Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 280
Filtrer
1.
J Biomater Sci Polym Ed ; : 1-22, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39228062

RÉSUMÉ

The majority of treatments are performed with polysulfone (PSf) membranes. The main issue of the PSf membrane is its lack of endothelial function, leading to various processes like platelet adhesion, protein adsorption, and thrombus formation when comes in contact with blood. The crucial aspect in the development of hemodialysis (HD) membrane materials is a biocompatibility factor. This study aims to improve the performance and biocompatibility of PSf membranes by utilizing polyethylene glycol (PEG) as a pore-forming agent and polyacrylamide (PAA) as a multifunctional modifying additive owing to its non-toxic, and biocompatible nature. The formulated HD membranes were characterized using Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and Water Contact Angle (WCA) measurements. The biocompatibility results showed that PSf-PAA membranes reduced the adsorption of bovine serum albumin (BSA) protein, hemolysis process, thrombus formation, and platelets adhesion with improved in vitro cytotoxicity results as well as anticoagulation performance. The protein separation results showed that PSf-PAA membranes were able to reject 90.1% and 92.8% of BSA protein. The membranes also showed better uremic waste clearance for urea (76.56% and 78.24%) and creatinine (73.71% and 79.13%) solutes, respectively. It is conceivable that these modern-age membranes may surpass conventional HD membranes regarding both efficiency and effectiveness.

2.
Int J Artif Organs ; : 3913988241269465, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39229822

RÉSUMÉ

BACKGROUND: We investigated whether the condition of the inner surface of hollow fibers affects the blood compatibility of hemodialyzers. METHODS: We used scanning probe microscope/atomic force microscopy (SPM/AFM) to investigate the height of the swelling and flexible layers (thickness and softness) on the inner surfaces of the hollow fibers. Next, we tested the blood compatibility between dialyzers comprising a hollow fiber membrane, in which the other dialyzers, except for PVP, were additionally coated using PS membranes coated with other materials. After blood was injected into the dialyzer and plugged, dynamic stimulation was performed by slightly rotating the dialyzer for 4 h, although there was no blood circulation. RESULTS: The vitamin E-coated polysulfone (PS) membrane showed a higher thickness and softness of the flexible layer than the asymmetric cellulose triacetate membrane without polyvinylpyrrolidone (PVP) and the PS membranes with PVP. We found that the dialyzer with vitamin E coating significantly suppressed the decrease in platelets, increase in ß-TG, and increase in PF4 compared to those coated with NV polymer. Additionally, as the adsorbed protein on the inner surface, the total protein, fibronectin, and vWF levels were significantly lower in the vitamin E-coated dialyzer. CONCLUSION: The thickness and softness of the flexible layer of the inner surface of the hollow fiber membrane in vitro affect differences in blood coagulation performance in clinical research. Future clinical trials are required to confirm our results.

3.
Polymers (Basel) ; 16(18)2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39339117

RÉSUMÉ

As a promising wastewater treatment technology, ultrafiltration membranes face challenges related to fouling and flux reduction. To enhance these membranes, various strategies have been explored. Among them, the incorporation of nano-activated carbon (nAC) powder has emerged as an effective method. In this study, composite polysulfone (PSF) ultrafiltration membranes were fabricated using nAC powder at concentrations ranging from 0 to 8 wt.%. These membranes underwent comprehensive investigation, including assessments of membrane morphology, hydrophilicity, pure water flux, equilibrium water content, porosity, average pore size, and protein separation. The addition of activated carbon improved several desirable properties. Specifically, the hydrophilicity of the PSF membranes was enhanced, with the contact angle reduced from 69° to 58° for 8 wt.% of nAC composite membranes compared to the pristine PSF membrane. Furthermore, the water flux test revealed that 6 wt.% activated carbon-based membranes exhibited the highest flux, with a nearly 3 times improvement at 2 bar. Importantly, this enhancement did not compromise the protein rejection. Additionally, the introduction of nAC had a significant effect on the membrane's pore size by improving lysozyme rejection up to 40%. Overall, these findings will guide the selection of the optimal concentration of nAC for PSF ultrafiltration membranes.

4.
Int J Biol Macromol ; 278(Pt 3): 134876, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39168218

RÉSUMÉ

To enhance the stability and adsorption performance of chitosan in Cr(VI)-contaminated acidic wastewater, a novel EDAC-modified-EDTA-crosslinked chitosan derivative (CSEC) was synthesized via a one-pot method with chitosan, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC), and Na2EDTA as raw materials. To further improve the mechanical strength and separation performance of CSEC, a novel composite bead (CSEP) of CSEC and imidazolium-functionalized polysulfone (IMPSF) was prepared through a phase inversion method. The chemical composition and microstructure of CSEC and CSEP were characterized by FESEM, FTIR, NMR and XPS techniques. The maximum adsorption capacities of CSEC and CSEP for Cr(VI) were 145.96 and 135.82 mg g-1 at pH 3, respectively, and the equilibrium time for Cr(VI) adsorption by CSEC and CSEP was 5 min and 8 h, respectively. The adsorption process of Cr(VI) by both CSEC and CSEP was exothermic and spontaneous. Compared to CSEC, CSEP has significantly enhanced resistance to interference from coexisting anions. The removal mechanism of Cr(VI) by CSEP might involve redox reaction as well as electrostatic attraction between Cr(VI) oxyanions and various nitrogen cations, including protonated amino groups, guanidinium groups, protonated tertiary amine groups, and imidazolium cations. The CSEP beads have potential application value in the treatment of acidic wastewater containing Cr(VI).


Sujet(s)
Chitosane , Chrome , Imidazoles , Polymères , Sulfones , Polluants chimiques de l'eau , Purification de l'eau , Chitosane/composition chimique , Chrome/isolement et purification , Chrome/composition chimique , Sulfones/composition chimique , Adsorption , Polluants chimiques de l'eau/composition chimique , Polluants chimiques de l'eau/isolement et purification , Imidazoles/composition chimique , Polymères/composition chimique , Purification de l'eau/méthodes , Concentration en ions d'hydrogène , Cinétique , Eaux usées/composition chimique , Carbodiimides/composition chimique , Eau/composition chimique , Solutions , Microsphères
5.
Biol Pharm Bull ; 47(7): 1396-1404, 2024.
Article de Anglais | MEDLINE | ID: mdl-39085138

RÉSUMÉ

Estimation of the continuous hemodiafiltration (CHDF) clearance (CLCHDF) of ganciclovir (GCV) is crucial for achieving efficient treatment outcomes. Here, we aimed to clarify the contribution of diafiltration, adsorption, and hematocrit level to the CLCHDF of GCV in an in vitro CHDF model using three membranes: polyacrylonitrile and sodium methallyl sulfonate copolymer coated with polyethylenimine (AN69ST); polymethylmethacrylate (PMMA); and polysulfone (PS). In vitro CHDF was performed with effluent flow rates (Qe) of 800, 1500, and 3000 mL/h. The initial GCV concentration was 10 µg/mL while that of human serum albumin (HSA) was 0 or 5 g/dL. The CLCHDF, diafiltration rates, and adsorption rates were calculated. The whole blood-to-plasma ratio (R) of GCV for a hematocrit of 0.1 to 0.5 was determined using blood samples with 0.5 to 100 µg/mL of GCV. The in vitro CHDF experiment using AN69ST, PMMA, and PS membranes showed that the total CLCHDF values were almost the same as the Qe and not influenced by the HSA concentration. The diafiltration rate exceeded 88.1 ± 2.8% while the adsorption rate was lower than 9.4 ± 9.4% in all conditions. The R value was 1.89 ± 0.11 and was similar at all hematocrit levels and GCV concentrations. In conclusion, diafiltration mainly contributes to the CLCHDF of GCV, rather than adsorption. Hematocrit levels might not affect the relationship between the plasma and blood CLCHDF of GCV, and the CLCHDF of GCV can be estimated from the Qe and R, at least in vitro.


Sujet(s)
Résines acryliques , Ganciclovir , Hémodiafiltration , Humains , Hémodiafiltration/méthodes , Adsorption , Ganciclovir/pharmacocinétique , Ganciclovir/sang , Ganciclovir/administration et posologie , Hématocrite , Résines acryliques/composition chimique , Antiviraux/sang , Antiviraux/pharmacocinétique , Poly(méthacrylate de méthyle)/composition chimique , Polymères/composition chimique , Membrane artificielle
6.
Polymers (Basel) ; 16(11)2024 May 25.
Article de Anglais | MEDLINE | ID: mdl-38891450

RÉSUMÉ

Composite membranes based on a polymer mixture solution of quaternized polysulfone (PSFQ), cellulose acetate phthalate (CAP), and polyvinylidene fluoride (PVDF) for biomedical applications were successfully obtained through the electrospinning technique. To ensure the polysulfone membranes' functionality in targeted applications, the selection of electrospinning conditions was essential. Moreover, understanding the geometric characteristics and morphology of fibrous membranes is crucial in designing them to meet the performance standards necessary for future biomedical applications. Thus, the viscosity of the solutions used in the electrospinning process was determined, and the morphology of the electrospun membranes was examined using scanning electron microscopy (SEM). Investigations on the surfaces of electrospun membranes based on water vapor sorption data have demonstrated that their surface properties dictate their biological ability more than their specific surfaces. Furthermore, in order to understand the different macromolecular rearrangements of membrane structures caused by physical interactions between the polymeric chains as well as by the orientation of functional groups during the electrospinning process, Fourier transform infrared (FTIR) spectroscopy was used. The applicability of composite membranes in the biomedical field was established by bacterial adhesion testing on the surface of electrospun membranes using Escherichia coli and Staphylococcus aureus microorganisms. The biological experiments conducted establish a foundation for future applications of these membranes and validate their effectiveness in specific fields.

7.
Polymers (Basel) ; 16(11)2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38891507

RÉSUMÉ

The most prevalent type of hemodialysis membrane is polysulfone (PSf). However, due to inadequate biocompatibility, it significantly compromises the safety of dialysis for patients. In this study, we modify the surface of the PSf membrane with 2,4-dihydroxybenzophenone (DBPh) groups to serve as anchoring sites during UV irradiation. Subsequently, a tailored sulfonated dihydroxy propyl chitosan (SDHPCS) is grafted onto the modified PSf membrane to compensate for the deficiencies in hydrophilic additives. The modified PSf membrane exhibits outstanding hydrophilicity and stability, as demonstrated by its characterization and evaluation. This paper focuses on investigating the interaction between platelet membrane formation, protein adsorption, and anticoagulant activity. The results show that the modified PSf membrane exhibits remarkable enhancement in surface hydrophilicity, leading to a significant reduction in protein and platelet adsorption as well as adhesion.

8.
Polymers (Basel) ; 16(12)2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38931987

RÉSUMÉ

This study that modified polysulfone membranes with different end-group chemical functionalities were prepared using chemical synthesis methods and experimentally characterized. The molecular dynamics (MD) method were used to discuss the adsorption mechanism of proteins on functionalized modified polysulfone membrane materials from a molecular perspective, revealing the interactions between different functionalized membrane surfaces and protein adsorption. Theoretical analysis combined with basic experiments and MD simulations were used to explore the orientation and spatial conformational changes of protein adsorption at the molecular level. The results show that BSA exhibits different variability and adsorption characteristics on membranes with different functional group modifications. On hydrophobic membrane surfaces, BSA shows the least stable configuration stability, making it prone to nonspecific structural changes. In addition, surface charge effects lead to electrostatic repulsion for BSA and reduce the protein adsorption sites. These MD simulation results are consistent with experimental findings, providing new design ideas and support for modifying blood-compatible membrane materials.

9.
ACS Appl Mater Interfaces ; 16(26): 34079-34088, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38889392

RÉSUMÉ

Porous materials have attracted considerable attention due to their versatile applications, especially in water purification. Interconnected nanoporous structures are distinguished by their high degree of porosity and resistance to clogging, as well as their insensitivity to nanostructural orientation. Previous works on randomly linked copolymer systems have shown that they can effectively produce disordered cocontinuous nanostructures, which upon removal of one component yield interconnected nanoporous materials. However, the cocontinuous nanomaterials previously developed using polystyrene (PS) and poly(d,l-lactic acid) (PLA) strands, and the resulting interconnected nanoporous PS monoliths, were far too brittle to enable practical use as membranes. Here, we study the self-assembly of randomly linked copolymer networks prepared using blocks of the engineering polymer polysulfone (PSU). A wide cocontinuous regime (spanning 40 wt %) was found for randomly end-linked copolymer networks (RECNs) constructed from PSU and PLA strands, via a combination of mechanical testing, gravimetry, small-angle X-ray scattering, and scanning electron microscopy. The PSU/PLA cocontinuous nanomaterial with symmetric composition showed 2.4 times higher Young's modulus and ∼100 times greater toughness than the corresponding PS/PLA sample. The interconnected nanoporous PSU fabricated after etching of PLA even exhibited 1.6 times greater toughness than PS/PLA prior to PLA removal. To facilitate the production of thin films of cocontinuous nanomaterials, we applied solution-processable randomly linked linear PSU/PLA multiblock polymers onto ultrafiltration membranes. The interconnected nanoporous PSU thin film generated by etching PLA was found to effectively reject 50 nm diameter particles without significantly compromising permeability. This discovery presents a valuable addition to the existing techniques used to fabricate PSU membranes. In contrast to traditional methods, which are sensitive to processing conditions, produce a wide range of pore sizes, and offer limited adjustability of pore size, the current technique is anticipated to enable interconnected PSU membranes with more uniform and tailorable porosity.

10.
Water Sci Technol ; 89(9): 2558-2576, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38747967

RÉSUMÉ

In this study, membranes blended with polysulfone (PSU) and polyetherimide (PEI) polymers in different ratios were fabricated. Their potential to remove pollutants from rivers, which are a potential drinking water source, was investigated. Scanning electron microscopy analysis revealed that the PSU membranes had a dense and homogeneous layer, whereas the addition of PEI formed a spongy substrate. The water content of the fabricated membranes varied between 5.37 and 22.42%, porosities 28.73-89.36%, contact angles 69.18-85.81%, and average pure water fluxes 257.25-375.32 L/m2 h. The blended membranes removed turbidity, chloride, alkalinity, conductivity, sulfate, iron, manganese, and total organic carbon up to 98.32, 92.28, 96.87, 90.67, 99.58, 94.63, 97.48, and 79.11%, respectively. These results show that when PEI was added to the PSU polymer, the filtration efficiency increased owing to an increase in the hydrophilicity of the membranes. Blending these two polymers enabled the optimization of membrane properties such as permeability, selectivity, and mechanical strength. In addition, membrane fabrication processes are simple and incur low costs.


Sujet(s)
Filtration , Membrane artificielle , Polymères , Sulfones , Polymères/composition chimique , Sulfones/composition chimique , Filtration/méthodes , Purification de l'eau/méthodes , Polluants chimiques de l'eau/composition chimique , Microscopie électronique à balayage
11.
Heliyon ; 10(7): e29069, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38623199

RÉSUMÉ

The separation of CO2 from flue gases presents a crucial challenge that needs to be addressed. However, membrane processes offer a promising alternative solution. Polysulfone (PSF)membranes were prepared using N-methyl-2-pyrrolidone (NMP) and tetrahydrofuran (THF) using a dry-wet phase inversion technique. The membranes were fabricated with the selection of casting parameters, PSF concentration (20-30 wt%), solvent ratio of THF/NMP (0/100-35/65), and evaporation time (0-4 min). In this work, the interaction between these influencing factors during preparation and membrane performance was studied. Scanning electron microscopy (SEM) was used to characterize the membranes for morphological investigation. Taguchi statistical analysis was employed in the Minitab-19 software used for the design of the experiments in this study, and the responses of the CO2 permeance and CO2/N2 separation factor were analyzed and optimized based on the casting parameters. The results showed the CO2 permeance of the membranes was determined between 1.25 ± 0.04 and 8.47 ± 0.51GPU and selectivity was between 2.95 and 8.92. The statistical analysis indicated that casting conditions affect membrane performance in the following order: PSF concentration > solvent ratio > evaporation time. The optimum parameters for casting solution were the PSF concentration of 20 wt%, THF/NMP ratio of 17.5/82.5, and evaporation time of 4 min. The selected method also reinforces the connection between membrane casting parameters and the observed outcomes in terms of permeation and morphology.

12.
Heliyon ; 10(7): e28455, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38586360

RÉSUMÉ

The performances of polybenzimidazole (PBI) and polysulfone (PSF) membranes for recovering water from reverse osmosis (RO) reject of brackish water through forward osmosis (FO) were assessed and compared. Non-functionalised multi-walled carbon nanotubes (MWCNT) were added to the membrane casting solutions, with concentrations ranging from 0 to 3 wt%. The experiment was conducted for eight samples using RO reject of brackish water as the feed solution (FS) and 2 M analytical grade MgCl2 as the draw solution (DS). The hydrophilicity, water permeability, salt rejection rate (Rs), water flux (WF) and porosity of the membranes improved with increasing MWCNT content up to 2 wt%. Also, the structural parameter, salt permeability and reverse solute flux decreased. PBI/MWCNT2 wt% exhibited the best performance among the membranes tested compared with porosity of 70 ± 4 %, structural parameter of 0.36 ± 0.2 µm, and Rs of 93.5 %. In contrast with the pristine PBI membrane, an average water flux enhancement of 15 % and 49 % was observed for the FS and DS sides, respectively, for PBI/MWCNT2 wt%. It is evident from the results that including MWCNT improves the performance of both membranes, with better relative performance for PBI membranes than PSF membranes.

13.
Sci Rep ; 14(1): 5271, 2024 03 04.
Article de Anglais | MEDLINE | ID: mdl-38438511

RÉSUMÉ

Drinking water contaminated by pathogenic micro-organisms increases the risk of infectious gastrointestinal disease which could potentially lead to acute kidney injury and even death, particularly amongst the young and the elderly. Earlier studies have shown a substantial reduction in the incidence of diarrheal disease over a period of one year using a polysulfone membrane water gravity-powered water filtration device. The current report is a continuation of these studies to assess the long-term effects of the innovative method on diarrheal incidence rates over a 4-year follow-up period. This follow-up study monitored the trend of self-reported diarrheal events in all households in the previously studied villages for 5 months, in the last half of each study year, using the same questionnaire utilized in the earlier study. Three villages that had no device yet installed served as controls. We computed monthly diarrheal incidence rates for all study years (standardized to per 100 person-months) and compared these to the pre-device incidence rate in 2018 and in the control group, using the Wilcoxon rank sum exact test. The average diarrheal incidence rates of 1.5 p100pm in 2019, 2.19 p100pm in 2021, and 0.54p100pm in 2022 were significantly different from an earlier study that reported 17.8 p100pm rates before the devices were installed in 2018, (all p-values < 0.05). Concomitantly, self-reported diarrheal infections were substantially higher in the "control villages" not yet having the filtration device installed (80.9, 77.6, and 21.5 per 100 pm). The consistent and large reduction in diarrhea incidence documents the long-term efficacy of the use of the membrane filtration device. This simple water purification method using gravity flow improves public health in remote regions with limited resources.


Sujet(s)
Diarrhée , Eau , Sujet âgé , Humains , Ghana/épidémiologie , Études de suivi , Diarrhée/épidémiologie , Diarrhée/prévention et contrôle , Autorapport
14.
Polymers (Basel) ; 16(6)2024 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-38543469

RÉSUMÉ

The chemical structure of the surface of glass fibers, including silanized fibers, was studied. Highly efficient heat-resistant composites were obtained by impregnating silanized glass fiber with a polysulfone solution, and the effect of modification of the surface of glass fibers on the physical, mechanical and thermophysical properties of the composite materials was studied. As a result of the study, it was found that the fiber-to-polymer ratio of 70/30 wt.% showed the best mechanical properties for composites reinforced with pre-heat-treated and silanized glass fibers. It has been established that the chemical treatment of the glass fibers with silanes makes it possible to increase the mechanical properties by 1.5 times compared to composites reinforced with initial fibers. It was found that the use of silane coupling agents made it possible to increase the thermal stability of the composites. Mechanisms that improve the interfacial interaction between the glass fibers and the polymer matrix have been identified. It has been shown that an increase in adhesion occurs both due to the uniform distribution of the polymer on the surface of the glass fibers and due to the improved wettability of the fibers by the polymer. An interpenetrating network was formed in the interfacial region, providing a chemical bond between the functional groups on the surface of the glass fiber and the polymer matrix, which was formed as a result of treating the glass fiber surface with silanes, It has been shown that when treated with aminopropyltriethoxysilane, significant functional unprotonated amino groups NH+/NH2+ are formed on the surface of the fibers; such free amino groups, oriented in the direction from the fiber surface, form strong bonds with the matrix polymer. Based on experimental data, the chemical structure of the polymer/glass fiber interface was identified.

15.
ACS Appl Mater Interfaces ; 16(8): 10508-10521, 2024 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-38365188

RÉSUMÉ

The potential of blended loose nanofiltration membranes (LNMs) to fractionate dyes and inorganic salts in textile wastewater has become a focus of attention in recent years. In this research work, we fabricated LNMs based on polysulfone (PSf) membranes blended with l-histidine amino acid-functionalized Mo2Ga2C MAX phase (His-MAX). Scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), contact angle, ζ-potential, porosity, and pore size analyses were employed to characterize the LNMs. Blending 0.75 wt % of His-MAX additive with the PSf tailored the LNM's features by making it more water-friendly, increasing its porosity, enlarging its pores, and making its surface smoother. The pure water flux of 127.6 L/m2 h was achieved by LNM containing 0.75 wt % His-MAX, which was 2.5 times greater than the bare one. The mentioned LNM displayed a flux recovery ratio (FRR) of 68.27 and 98.57, 98.31, and 99.7% rejections for Direct red 23, Acid brown 75, and Reactive blue 21 solutions (100 mg/L), respectively. The 0.75 wt % His-MAX LNM could reject 99.1% of dye and 11.5% of salt while maintaining an FRR of 91.19% after four cycles of filtering a binary mixture solution containing Reactive blue 21 and Na2SO4. These findings highlight the potential of the fabricated LNM for desalinating dye solutions.

16.
J Food Sci Technol ; 61(3): 573-584, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38327853

RÉSUMÉ

In this study, determination of aromatic compounds in cheese samples was performed by headspace solid-phase microextraction (HS-SPME) using a new adsorbent as a novel coated fiber in combination with a gas chromatography/mass spectrometry or flame ionization detector to evaluate the changes during ripening. Brine and ultrafiltrated (UF) cheese were sampled via HS-SPME and analyzed by gas chromatography/mass spectrometry. Polysulfone and mesoporous carbon nitride were used as two types of fibers for coating. The results showed that the pH had significant decreased during the 120 days for brine cheese (p < 0.001), and during the 90 days (p < 0.001) for UF cheese. Acidity was relatively stable during the ripening period for both cheeses (p > 0.05). Protein content decreased during the ripening period for both cheeses (p < 0.001). Moisture content also significantly decreased during the ripening period for both cheeses (p < 0.001). 74 compounds were identified in brine cheese and 27 major components in UF cheese. Fatty acids were the predominant components, followed by aldehydes (n: 17, 22.9%), alcohol (n; 12, 16.2%), ester (n: 11, 14.8%), alkane (n: 7, 9.4%), and ketone (n: 6, 8.1%) for white brine cheese, while for UF cheese fatty acid (n: 12, 44.4%) and aldehyde (n: 5, 18.5%), alcohol (n: 3, 11.1%), ketone (n: 3, 11.1%), ester (n: 2, 7.4%) and alkane (n: 1, 3.7%).

17.
J Med Case Rep ; 18(1): 46, 2024 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-38326856

RÉSUMÉ

BACKGROUND: Hemodialysis reactions (HDRs) are similar to complement activation-related pseudo allergy (CARPA), a hypersensitivity reaction that occurs when administering certain (nano)drugs intravenously. The pathomechanism of CARPA was described based on animal experiments. Typical CARPA-like dialysis reactions, which occur at the start of hemodialysis, have been reported using polysulfone dialyzers. However, to our knowledge, this is the first dialysis reaction that occurred towards the end of hemodialysis treatment. CASE PRESENTATION: This report describes a 52-year-old Caucasian male patient who had been receiving chronic hemodialysis for 3 years and exhibited a CARPA reaction during his third hour of treatment. Upon activation of the microbubble alarm, the extracorporeal system recirculated for five minutes. Following reconnection, the patient exhibited a drop in systemic blood pressure, chest pain, and dyspnea after five minutes. Symptoms disappeared spontaneously after reducing the speed of the blood pump, placing the patient in a Trendelenburg position, and administering a bolus infusion from the dialysis machine. The remaining dialysis treatment was uneventful. CONCLUSION: Numerous case reports about reactions occurring with modern high-efficiency polysulfone dialyzers have been published. However, due to changes in the material structure by the manufacturers, we have not encountered such cases lately. The recently reported increase in thromboxane-B2 and pulmonary arterial pressure and complement activation upon re-infusion of extracorporeal blood following dialysis may explain the reaction observed here.


Sujet(s)
Hypersensibilité , Dialyse rénale , Humains , Mâle , Adulte d'âge moyen , Protéines du système du complément , Hypersensibilité/étiologie , Polymères/effets indésirables , Dialyse rénale/effets indésirables , Sulfones
18.
Polymers (Basel) ; 16(2)2024 Jan 11.
Article de Anglais | MEDLINE | ID: mdl-38257008

RÉSUMÉ

Rapid social and industrial development has resulted in an increasing demand for fossil fuel energy, which increases particulate matter (PM) pollution. In this study, we employed a simple one-step electrospinning technique to fabricate polysulfone (PSF) fiber membranes for PM filtration. A 0.3 g/mL polymer solution with an N,N-dimethylformamide:tetrahydrofuran volume ratio of 3:1 yielded uniform and bead-free PSF fibers with a diameter of approximately 1.17 µm. The PSF fiber membrane exhibited excellent hydrophobicity and mechanical properties, including a tensile strength of 1.14 MPa and an elongation at break of 116.6%. Finally, the PM filtration performance of the PSF fiber membrane was evaluated. The filtration efficiencies of the membrane for PM2.5 and PM1.0 were approximately 99.6% and 99.2%, respectively. The pressure drops were 65.0 and 65.2 Pa, which were significantly lower than those of commercial air filters. Using this technique, PSF fiber membrane filters can be easily fabricated over a large area, which is promising for numerous air filtration systems.

19.
Macromol Rapid Commun ; 45(5): e2300434, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38029789

RÉSUMÉ

Polysulfone membranes, used as contactors for CO2 capture, are blended with two different hyperbranched polyethyleneimines modified with benzoyl chloride (Additive 1) and phenyl isocyanate (Additive 2) in different percentages. Fourier-transformed infrared spectra evidence the presence of urea and amide groups, whereas the field emission scanning electron microscopy images show differences in the microstructure of the blended membranes. Dielectric spectra determine the motions of the side and backbone chains, which can facilitate the diffusion of CO2 . The spectra consist of six dielectric processes; three of them are due to the polysulfone (γPSf , ßPSf , and αPSf ), whereas the rest are characteristic of the additive (γHPEI , ßHPEI , and αHPEI ). The benzoyl chloride and phenyl isocyanate functional groups introduce variations in molecular mobility and modify the relaxations associated with the hyperbranched polyethyleneimine (HPEI). The additives also increase the conductivity of the blended membranes, which can compromise the performance of the membranes, specifically in the case of Additive 1. Ion hopping is found to be the prevailing charge transport mechanism while both relaxations, αHPEI and αPSf , are actives. These results, together with the final morphology of the membranes, may explain the greater absorption capacity of the membranes prepared with the hyperbranched polyethyleneimine modified with Additive 2.


Sujet(s)
Benzoates , Dioxyde de carbone , Isocyanates , Polyéthylèneimine , Polymères , Sulfones , Polyéthylèneimine/composition chimique , Dioxyde de carbone/composition chimique
20.
Biomed Tech (Berl) ; 2023 Nov 07.
Article de Anglais | MEDLINE | ID: mdl-37930101

RÉSUMÉ

OBJECTIVES: Extracorporeal life support (ECLS) pertains to therapeutic and prophylactic techniques utilized in a wide range of medical applications, with severe pulmonary diseases being the most prominent cases. Over the past decades, little progress has been made in advancing the basic principles and properties of gas exchangers. Here, in an unconventional approach, dialysis hollow fibers are handled with silicone to create a purely diffusive coating that prevents plasma leakage and promotes gas exchange. METHODS: Commercial dialyzers of varying surface area and fiber diameter have been coated with silicone, to determine the impact of each parameter on performance. The impermeability of the silicone layer has been validated by pressurization and imaging methods. SEM images have revealed a homogeneous silicone film coating the lumen of the capillaries, while fluid dynamic investigations have confirmed its purely diffusive nature. RESULTS: The hemodynamic behavior and the gas exchange efficiency of the silicone-coated prototypes have been investigated in vitro with porcine blood under various operating conditions. Their performance has been found to be similar to that of a commercial PMP oxygenator. CONCLUSIONS: This novel class of gas exchangers is characterized by high versatility and expeditious manufacturing. Intraoperability between conventional ECLS systems and dialysis machines broadens the range of application infinitely. Ultimately, long-term clinical applicability ought to be determined over in vivo animal investigations.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE