Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 115
Filtrer
1.
Materials (Basel) ; 17(15)2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39124425

RÉSUMÉ

Due to their excellent properties, antimicrobial fiber membranes are widely applied in bioprotective materials. This work addresses the preparation of thermoplastic polyurethane (TPU)-based fiber membranes with active antimicrobial properties. 2-hydroxypropyl trimethyl ammonium chloride-terminated hyperbranched polymer (HBP-HTC) was synthesized and used as an antimicrobial agent. The fiber membranes were obtained by electrospinning a mixed solution of HBP-HTC and TPU. Different electrospinning conditions were investigated, such as the spinning voltage and drum rotation speed. The fiber membrane prepared under a 22 kV anode voltage and 100 rpm rotation speed had an average fiber diameter of 1.66 µm with a concentrated diameter distribution. Antibacterial tests showed that when the fiber membrane was loaded with 1500 mg/kg of HBP-HTC, the antibacterial rates of E. coli as well as S. aureus both reached 99.99%, exhibiting excellent proactive antimicrobial performance. Moreover, the protective performance of the fiber membrane was outstanding, with a filtration efficiency of 99.9%, a hydrostatic pressure resistance greater than 16,758 Pa, and a moisture permeability of 2711.0 g⋅(m2⋅d)-1.

2.
Bioorg Chem ; 151: 107646, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39032408

RÉSUMÉ

Since the discovery of antimicrobial agents, the misuse of antibiotics has led to the emergence of bacterial strains resistant to both antibiotics and common disinfectants like quaternary ammonium compounds (QACs). A new class, 'gemini' QACs, which contain two polar heads, has shown promise. Octenidine (OCT), a representative of this group, is effective against resistant microorganisms but has limitations such as low solubility and high cytotoxicity. In this study, we developed 16 novel OCT derivatives. These compounds were subjected to in silico screening to predict their membrane permeation. Testing against nosocomial bacterial strains (G+ and G-) and their biofilms revealed that most compounds were highly effective against G+ bacteria, while compounds 7, 8, and 10-12 were effective against G- bacteria. Notably, compounds 6-8 were significantly more effective than OCT and BAC standards across the bacterial panel. Compound 12 stood out due to its low cytotoxicity and broad-spectrum antimicrobial activity, comparable to OCT. It also demonstrated impressive antifungal activity. Compound 1 was highly selective to fungi and four times more effective than OCT without its cytotoxicity. Several compounds, including 4, 6, 8, 9, 10, and 12, showed strong virucidal activity against murine cytomegalovirus and herpes simplex virus 1. In conclusion, these gemini QACs, especially compound 12, offer a promising alternative to current disinfectants, addressing emerging resistances with their enhanced antimicrobial, antifungal, and virucidal properties.

3.
Carbohydr Polym ; 342: 122389, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39048229

RÉSUMÉ

The paper reports new hydrogels based on quaternary ammonium salts of chitosan designed as biocidal products. The chitosan derivative was crosslinked with salicylaldehyde via reversible imine bonds and supramolecular self-assemble to give dynamic hydrogels which respond to environmental stimuli. The crosslinking mechanism was demonstrated by 1H NMR and FTIR spectroscopy, and X-ray diffraction and polarized light microscopy. The hydrogel nature, self-healing and thixotropy were proved by rheological investigation and visual observation, and their morphology was assessed by scanning electron microscopy. The relevant properties for application as biocidal products, such as swelling, dissolution, bioadhesiveness, antimicrobial activity and ex-vivo hemocompatibility and in vivo local toxicity and biocompatibility on experimental mice were measured and analyzed in relationship with the imination degree and the influence of each component. It was found that the hydrogels are superabsorbent, have good adhesivity to skin and various surfaces and antimicrobial activity against relevant gram-positive and gram-negative bacteria, while being hemocompatible and biocompatible. Besides, the hydrogels are easily biodegraded in soil. All these properties recommend the studied hydrogels as ecofriendly biocidal agents for living tissues and surfaces, but also open the perspectives of their use as platform for in vivo applications in tissue engineering, wound healing, or drug delivery systems.


Sujet(s)
Matériaux biocompatibles , Chitosane , Hydrogels , Composés d'ammonium quaternaire , Chitosane/composition chimique , Chitosane/pharmacologie , Hydrogels/composition chimique , Hydrogels/pharmacologie , Composés d'ammonium quaternaire/composition chimique , Composés d'ammonium quaternaire/pharmacologie , Animaux , Matériaux biocompatibles/pharmacologie , Matériaux biocompatibles/composition chimique , Souris , Antibactériens/pharmacologie , Antibactériens/composition chimique , Antibactériens/synthèse chimique , Tests de sensibilité microbienne , Désinfectants/pharmacologie , Désinfectants/composition chimique , Anti-infectieux/pharmacologie , Anti-infectieux/composition chimique , Bactéries à Gram négatif/effets des médicaments et des substances chimiques , Bactéries à Gram positif/effets des médicaments et des substances chimiques , Aldéhydes
4.
Molecules ; 29(12)2024 Jun 09.
Article de Anglais | MEDLINE | ID: mdl-38930813

RÉSUMÉ

Amidation of lactobionic acid with N,N-dimethylaminopropyltriamine was conducted to obtain N-(3'-dimethylaminopropyl)-lactamido-3-aminopropane (DDLPD), which was quaternized with bromoalkanes of different carbon chain lengths to synthesize double-stranded lactosylamide quaternary ammonium salt N-[N'[3-(lactosylamide)]propyl-N'-alkyl] propyl-N,N-dimethyl-N-alkylammonium bromide (CnDDLPB, n = 8, 10, 12, 14, 16). The surface activity and the adsorption and aggregation behaviors of the surfactants were investigated via equilibrium surface tension, dynamic light scattering, and cryo-electron microscopy measurements in an aqueous solution. The application properties of the products in terms of wettability, emulsification, foam properties, antistatic, salt resistance, and bacteriostatic properties were tested. CnDDLPB exhibited a low equilibrium surface tension of 27.82 mN/m. With an increase in the carbon chain length, the critical micellar concentration of CnDDLPBD decreased. Cryo-electron microscopy revealed that all products except C8DDLPB formed stable monolayer, multi-layer, and multi-compartmental vesicle structures in an aqueous solution. C14DDLPB has the best emulsification performance on soybean oil, with a time of 16.6 min; C14DDLPB has good wetting and spreading properties on polytetrafluoroethylene (PTFE) when the length of carbon chain is from 8 to 14, and the contact angle can be lowered to 33°~40°; CnDDLPB has low foam, which is typical of low-foaming products; C8DDLPB and C10DDLPB both show good antistatic properties. C8DDLPB and C14DDLPB have good salt resistance, and C12DDLPB has the best antimicrobial property, with the inhibition rate of 99.29% and 95.28% for E. coli and Gluconococcus aureus, respectively, at a concentration of 350 ppm.

5.
Int J Mol Sci ; 25(11)2024 May 25.
Article de Anglais | MEDLINE | ID: mdl-38891947

RÉSUMÉ

Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.


Sujet(s)
Bétaïne , Cations , Choline , Bétaïne/composition chimique , Bétaïne/analogues et dérivés , Choline/composition chimique , Choline/analogues et dérivés , Cations/composition chimique , Esters/composition chimique , Composés d'ammonium quaternaire/composition chimique , Humains
6.
Colloids Surf B Biointerfaces ; 239: 113932, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38749165

RÉSUMÉ

Quaternary ammonium salts (QAS) are widely used in medicine, industry and agriculture as disinfectants, biocides, and fungicides. QAS have the ability to coat various surfaces, prevent adhesion of microorganisms to them and inhibit the formation of biofilm. A group of surfactants derived from benzoic acid with different chemical structures was tested: monomeric QAS with different alkyl chain lengths (C12, C14, C16), gemini QAS containing 12-carbon alkyl chains and linkers of various lengths (3,4,6 methylene groups), as well as multifunctional QAS. Among the tested surfactants, monomeric QAS showed the highest bactericidal and fungicidal activity. All three groups of tested compounds inhibited the filamentation of C. albicans. The best antimicrobial activity was demonstrated by the monomeric surfactant C12AA, while the multifunctional equivalent (2xC12AA) was characterized by good anti-adhesive activity. All tested compounds are non-mutagenic and cause low hemolysis of sheep erythrocytes. Multifunctional and gemini surfactants are also non-toxic.


Sujet(s)
Candida albicans , Hémolyse , Tests de sensibilité microbienne , Tensioactifs , Tensioactifs/pharmacologie , Tensioactifs/composition chimique , Tensioactifs/synthèse chimique , Ovis , Animaux , Candida albicans/effets des médicaments et des substances chimiques , Hémolyse/effets des médicaments et des substances chimiques , Érythrocytes/effets des médicaments et des substances chimiques , Biofilms/effets des médicaments et des substances chimiques , Anti-infectieux/pharmacologie , Anti-infectieux/composition chimique , Anti-infectieux/synthèse chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique , Antibactériens/synthèse chimique , Composés d'ammonium quaternaire/composition chimique , Composés d'ammonium quaternaire/pharmacologie , Composés d'ammonium quaternaire/synthèse chimique , Antifongiques/pharmacologie , Antifongiques/synthèse chimique , Antifongiques/composition chimique
7.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38542440

RÉSUMÉ

Electrospray ionization mass spectrometry (ESI-MS) analysis is frequently associated with noncovalent adduct formation, both in positive and negative modes. Anion binding and sensing by mass spectrometry, notably more challenging compared to cation binding, will have major research potential with the development of appropriate sensors. Here, we demonstrated identification of stable bisquaternary dication adducts with trifluoroacetate (TFA-), Cl- and HSO4- in positive-mode ESI-MS analysis. The observed adducts were stable in MS/MS mode, leading to the formation of characteristic fragment ions containing a covalently bound anion, which requires bond reorganization. This phenomenon was confirmed by computational methods. Furthermore, given that anion detection and anion sensor chemistry have gained significant prominence in chemistry, we conducted an analysis of the fluorescent properties of bisquaternary ammonium compound as a potential anion sensor.


Sujet(s)
Composés d'ammonium , Spectrométrie de masse ESI , Spectrométrie de masse ESI/méthodes , Spectrométrie de masse en tandem , Ions , Anions
8.
Carbohydr Res ; 538: 109078, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38513462

RÉSUMÉ

N-(4-N'-pyridine-benzylcarbonyl chloride) chitosan (CBPyC), N-p-biguanidine benzoyl chitosan (CSBG), and N-(p-biguanidine -1-pyridine-4-benzylcarbonyl chloride) chitosan (CSQPG) were synthesized. The structures of prepared chitosan derivatives were characterized using nuclear magnetic resonance spectroscopy (NMR) and ultraviolet-visible (UV-vis) spectroscopy, and the degree of substitution was determined through elemental analysis (EA) and evaluated on the basis of the integral values in 1H NMR. The antibacterial activities of chitosan derivatives against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were investigated in vitro using antibacterial rate, minimal inhibitory concentration and minimum bacterial concentration assays. The antibiofilm activity was also assessed using the crystal violet assay. CSQPC exhibited higher antibacterial and antibiofilm activities against E. coli and S. aureus compared to CBPyC and CSBG. The antibacterial rate of CSQPG against E. coli and S. aureus at a concentration of 0.5 mg/mL was 43.3% and 100%, respectively. The biofilm inhibition rate of CSQPG at 0.5 MIC against E. coli and S. aureus was 56.5% and 69.1%, respectively. At a concentration of 2.5 mg/mL, the biofilm removal rates of E. coli and S. aureus were 72.9% and 90.1%, respectively. The antibacterial and antibiofilm activities of CSQPG were better than CSBG and CBPyC, and the combination of guanidine and quaternary ammonium further improved the positive charge density of chitosan and enhanced its antibacterial activity.


Sujet(s)
Chitosane , Chitosane/pharmacologie , Chitosane/composition chimique , Sels , Staphylococcus aureus , Escherichia coli , Chlorures , Biofilms , Composés d'ammonium quaternaire/pharmacologie , Composés d'ammonium quaternaire/composition chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique , Tests de sensibilité microbienne , Pyridines
9.
R Soc Open Sci ; 11(2): 231094, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38356872

RÉSUMÉ

Owing to the broad applications of quaternary ammonium salts (QAS), we present the synthesis of benzimidazolium-based analogues with variation in the alkyl and alkoxy group at N-1 and N-3 positions. All the compounds were characterized by spectroscopic techniques and found stable to air and moisture both in the solid and solution state. Moreover, molecular structures were established through single-crystal X-ray diffraction studies. The crystal packing of the compounds was stabilized by numerous intermolecular interactions explored by Hirshfeld surface analysis. The enrichment ratio was calculated for the pairs of chemical species to acquire the highest propensity to form contacts. Void analysis was carried out to check the mechanical response of the compounds. Furthermore, theoretical investigations were also performed to explore the optoelectronic properties of compounds. Natural population analysis (NPA) has been conducted to evaluate the distribution of charges on the synthesized compounds, whereas high band gaps of the synthesized compounds by frontier molecular orbital (FMO) analysis indicated their stability. Nonlinear optical (NLO) analysis revealed that the synthesized QAS demonstrates significantly improved NLO behaviour than the standard urea.

10.
Pharmaceutics ; 16(1)2024 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-38258091

RÉSUMÉ

Since they are difficult and sometimes impossible to treat, infections sustained by multidrug-resistant (MDR) pathogens, emerging especially in nosocomial environments, are an increasing global public health concern, translating into high mortality and healthcare costs. In addition to having acquired intrinsic abilities to resist available antibiotic treatments, MDR bacteria can transmit genetic material encoding for resistance to non-mutated bacteria, thus strongly decreasing the number of available effective antibiotics. Moreover, several pathogens develop resistance by forming biofilms (BFs), a safe and antibiotic-resistant home for microorganisms. BFs are made of well-organized bacterial communities, encased and protected in a self-produced extracellular polymeric matrix, which impedes antibiotics' ability to reach bacteria, thus causing them to lose efficacy. By adhering to living or abiotic surfaces in healthcare settings, especially in intensive care units where immunocompromised older patients with several comorbidities are hospitalized BFs cause the onset of difficult-to-eradicate infections. In this context, recent studies have demonstrated that quaternary ammonium compounds (QACs), acting as membrane disruptors and initially with a low tendency to develop resistance, have demonstrated anti-BF potentialities. However, a paucity of innovation in this space has driven the emergence of QAC resistance. More recently, quaternary phosphonium salts (QPSs), including tri-phenyl alkyl phosphonium derivatives, achievable by easy one-step reactions and well known as intermediates of the Wittig reaction, have shown promising anti-BF effects in vitro. Here, after an overview of pathogen resistance, BFs, and QACs, we have reviewed the QPSs developed and assayed to this end, so far. Finally, the synthetic strategies used to prepare QPSs have also been provided and discussed to spur the synthesis of novel compounds of this class. We think that the extension of the knowledge about these materials by this review could be a successful approach to finding effective weapons for treating chronic infections and device-associated diseases sustained by BF-producing MDR bacteria.

11.
Chemosphere ; 350: 140977, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38158085

RÉSUMÉ

Effective capturing of anionic pollutants from wastewater under industrial operating conditions, which requires high processing flux and fast adsorption rate remains a challenge. Here, a commercially available melamine sponge (MS) with reticulated 3D macroporous structures was covalently modified with positively charged moieties using a single step functionalization under mild conditions. The developed novel polycationic melamine sponge (MS+) was formed by a nucleophilic addition reaction between glycidyltrimethylammonium chloride (GMTA) and MS, followed by a self-propagation of GMTA. The produced MS+ possessed strong electrostatic interactions with different anions such as Rose Bengal (RB) and phosphates (P) under a wide pH range (3-11). The MS+ exhibited promoted static adsorption efficiencies of 400 mg g-1 (P) and 600 mg g-1 (RB), within 5 min and 60 s, respectively. Furthermore, the MS+ showed high stability and recyclability for up to 15 cycles of uses, and the recycling process was environmentally friendly by using 1 M NaCl as a releasing solution. Benefiting from fast flow through the macroporous MS+ and highly positive charged skeleton, the MS+ was applied for rapid dynamic enrichment process of P from real manure wastewater with an enrichment factor of 4.4. Utilization of the MS+ as the substrate brings additional advantages such as low cost, availability, and flexibility to fit into existing filtration devices. The developed MS+ could be expanded for enrichments of other anionic species from various polluted water sources.


Sujet(s)
Polluants environnementaux , Triazines , Polluants chimiques de l'eau , Eaux usées , Adsorption , Filtration , Polluants chimiques de l'eau/composition chimique
12.
J Fluoresc ; 2023 Dec 29.
Article de Anglais | MEDLINE | ID: mdl-38157083

RÉSUMÉ

Optically pure amino acids have extensive applications in pharmaceuticals, pesticides, food, materials, and other fields. Enantiomers recognition of chiral amino acids using optical methods with synthetic chiral sensors has attracted extensive attention. Most reported sensors typically identify guests by covalent or hydrogen bonding or hydrophobic interaction with amino acids and their derivatives. In this paper, a series of ion-type quaternary ammonium salt-based enantioselective fluorescent sensors were synthesized for chiral recognition of free α-amino acids via electrostatic interaction. The fluorescence intensity ratios ID/IL (ID, IL, fluorescence intensity of sensor when treated with D- or L-amino acid) were up to 2.1 and enantioselective fluorescence enhancement ratios ef (ef=[IL-I0]/[ID-I0] or [ID-I0]/[IL-I0]. (I0, fluorescence intensity of the sensor)) were up to 5.0. Among them, sensor 3 showed best enantioselective recognition performance toward tryptophan (Trp), and L-Trp significantly quenched the fluorescence of sensor 3, but D-Trp greatly enhanced the fluorescence of sensor 3, its ID/IL was 2.11 and ef was 1.8. The mechanistic investigation by NMR spectrum revealed that a tight three-point interaction, including electrostatic interaction, hydrogen bond, and π-π stacking, between sensor 3 and D-Trp was formed.

13.
Front Cell Infect Microbiol ; 13: 1203991, 2023.
Article de Anglais | MEDLINE | ID: mdl-37886663

RÉSUMÉ

Introduction: Antimicrobial Resistance is a serious public health problem, which is aggravated by the ability of the microorganisms to form biofilms. Therefore, new therapeutic strategies need to be found, one of them being the use of cationic dendritic systems (dendrimers and dendrons). Methods: The aim of this study is to analyze the in vitro antimicrobial efficacy of six cationic carbosilane (CBS) dendrimers and one dendron with peripheral ammonium groups against multidrug-resistant bacteria, some of them isolated hospital strains, and their biofilms. For this purpose, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC) and minimum eradication biofilm concentration (MBEC) studies were carried out. In addition, the cytotoxicity on Hela cells of those compounds that proved to be the most effective was analyzed. Results: All the tested compounds showed in vitro activity against the planktonic forms of methicillin-resistant Staphylococcus aureus and only the dendrimers BDSQ017, BDAC-001 and BDLS-001 and the dendron BDEF-130 against their biofilms. On the other hand, only the dendrimers BDAC 001, BDLS-001 and BDJS-049 and the dendron BDEF-130 were antibacterial in vitro against the planktonic forms of multidrug-resistant Pseudomonas aeruginosa, but they lacked activity against their preformed biofilms. In addition, the dendrimers BDAC-001, BDLS-001 and BDSQ-017 and the dendron BDEF-130 exhibited a good profile of cytotoxicity in vitro. Discussion: Our study demonstrates the possibility of using the four compounds mentioned above as possible topical antimicrobials against the clinical and reference strains of multidrug-resistant bacteria.


Sujet(s)
Anti-infectieux , Dendrimères , Staphylococcus aureus résistant à la méticilline , Humains , Dendrimères/pharmacologie , Cellules HeLa , Antibactériens/pharmacologie , Anti-infectieux/pharmacologie , Biofilms , Tests de sensibilité microbienne
14.
Probiotics Antimicrob Proteins ; 15(6): 1465-1483, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37770629

RÉSUMÉ

Ultrashort cationic lipopeptides (USCLs) and quaternary ammonium salts constitute two groups of cationic surfactants with high antimicrobial activity. This study aimed to investigate the influence of quaternization of the amino group of the lysine side chain in USCLs on their antimicrobial, hemolytic and cytotoxic activities. To do this, two series of lipopeptides were synthesized, USLCs and their quaternized analogues containing trimethylated lysine residues - qUSCLs (quaternized ultrashort cationic lipopeptides). Quaternization was performed on a resin during a standard solid-phase peptide synthesis with CH3I as the methylating agent. According to our knowledge, this is the first study presenting on-resin peptide quaternization. The lipopeptides were tested for their antibacterial and antifungal activities against the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella aerogenes) bacteria and Candida glabrata yeast-like fungus. Most of the compounds proved to be active antimicrobial agents with enhanced activity against Gram-positive strains and fungi and a lower against Gram-negative species. In addition, the antimicrobial activity of lipopeptides was increasing with an increase in hydrophobicity but qUSCLs exhibited usually a poorer antimicrobial activity than their parent molecules. Furthermore, the toxicity against red blood cells and human keratinocytes was assessed. It's worth emphasizing that qUSCLs were less toxic than the parent molecules of comparative hydrophobicity. The results of the study proved that qUSCLs can offer a higher selectivity to pathogens over human cells than that of USCLs. Last but not least, quaternization of the peptides could increase their solubility and therefore their bioavailability and utility.


Sujet(s)
Composés d'ammonium , Anti-infectieux , Antinéoplasiques , Humains , Lysine/composition chimique , Sels , Lipopeptides/pharmacologie , Lipopeptides/composition chimique , Tests de sensibilité microbienne , Anti-infectieux/pharmacologie , Anti-infectieux/composition chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique , Champignons
15.
J Mol Graph Model ; 125: 108561, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37660617

RÉSUMÉ

Physicochemical properties of the binary mixtures based on Caprylic acid: Quaternary ammonium salts (QAS) (7:3 mol ratio) are investigated using MD simulations. Considering the hydrophobic character of eutectic solvents based on long-chain fatty acids, the stability of the binary mixtures was investigated in the adjacent water. In order to investigate the effect of water on intermolecular interactions in binary mixtures, the structural properties of the binary mixtures in the pure state and adjacent to water were investigated at 310 K. Assessed structural properties include the combined distribution functions (CDFs), the radial distribution functions (RDFs), the angular distribution functions (ADFs), and the Hydrogen bonding network between HBA and HBD and Spatial distribution functions (SDF). We aimed to represent the structural stability of eutectic solvents based on Caprylic acid and Quaternary ammonium salts (QAS) as a function of the alkyl chain length of cations, the evidence was found for the interaction between the chloride anion leads to the transition of HBA to the water-rich phase. The alkyl chain length of cations of Quaternary ammonium salts shows the stability of eutectic solvents in the adjacent water.


Sujet(s)
Caprylates , Eau , Solvants eutectiques profonds , Sels , Solvants , Composés d'ammonium quaternaire
16.
Angew Chem Int Ed Engl ; 62(38): e202309046, 2023 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-37528676

RÉSUMÉ

Passivation of the sulfur cathode by insulating lithium sulfide restricts the reversibility and sulfur utilization of Li-S batteries. 3D nucleation of Li2 S enabled by radical conversion may significantly boost the redox kinetics. Electrolytes with high donor number (DN) solvents allow for tri-sulfur (S3 ⋅- ) radicals as intermediates, however, the catastrophic reactivity of such solvents with Li anodes pose a great challenge for their practical application. Here, we propose the use of quaternary ammonium salts as electrolyte additives, which can preserve the partial high-DN characteristics that trigger the S3 ⋅- radical pathway, and inhibit the growth of Li dendrites. Li-S batteries with tetrapropylammonium bromide (T3Br) electrolyte additive deliver the outstanding cycling stability (700 cycles at 1 C with a low-capacity decay rate of 0.049 % per cycle), and high capacity under a lean electrolyte of 5 µLelectrolyte mgsulfur -1 . This work opens a new avenue for the development of electrolyte additives for Li-S batteries.

17.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-37259335

RÉSUMÉ

Quaternary ammonium compounds (QACs) are among the most effective antimicrobial agents that have been used for more than a century. However, due to the growing trend of bacterial resistance and high toxicity of QACs, research in this field remains a pressing matter. Recent studies of the structure-activity relationship suggest that the introduction of the amide functional group into QAC structures results in soft variants that retain their antimicrobial properties while opening the possibility of fine-tuned activity regulation. Here, we report the synthesis and structure-function study of three structurally distinct series of naturally derived soft QACs. The obtained 3-amidoquinuclidine QACs showed a broad range of antibacterial activities related to the hydrophobic-hydrophilic balance of the QAC structures. All three series yielded candidates with minimal inhibitory concentrations (MIC) in the single-digit µM range. Time-resolved growth analysis revealed subtle differences in the antibacterial activity of the selected candidates. The versatile MIC values were recorded in different nutrient media, suggesting that the media composition may have a dramatic impact on the antibacterial potential. The new QACs were found to have excellent potential to suppress bacterial biofilm formation while exhibiting low ability to induce bacterial resistance. In addition, the selected candidates were found to be less toxic than commercially available QACs and proved to be potential substrates for protease degradation. These data suggest that 3-amidoquinuclidine QACs could be considered as novel antimicrobial agents that pose a low threat to ecosystems and human health.

18.
Antibiotics (Basel) ; 12(5)2023 May 10.
Article de Anglais | MEDLINE | ID: mdl-37237791

RÉSUMÉ

Eight N-[2-(2',3',4'-tri-O-acetyl-α/ß-d-xylopyranosyloxy)ethyl]ammonium bromides, a new class of d-xylopyranosides containing a quaternary ammonium aglycone, were obtained. Their complete structure was confirmed using NMR spectroscopy (1H, 13C, COSY and HSQC) and high-resolution mass spectrometry (HRMS). An antimicrobial activity against fungi (Candida albicans, Candida glabrata) and bacteria (Staphylococcus aureus, Escherichia coli) and a mutagenic Ames test with Salmonella typhimurium TA 98 strain were performed for the obtained compounds. The greatest activity against the tested microorganisms was shown by glycosides with the longest (octyl) hydrocarbon chain in ammonium salt. None of the tested compounds exhibited mutagenic activity in the Ames test.

19.
Gels ; 9(3)2023 Mar 14.
Article de Anglais | MEDLINE | ID: mdl-36975668

RÉSUMÉ

Bacterial infection contributes to the bioburden of wounds, which is an essential factor in determining whether a wound can heal. Wound dressings with antibacterial properties that can promote wound-healing are highly desired for the treatment of chronic wound infections. Herein, we fabricated a simple polysaccharide-based hydrogel dressing encapsulating tobramycin-loaded gelatine microspheres with good antibacterial activity and biocompatibility. We first synthesised long-chain quaternary ammonium salts (QAS) by the reaction of tertiary amines with epichlorohydrin. The amino groups of carboxymethyl chitosan were then conjugated with QAS through the ring-opening reaction and QAS-modified chitosan (CMCS) was obtained. The antibacterial analysis showed that both QAS and CMCS could kill E. coli and S. aureus at relatively low concentrations. QAS with 16 carbon atoms has a MIC of 16 µg/mL for E. coli and 2 µg/mL for S. aureus. A series of formulations of tobramycin-loaded gelatine microspheres (TOB-G) were generated and the best formulation was selected by comparing the characters of the microspheres. The microsphere fabricated by 0.1 mL GTA was selected as the optimal candidate. We then used CMCS, TOB-G, and sodium alginate (SA) to prepare physically crosslinking hydrogels using CaCl2 and investigated the mechanical properties, antibacterial activity, and biocompatibility of the hydrogels. In summary, the hydrogel dressing we produced can be used as an ideal alternative for the management of bacteria-infected wounds.

20.
Molecules ; 28(3)2023 Feb 03.
Article de Anglais | MEDLINE | ID: mdl-36771181

RÉSUMÉ

Ten novel bifunctional quaternary ammonium salt phase-transfer organocatalysts were synthesized in four steps from (+)-camphor-derived 1,3-diamines. These quaternary ammonium salts contained either (thio)urea or squaramide hydrogen bond donor groups in combination with either trifluoroacetate or iodide as the counteranion. Their organocatalytic activity was evaluated in electrophilic heterofunctionalizations of ß-keto esters and in the Michael addition of a glycine Schiff base with methyl acrylate. α-Fluorination and chlorination of ß-keto esters proceeded with full conversion and low enantioselectivities (up to 29% ee). Similarly, the Michael addition of a glycine Schiff base with methyl acrylate proceeded with full conversion and up to 11% ee. The new catalysts have been fully characterized; the stereochemistry at the C-2 chiral center was unambiguously determined.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE