showing reasonable proton conductivity. Accordingly, membrane electrode assembly made from the cross-linked membrane prepared by using hydrophilic polymeric cross-linker exhibits outstanding cell performance under high temperature and low relative humidity conditions (e.g., maximum power density of 176.4 mW cm-2 at 120 °C and 40% RH).

11.
Polymers (Basel) ; 13(20)2021 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-34685247

RÉSUMÉ

This study reports on a series of crosslinked poly(arylene ether)s with POSS in the main chain. The fluorinated and terminated poly(arylene ether)s were first synthesized by the nucleophilic reaction of diphenol POSS and decafluorodiphenyl monomers, including decafluorobiphenyl, decaflurobenzophenone, and decafluorodiphenyl sulfone. They were then reacted with 3-hydroxyphenyl acetylene to produce phenylacetylene-terminated poly(arylene ether)s. The polymers were of excellent processability. When heated to a high temperature, the polymers converted into a crosslinked network, exhibiting a low range of dielectric constant from 2.17 to 2.58 at 1 HMz, strong resistance against chemical solutions, low dielectric losses, and good thermal and hydrophobic properties.

12.
Membranes (Basel) ; 11(8)2021 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-34436389

RÉSUMÉ

Series of partially fluorinated sulfonated poly(arylene ether)s were synthesized through nucleophilic substitution polycondensation from three types of diols and superhydrophobic tetra-trifluoromethyl-substituted difluoro monomers with postsulfonation to obtain densely sulfonated ionomers. The membranes had similar ion exchange capacities of 2.92 ± 0.20 mmol g-1 and favorable mechanical properties (Young's moduli of 1.60-1.83 GPa). The membranes exhibited considerable dimensional stability (43.1-122.3% change in area and 42.1-61.5% change in thickness at 80 °C) and oxidative stability (~55.5%). The proton conductivity of the membranes, higher (174.3-301.8 mS cm-1) than that of Nafion 211 (123.8 mS cm-1), was the percent conducting volume corresponding to the water uptake. The membranes were observed to comprise isolated to tailed ionic clusters of size 15-45 nm and 3-8 nm, respectively, in transmission electron microscopy images. A fuel cell containing one such material exhibited high single-cell performance-a maximum power density of 1.32 W cm2 and current density of >1600 mA cm-2 at 0.6 V. The results indicate that the material is a candidate for proton exchange membranes in fuel cell applications.

13.
Polymers (Basel) ; 13(11)2021 May 24.
Article de Anglais | MEDLINE | ID: mdl-34073878

RÉSUMÉ

The purpose of this study was to investigate the effect of the aliphatic moiety in the sulfonated poly(arylene ether sulfone) (SPAES) backbone. A new monomer (4,4'-dihydroxy-1,6-diphenoxyhexane) was synthesized and polymerized with other monomers to obtain partially alkylated SPAESs. According to differential scanning calorimetry analysis, the glass transition temperature (Tg) of these polymers ranged from 85 to 90 °C, which is 100 °C lower than that of the fully aromatic SPAES. Due to the low Tg values obtained for the partially alkylated SPAESs, it was possible to prepare a hydrocarbon electrolyte membrane-based membrane electrode assembly (MEA) with Nafion® binder in the electrode through the use of a decal transfer method, which is the most commercially suitable system to obtain an MEA of proton exchange membrane fuel cells (PEMFCs). A single cell prepared using this partially alkylated SPAES as an electrolyte membrane exhibited a peak power density of 539 mW cm-2.

14.
ACS Appl Mater Interfaces ; 13(20): 23547-23557, 2021 May 26.
Article de Anglais | MEDLINE | ID: mdl-33979135

RÉSUMÉ

To obtain anion exchange membranes with both high ionic conductivity and good dimensional stability, a series of side-chain-type poly(arylene ether sulfone)s (PAES-QDTPM-x) were designed and synthesized. Quaternary ammonium (QA) groups were densely aggregated and grafted onto the main chain via flexible hydrophobic spacers. Well-defined microphase separation was confirmed by small-angle X-ray scattering. PAES-QDTPM-0.30 exhibited reasonably high conductivity (39.4 mS cm-1 at 20 °C and 76.1 mS cm-1 at 80 °C) and excellent dimensional stability at 80 °C (11.9% in length, 11.2% in thickness) due to the concentration of ion clusters and the side-chain-type structure. All membranes maintained over 82% of the conductivity after alkali treatment for 14 days. In the H2/O2 fuel cell performance test, the maximum power density of PAES-QDTPM-0.30 at 60 °C was 225.8 mW cm-2.

15.
Front Chem ; 8: 674, 2020.
Article de Anglais | MEDLINE | ID: mdl-32850676

RÉSUMÉ

Two series of disulfonated iptycene-based poly(arylene ether sulfone) random copolymers, i.e., TRP-BP (triptycene-based) and PENT-BP (pentiptycene-based), were synthesized via condensation polymerization from disulfonated monomer and comonomers to prepare proton exchange membranes (PEMs) for potential applications in electrochemical devices such as fuel cell. To investigate the effect of iptycene units on membrane performance, these copolymers were systematically varied in composition (i.e., iptycene content) and the degree of sulfonation (i.e., 30-50%), which were characterized comprehensively in terms of water uptake, swelling ratio, oxidative stability, thermal and mechanical properties, and proton conductivity at various temperatures. Comparing to copolymers without iptycene units, TRP-BP and PENT-BP ionomers showed greatly enhanced thermal and oxidative stabilities due to strong intra- and inter-molecular supramolecular interactions induced by hierarchical iptycene units. In addition, the introduction of iptycene units in general provides PEMs with exceptional dimensional stability of low volume swelling ratio at high water uptakes, which is ascribed to the supramolecularly interlocked structure as well as high fractional free volume of iptycene-based polymers. It is demonstrated that the combination of high proton conductivity and good membrane dimension stability is the result of the synergistic effects of multiple factors including free volume (iptycene content), sulfonation degree, hydrophobicity, and swelling behavior (supramolecular interactions).

16.
Polymers (Basel) ; 12(9)2020 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-32825217

RÉSUMÉ

We designed and synthesized a series of sulfonated poly(arylene ether sulfone) (SPES) with different hydrophilic or hydrophobic oligomer ratios using poly-condensation strategy. Afterward, we fabricated the corresponding membranes via a solution-casting approach. We verified the SPES membrane chemical structure using nuclear magnetic resonance (1H NMR) and confirmed the resulting oligomer ratio. Field-emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) results revealed that we effectively attained phase separation of the SPES membrane along with an increased hydrophilic oligomer ratio. Thermal stability, glass transition temperature (Tg) and membrane elongation increased with the ratio of hydrophilic oligomers. SPES membranes with higher hydrophilic oligomer ratios exhibited superior water uptake, ion-exchange capacity, contact angle and water sorption, while retaining reasonable swelling degree. The proton conductivity results showed that SPES containing higher amounts of hydrophilic oligomers provided a 74.7 mS cm-1 proton conductivity at 90 °C, which is better than other SPES membranes, but slightly lower than that of Nafion-117 membrane. When integrating SPES membranes with proton-exchange membrane fuel cells (PEMFCs) at 60 °C and 80% relative humidity (RH), the PEMFC power density exhibited a similar increment-pattern like proton conductivity pattern.

17.
Front Chem ; 8: 56, 2020.
Article de Anglais | MEDLINE | ID: mdl-32133339

RÉSUMÉ

Metal-organic frameworks (MOFs), as newly emerging filler materials for polyelectrolytes, show many compelling intrinsic features, such as variable structural designability and modifiability of proton conductivity. In this manuscript, UiO-66-NH2, a stable MOF with -NH2 functional groups in its ligands, was selected to achieve a high-performance sulfonated poly(arylene ether nitrile)s (SPENs)/UiO-66-NH2-x covalent-ionically cross-linked composite membrane. Simultaneously, the obtained composite membranes displayed excellent thermal stability and dimensional stability. The as-prepared SPEN/UiO-66-NH2-x cross-linked membranes exhibited higher proton conductivity than recast SPENs, which can be attributed to the construction of ionic clusters and well-connected ionic nanochannels along the interface between UiO-66-NH2-x and SPEN matrix via molecular interactions. Meanwhile, the methanol permeability of the SPEN/UiO-66-NH2-x composite membrane had been effectively reduced due to the barrier effect of cross-linking and the addition of UiO-66-NH2-x. The SPEN/UiO-66-NH2-5 composite membrane had the highest selectivity of 6.42 × 105 S·s·cm-3: 14.3-times higher than that of Nafion 117. The preparation of cross-linked UiO-66-NH2/SPEN composite was facile, which provides a new strategy for preparing high performance proton exchange membrane.

18.
Nanomaterials (Basel) ; 9(10)2019 Sep 21.
Article de Anglais | MEDLINE | ID: mdl-31546667

RÉSUMÉ

Dye pollution is a serious problem in modern society. We desired to develop an efficient adsorbent for the decontamination of discharged dyes. In this work, the polymeric microspheres derived from a kind of amphiphilic block of co-poly(arylene ether nitrile) (B-b-S-P) were prepared on the basis of "oil-in-water" (O/W) microemulsion method. The B-b-S-P microspheres were found competent to remove the cationic dye, methylene blue (MB); and various influential factors, such as contact time, initial concentration, solution pH and temperature were investigated. Results indicated that the maximum adsorption capacity of B-b-S-P microspheres for MB was 119.84 mg/g at 25 °C in neutral conditions. Adsorption kinetics and isotherm dates were well fitted to a pseudo-second-order kinetic model and the Langmuir isotherm model, and thermodynamic parameters implied that the adsorption process was endothermic. The B-b-S-P microspheres also exhibited a highly selective adsorption for cationic dye MB, even in the presence of anionic dye methyl orange (MO). In addition, the possible adsorption mechanism was studied, suggesting that the electrostatic interaction and π-π interaction could be the main force in the adsorption process.

19.
Polymers (Basel) ; 11(8)2019 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-31382443

RÉSUMÉ

Novel proton exchange membranes (PEMs) based on graft copoly(arylene ether sulfone)s with enhanced phase-separated morphology were prepared using atom transfer radical polymerization (ATRP). A series of PEMs with different graft lengths and sulfonation degrees were prepared. The phase-separated morphologies were confirmed by transmission electron microscopy. Among the membranes prepared and evaluated, PAESPS18S2 exhibited considerably high proton conductivity (0.151 S/cm, 85 °C), benefitting from the graft polymer architecture and phase-separated morphology. The membranes also possessed excellent thermal and chemical stabilities. Highly conductive and stable copoly(arylene ether sulfone)-based membranes would be promising candidates as polymer electrolytes for fuel cell applications.

20.
ACS Appl Mater Interfaces ; 11(35): 31899-31908, 2019 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-31407896

RÉSUMÉ

A novel ionic liquid-impregnated metal-organic-framework (IL@NH2-MIL-101) was prepared and introduced into sulfonated poly(arylene ether ketone) with pendent carboxyl groups (SPAEK) as the nanofiller for achieving hybrid proton exchange membranes. The nanofiller was anchored in the polymeric matrix by the formation of amido linkage between the pendent carboxyl group attached to the molecule chain of SPAEK and amino group belonging to the inorganic framework, thus leading to the enhancement in mechanical properties and dimensional stability. Besides, the hybrid membrane (IL@MOF-1) exhibits an enhanced proton conductivity up to 0.184 S·cm-1 because of the incorporation of ionic liquid in the nanocages of NH2-MIL-101. Moreover, the special structure of NH2-MIL-101 contributes to a low leakage of ionic liquid so as to retain the stable proton conductivity of hybrid membranes under fully hydrated conditions. Furthermore, as a result of a cross-linked structure formed by inorganic nanofiller, the IL@MOF-1 hybrid membrane shows a lower methanol permeability (7.53 × 10-7 cm2 s-1) and superior selectivity (2.44 × 105 S s cm-3) than the pristine SPAEK membrane. Especially, IL@MOF-1 performs high single-cell efficiency with a peak power density of 37.5 mW cm-2, almost 2.3-fold to SPAEK. Electrochemical impedance spectroscopy and scanning electron microscopy indicated that the nanofiller not only contributed to faster proton transfer but also resulted in a tighter bond between the membrane and catalyst. Therefore, the incorporation of IL@NH2-MIL-101 to prepare the hybrid membrane is proven to be suitable for application in direct methanol fuel cells.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE