Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.776
Filtrer
1.
Gene ; 933: 148981, 2024 Oct 04.
Article de Anglais | MEDLINE | ID: mdl-39369756

RÉSUMÉ

Cockroaches are well-known pests and quarantined organisms worldwide. Due to morphological diversity and a lack of molecular data, their classification and identification are facing challenges. This study performed classification, identification, and DNA barcoding for cockroaches collected from China. Seventy-six samples were morphologically identified as seven species of two superfamilies that included Blattella germanica, Eublaberus posticus and Blaptica dubia belonging to the superfamily Blaberoidea, and Periplaneta americana, Periplaneta lateralis, Periplaneta fuliginosa and Periplaneta australasiae belonging to the superfamily Blattoidea. Based on sequence alignments of nine ribosomal and mitochondrial genes across the order Blattaria retrieved from GenBank, rDNA ITS2-517 bp and mtDNA 16S-327 bp were screened as candidates for molecular identification. Universal primers were designed for PCR amplification, cloning, and sequencing of the 37 representative samples. Sequence alignments and phylogeny analysis showed that both ITS2 and 16S confirmed samples 1-9, 20-24, and 25-29 as B. germanica, P. americana, and P. lateralis, respectively; only 16S (not ITS2) confirmed samples 10-14, 15-19, 30-34, and 35-37 as E. posticus, Blap. dubia, P. fuliginosa, and P. australasiae, respectively, indicating that 16S was a better target than ITS2 for molecular identification of cockroaches. Conservative motif and divergence analysis further revealed that ITS2 sequences vary significantly among different taxa, whereas 16S sequences are relatively conserved. There is an obvious barcoding gap between maximum intraspecific divergence and minimum interspecific divergence (2.57 % vs. 5.62 %) for ITS2, but not for 16S (6.15 % vs. 2.63 %). Therefore, it was confirmed that ITS2 is an ideal DNA barcode for molecular identification of cockroaches at lower category.

2.
Elife ; 122024 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-39388244

RÉSUMÉ

PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.


Sujet(s)
Nucléole , ADN ribosomique , Protéine de la leucémie promyélocytaire , Humains , Protéine de la leucémie promyélocytaire/métabolisme , Protéine de la leucémie promyélocytaire/génétique , ADN ribosomique/génétique , ADN ribosomique/métabolisme , Nucléole/métabolisme , Altération de l'ADN , Cassures double-brin de l'ADN , RNA polymerase I/métabolisme , RNA polymerase I/génétique
3.
Zookeys ; 1213: 237-249, 2024.
Article de Anglais | MEDLINE | ID: mdl-39372278

RÉSUMÉ

Members of the genus Pseudopterogorgia Kükenthal, 1919 are widely distributed in shallow water of the Indo-West Pacific. During an investigation of benthic biodiversity in the subtidal zone surrounding the Nanji Islands in the East China Sea, two specimens of Pseudopterogorgia were collected and described as a new species based on an integrated morphological-molecular approach. Pseudopterogorgiananjiensis sp. nov. is most similar to P.fredericki Williams & Vennam, 2001 in the irregular branching form and indistinct scaphoids, but differs by the coenenchymal sclerite content of distinct capstans and a few warty spindles and radiates (vs. mostly warty spindles and a few capstans), and a purplish colony (vs. white, pink to deep rose). Molecular phylogenetic analyses, based on the mtMutS-COI gene sequences, delineated a monophyletic clade encompassing all assessed Pseudopterogorgia species. Within this clade, P.nanjiensis sp. nov. showed a close phylogenetic affinity with both P.fredericki and P.australiensis Ridley, 1884.

4.
Plant Biol (Stuttg) ; 2024 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-39356199

RÉSUMÉ

Plant-microbe interactions significantly influence plant growth dynamics and adaptability. This study explores the impact of metabolites on microbial biodiversity in shoot tips and wood of Populus nigra under greenhouse conditions, using high-throughput sequencing and metabolite profiling. Branches from P. nigra were harvested, rooted, and transplanted into pots for growth. After 3 months, tissue samples from shoot tips and wood were collected, and metabolites extracted and analysed using GC-MS and LC-MS. Genomic DNA was extracted and subjected to high-throughput sequencing for bacterial biodiversity profiling. Both datasets were analysed using bioinformatic and statistical pipelines. Metabolite profiling indicated that shoot tips had a higher relative abundance of primary and secondary metabolites, including sugars, fatty acids, organic acids, phenolic acid derivatives and salicinoids, while wood was enriched in flavonoids. Bacterial biodiversity also differed significantly between these tissues, with Clostridiales, Bacteroidales and Bacillales dominating in shoot tips, associated with rapid growth and anaerobic fermentation, while wood tissues were characterized by diazotrophs from Rhizobiales, Sphingomonadales and Frankiales. PCoA clustering confirmed tissue-specific microbial differences. Functional analysis revealed an enrichment of fundamental cellular processes in shoot tips, while wood exhibited pathways related to degradation and mortality. Metabolite profiling revealed significant variations in primary and secondary metabolites, highlighting their influence on microbial biodiversity across plant tissues. The dominance of specific bacterial orders and distinct functional pathways in each tissue suggests a tailored microbial response to the unique environments of shoot tips and wood.

5.
J Parasitol ; 110(5): 455-470, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39326879

RÉSUMÉ

ABSTRACT: Hassalstrongylus Durette-Desset, 1971 (Nematoda: Heligmonellidae), includes 19 species that are distributed from the southwestern United States to central-western Argentina. Hassalstrongylus aduncus is a parasitic nematode of rodents from the subfamilies Arvicolinae, Murinae, and Sigmodontinae, and has been recorded from southern Virginia and Oklahoma to Costa Rica. This species was described by Chandler in 1932; the morphology of the synlophe was not included. Subsequently, in 1972, Durette-Desset described only the synlophe of the middle region of the body in both sexes. Despite its wide geographical distribution, to date, there has been no redescription that includes information complementary to the morphology of the synlophe, such as a study of the body surface or a molecular phylogenetic analysis. We reevaluated the morphology of some specimens that were presumably similar to H. aduncus parasite of Sigmodon sp. from Jalisco, Mexico, and it was determined that these corresponded to an undescribed species of the genus. Herein, we present a redescription of H. aduncus parasite of Sigmodon toltecus from Hidalgo, Mexico, with morphological traits such as the excretory pore, deirids, and ovijector, and provide a description of the synlophe in the anterior and posterior regions of both sexes and include scanning electron microscopy images. Hassalstrongylus geolayarum n. sp. is differentiated from H. aduncus by the number of ridges in the middle region of the body (23 vs. 21), as well as proportions between some traits of males and females such as total length/spicule length, total length/gubernaculum length, total length/length of the esophagus and total length/distance of the vulva and the size of the eggs (42 vs. 58 µm). Phylogenetic analysis is based on partial sequences of the nuclear ribosomal internal transcribed spacer region (ITS1 + 5.8S + ITS2) of the rDNA, using the maximum-parsimony, maximum-likelihood, and Bayesian inference methods revealed the close relationship of H. aduncus + H. geolayarum n. sp. within the Heligmosomoidea and confirmed the placement of the Hassalstrongylus monophyletic clade well-supported within Heligmonellidae. The new species presented a genetic divergence of 3.4-3.8% relative to H. aduncus. This is the first species of the genus described in Mexico. Presumably, there are more species not yet described throughout the geographic range of H. aduncus. A taxonomic review and molecular phylogenetic analysis are required in which more species and genes are analyzed in Heligmosomoidea to confirm the status of the nonmonophyletic groups recovered here.


Sujet(s)
ADN des helminthes , Phylogenèse , Maladies des rongeurs , Animaux , Mâle , Femelle , ADN des helminthes/composition chimique , Maladies des rongeurs/parasitologie , Sigmodontinae/parasitologie , Microscopie électronique à balayage/médecine vétérinaire , Heligmosomatoidea/classification , Heligmosomatoidea/anatomie et histologie , ARN ribosomique 28S/génétique
6.
Biology (Basel) ; 13(9)2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39336135

RÉSUMÉ

Chromosomal polymorphism is a significant aspect of population genetics, influencing the adaptation and evolution of species. In Rineloricaria lanceolata, a Neotropical fish species, chromosomal polymorphism has been observed, yet the underlying mechanisms and evolutionary implications remain poorly understood. This article aims to investigate the chromosomal polymorphism in Rineloricaria lanceolata, focusing on elucidating the meiotic behavior of karyotypic variants and tracing the phylogenetic origins of this polymorphism within the genus. By employing molecular markers and cytogenetic techniques, we aim to uncover the mechanisms driving chromosomal rearrangements and their potential role in speciation and adaptation. Understanding the genetic basis of chromosomal polymorphism in R. lanceolata not only contributes to our knowledge of species evolution but also holds implications for the conservation of genetic diversity within this vulnerable group of Neotropical fishes.

7.
Cell Rep ; 43(9): 114738, 2024 Sep 24.
Article de Anglais | MEDLINE | ID: mdl-39277864

RÉSUMÉ

The highly repetitive and transcriptionally active ribosomal DNA (rDNA) genes are exceedingly susceptible to genotoxic stress. Induction of DNA double-strand breaks (DSBs) in rDNA repeats is associated with ataxia-telangiectasia-mutated (ATM)-dependent rDNA silencing and nucleolar reorganization where rDNA is segregated into nucleolar caps. However, the regulatory events underlying this response remain elusive. Here, we identify protein UFMylation as essential for rDNA-damage response in human cells. We further show the only ubiquitin-fold modifier 1 (UFM1)-E3 ligase UFL1 and its binding partner DDRGK1 localize to nucleolar caps upon rDNA damage and that UFL1 loss impairs ATM activation and rDNA transcriptional silencing, leading to reduced rDNA segregation. Moreover, analysis of nuclear and nucleolar UFMylation targets in response to DSB induction further identifies key DNA-repair factors including ATM, in addition to chromatin and actin network regulators. Taken together, our data provide evidence of an essential role for UFMylation in orchestrating rDNA DSB repair.


Sujet(s)
Protéines mutées dans l'ataxie-télangiectasie , Cassures double-brin de l'ADN , ADN ribosomique , Humains , ADN ribosomique/métabolisme , ADN ribosomique/génétique , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Réparation de l'ADN , Nucléole/métabolisme , Altération de l'ADN , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Ubiquitination
8.
Int J Gen Med ; 17: 4311-4324, 2024.
Article de Anglais | MEDLINE | ID: mdl-39346630

RÉSUMÉ

Aim: This study investigated differences in gut flora between osteoporosis (OP) patients and healthy individuals using 16S rDNA sequencing. The correlation between differential flora abundance and bone mineral density (BMD) was analyzed, and key flora and potential mechanisms associated with OP were explored. Methods: Forty-three OP patients and twenty-four healthy volunteers were recruited. Gender, age, height, weight, and BMD data were collected. DNA from fecal samples was extracted for 16S rDNA sequencing. The Kruskal-Wallis test assessed differences in gut flora composition, while LEfSe analysis identified significant flora. Spearman correlation analysis examined the relationship between differential flora and BMD, and PICRUSt predicted pathways involved in OP. Results: Significant differences in microbial composition were found between the two groups. Klebsiella, Escherichia-Shigella, and Akkermansia were biomarkers in OP patients, with Faecalibacterium in the healthy group. Akkermansia abundance negatively correlated with lumbar BMD, while Klebsiella and Escherichia-Shigella negatively correlated with femoral neck and hip BMD. Faecalibacterium showed a positive correlation with BMD. Functional predictions indicated differences in metabolism-related pathways between the groups. Conclusion: Gut flora differed significantly between OP patients and healthy individuals. Akkermansia, Klebsiella, and Escherichia-Shigella could serve as diagnostic biomarkers for OP, highlighting the potential of gut flora in OP diagnosis and treatment.

9.
Parasitol Res ; 123(9): 322, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39254886

RÉSUMÉ

Globally, the poultry industry is seriously threatened by coccidiosis caused by various species of Eimeria. This protozoan parasite inhabits the epithelial lining of the gastrointestinal tract of poultry globally and can cause serious clinical disease. The present study was carried out on poultry farms located in various regions of Kashmir, India, to investigate the prevalence and phylogenetic relationships of Eimeria species affecting broiler chickens. Over a period of one year, fecal samples were collected from 60 poultry farms in Kashmir and morphological and molecular techniques were employed for Eimeria species identification. Results revealed a high prevalence of coccidiosis, with 58.3% (35/60) of farms positive for Eimeria. The most prevalent species were E. tenella (31/35, 88.6%) followed by E. acervulina (25/35, 71.4%), E. maxima (19/35, 54.3%), E. mitis (18/35, 51.4%), and E. necatrix (9/35, 25.7%). Seasonal variation in prevalence was also observed, with the highest rates in autumn (86.7%) and summer (66.7%). Additionally, younger birds (3-4 weeks) exhibited higher infection rates (85.7%) compared to older birds (57.9%) (5-6 weeks). Mixed infection was found in 94.2% (33/35) of positive farms. Phylogenetic analysis using ITS1 sequences confirmed species clustering and revealed evolutionary relationships among Eimeria species. E. tenella and E. necatrix formed a distinct clade, while E. acervulina formed another. The study underscores the importance of molecular techniques in accurate species identification and provides valuable insights into the epidemiology of coccidiosis in poultry in Kashmir. Effective control strategies, including vaccination and improved management practices, are necessary to mitigate the economic losses associated with this widespread poultry disease.


Sujet(s)
Poulets , Coccidiose , Eimeria , Fèces , Phylogenèse , Maladies de la volaille , Saisons , Animaux , Eimeria/génétique , Eimeria/classification , Eimeria/isolement et purification , Coccidiose/médecine vétérinaire , Coccidiose/épidémiologie , Coccidiose/parasitologie , Inde/épidémiologie , Poulets/parasitologie , Maladies de la volaille/parasitologie , Maladies de la volaille/épidémiologie , Prévalence , Fèces/parasitologie
10.
BMC Biol ; 22(1): 195, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39256730

RÉSUMÉ

BACKGROUND: iPSC reprogramming technology exhibits significant promise in the realms of clinical therapeutics, disease modeling, pharmaceutical drug discovery, and various other applications. However, the extensive utilization of this technology has encountered impediments in the form of inefficiency, prolonged procedures, and ambiguous biological processes. Consequently, in order to improve this technology, it is of great significance to delve into the underlying mechanisms involved in iPSC reprogramming. The BET protein BRD4 plays a crucial role in the late stage of reprogramming; however, its precise function in the early stage remains unclear. RESULTS: Our study aims to investigate BRD4's role in the early stages of iPSC reprogramming. Our investigation reveals that early inhibition of BRD4 substantially enhances iPSC reprogramming, whereas its implementation during the middle-late stage impedes the process. During the reprogramming, ribosome DNA expression initially increases before decreasing and then gradually recovers. Early inhibition of BRD4 improved the decline and restoration of rDNA expression in the early and middle-late stages, respectively. Additionally, we uncovered the mechanism of BRD4's regulation of rDNA transcription throughout reprogramming. Specifically, BRD4 interacts with UBF and co-localizes to both the rDNA promoter and enhancer regions. Ultimately, BRD4 facilitates rDNA transcription by promoting the enrichment of histone H3 lysine 27 acetylation in the surrounding chromatin. Moreover, we also discovered that early inhibition of BRD4 facilitates cells' transition out of the somatic cell state and activate pluripotent genes. CONCLUSIONS: In conclusion, our results demonstrate that early inhibition of BRD4 promotes sequential dynamic expression of rDNA, which improves iPSC reprogramming efficiency.


Sujet(s)
Reprogrammation cellulaire , ADN ribosomique , Cellules souches pluripotentes induites , Facteurs de transcription , Cellules souches pluripotentes induites/métabolisme , Reprogrammation cellulaire/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , ADN ribosomique/génétique , Animaux , Humains , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Souris , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Protéines contenant un bromodomaine
11.
Int J Parasitol Parasites Wildl ; 25: 100985, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39329046

RÉSUMÉ

Myxobolus nagaraensis is a myxozoan parasite first reported in freshwater gobies (Rhinogobius spp.) from the Nagara River, Gifu Prefecture, Japan. Myxospores of M. nagaraensis form plasmodia in the visceral cavities of gobies, commonly presenting as distended abdomens. Although Rhinogobius is a common fish genus in Japan, details of M. nagaraensis, including genetic information, remain unknown. We compared the nucleotide sequences of the ribosomal RNA gene (rDNA) of M. nagaraensis from three different host species (R. fluviatilis, R. nagoyae, and R. similis) caught in three different rivers in Japan (Sakai, Sagami, and Kaname). The ITS region (ITS-1, 5.8S rDNA, and ITS-2) and large subunit (LSU) rDNA exhibited 49 and 55 variable sites, respectively. The highest nucleotide diversity was observed in the ITS region (0.00962), whereas that of the LSU rDNA was 0.00187. Differences in host species, rather than rivers, were a significant factor for genetic variation in both the ITS region (62.58%; P < 0.001) and LSU rDNA (55.22%; P < 0.01). Significant genetic variation was observed in M. nagaraensis from R. similis compared to R. fluviatilis (P < 0.001) or R. nagoyae (P < 0.001) from the same river. Such details are valuable for understanding parasite dispersal and its ecological impact on Rhinogobius hosts.

12.
Genes (Basel) ; 15(9)2024 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-39336827

RÉSUMÉ

BACKGROUND: For the past 25 years, the ITS rDNA (ITS1-5.8S-ITS2) of Gyrodactylidae has been crucial for species identification, description, and phylogeny. This family includes 25 genera parasitizing marine and freshwater fish, initially distinguished by morphological differences in attachment and/or male copulatory organs. Gyrodactylus Nordmann, 1832, the most species-rich genus, has approximately 500 described species and an additional 25,000 species suspected. The genus is not monophyletic, and the functionally adaptive nature of morphological diagnostic characters complicates the delimitation of new genera. METHODS: A phylogeny based on ITS rDNA was proposed to address these challenges, using only complete sequences of primitive taxa. Fifty-four sequences were aligned with the MUSCLE v5.1 algorithm, creating a 1590 ps long matrix. Maximum Likelihood (ML) and Bayesian Inference (BI) methods with the models TVM+F+G4 and SYM+G4 for ITS1-ITS2 and 5.8S, respectively, were inferred using IQ-TREE v2.3.5 and BEAST v2.7.6.0. RESULTS: The findings revealed eleven main lineages. Four of them are proposed for classification into new genera: Cichlidarus gen. nov., Iraqemembranatus gen. nov., Macracanthus gen. nov., and Rysavyius gen. nov. Elevating the subgenus G. (Gyrodactylus) to genus rank was supported. CONCLUSIONS: The presented phylogeny provides a foundation for developing a classification system within Gyrodactylidae that is both reasonable and comprehensive.


Sujet(s)
Phylogenèse , Plathelminthes , Animaux , Plathelminthes/génétique , Plathelminthes/classification , ADN ribosomique/génétique , Poissons/parasitologie , Poissons/génétique , Poissons/classification , Espaceur de l'ADN ribosomique/génétique , Théorème de Bayes
13.
Microorganisms ; 12(9)2024 Sep 22.
Article de Anglais | MEDLINE | ID: mdl-39338601

RÉSUMÉ

Cephalostachyum pingbianense (Hsueh & Y.M. Yang ex Yi et al.) D.Z. Li & H.Q. Yang is unique among bamboo species for its ability to produce bamboo shoots in all seasons under natural conditions. Apart from the physiological mechanism, information regarding the effects of endophytic microorganisms on this full-year shooting characteristic is limited. We hypothesize that root endophytic microorganisms will have a positive impact on the full-year bamboo shooting characteristic of C. pingbianense by increasing the availability or supply of nutrients. To identify the seasonal variations in the root endophytic bacterial and fungal communities of C. pingbianense, and to assess their correlation with bamboo shoot productivity, the roots of C. pingbianense were selected as research materials, and the 16S rRNA and ITS rDNA genes of root endophytic microorganisms were sequenced using the Illumina platform. Following this sequencing, raw sequencing reads were processed, and OTUs were annotated. Alpha and beta diversity, microbial composition, and functional predictions were analyzed, with correlations to bamboo shoot numbers assessed. The results showed that seasonal changes significantly affected the community diversity and structure of root endophytic microbes of C. pingbianense. Bacterial communities in root samples from all seasons contained more nitrogen-fixing microorganisms, with members of the Burkholderiales and Rhizobiales predominating. The relative abundances of ectomycorrhizal and arbuscular mycorrhizal fungi in the autumn sample were significantly higher than in other seasons. Correlation analysis revealed that the bamboo shoot productivity was significantly and positively correlated with bacterial functions of nitrogen fixation, arsenate detoxification, and ureolysis, as well as with symbiotrophic fungi, ectomycorrhizal fungi, and arbuscular mycorrhizal fungi. At the genus level, the bacterial genus Herbaspirillum and the fungal genera Russula, unclassified_f_Acaulosporaceae, and unclassified_f_Glomeraceae were found to have a significant positive correlation with bamboo shoot number. Our study provides an ecological perspective for understanding the highly productive attribute of C. pingbianense and offers new insights into the forest management of woody bamboos.

14.
Parasit Vectors ; 17(1): 407, 2024 Sep 28.
Article de Anglais | MEDLINE | ID: mdl-39342262

RÉSUMÉ

BACKGROUND: Mosquitoes (Culicidae), as disease vectors, represent a risk for human health worldwide. Repeated introductions of alien mosquito species and the spread of invasive species have been recorded in different countries. Traditionally, identification of mosquitoes relies on morphological observation. However, morphology-based identification is associated with a number of potential disadvantages, such as the high level of specialisation of the operator and its limited applicability to damaged samples. In these cases, species identification is achieved through molecular methods based on DNA amplification. Molecular-based taxonomy has also enabled the development of techniques for the study of environmental DNA (eDNA). Previous studies indicated the 16S mitochondrial ribosomal RNA (rRNA) gene as a promising target for this application; however, 16S rRNA sequences are available for only a limited number of mosquito species. In addition, although primers for the 16S rRNA gene were designed years ago, they are based on limited numbers of mosquito sequences. Thus, the aims of this study were to: (i) design pan-mosquito 16S rRNA gene primers; (ii) using these primers, generate a 16S rRNA gene mosquito reference library (with a focus on mosquitoes present in Italy); and (iii) compare the discriminatory power of the 16S rRNA gene with two widely used molecular markers, cytochrome c oxidase subunit 1 mitochondrial gene (COI) and internal transcribed spacer 2 (ITS2). METHODS: A total of six mosquito genera (28 mosquito species) were included in this study: Aedes (n = 16 species), Anopheles (5 species), Coquillettidia (1 species), Culex (3 species), Culiseta (2 species) and Uranotaenia (1 species). DNA was extracted from the whole mosquito body, and more than one specimen for each species was included in the analysis. Sanger sequencing was used to generate DNA sequences that were then analysed through the Barcode of Life Data Systems (BOLD). Phylogenetic analyses were also performed. RESULTS: Novel 16S rDNA gene, COI and ITS2 sequences were generated. The 16S rRNA gene was shown to possess sufficient informativeness for the identification of mosquito species, with a discriminatory power equivalent to that of COI. CONCLUSIONS: This study contributes to the generation of DNA barcode libraries, focussed on Italian mosquitoes, with a significant increase in the number of 16S rRNA gene sequences. We hope that these novel sequences will provide a resource for studies on the biodiversity, monitoring and metabarcoding of mosquitoes, including eDNA-based approaches.


Sujet(s)
Culicidae , Codage à barres de l'ADN pour la taxonomie , Espèce introduite , Vecteurs moustiques , Phylogenèse , ARN ribosomique 16S , Animaux , ARN ribosomique 16S/génétique , Culicidae/génétique , Culicidae/classification , Italie , Vecteurs moustiques/génétique , Vecteurs moustiques/classification , Banque de gènes , Complexe IV de la chaîne respiratoire/génétique
15.
Sci Rep ; 14(1): 22085, 2024 09 27.
Article de Anglais | MEDLINE | ID: mdl-39333174

RÉSUMÉ

Rhopalocercous Cercaria duplicata von Baer, 1827 develops in an intermediate host, the unionid bivalve Anodonta anatina (L.), but its adult form has been unknown. We examined eight fish species occurring in the presence of a highly infested population of A. anatina in the Zeslawice reservoir (S Poland). Gravid Phyllodistomum specimens were obtained from the ureters of ide, Leuciscus idus (L.) and common rudd, Scardinius erythrophthalmus (L.). One of the rudd specimens was doubly infected, a trematode was also found in the urinary bladder. In addition, a gravid Phyllodistomum specimen was found in the ureter of a tench Tinca tinca (L.), caught in Lake Ilmedas (Lithuania). In order to clarify the phylogenetic position of larval and adult gorgoderids and to establish their life cycle, ITS2 and 28S rDNA sequences were analysed. The analysis showed that adult Phyllodistomum specimens located in the ureters are conspecific with C. duplicata. The trematode found in the urinary bladder of S. erythrophthalmus was P. folium (Olfers, 1816). It is suggested that adult stages of C. duplicata should be referred to as Phyllodistomum duplicatum n. comb. The intercaecal position of the uterus and the deeply-lobed ovary are the main features distinguishing it from other Phyllodistomum species. Host specificity and ecology are discussed.


Sujet(s)
Cercaria , Spécificité d'hôte , Phylogenèse , Trematoda , Animaux , Trematoda/génétique , Trematoda/anatomie et histologie , Trematoda/classification , Cercaria/génétique , Cercaria/anatomie et histologie , ARN ribosomique 28S/génétique , Étapes du cycle de vie , Poissons/parasitologie , Infections à trématodes/parasitologie , Infections à trématodes/médecine vétérinaire , Bivalvia/parasitologie
16.
Article de Anglais | MEDLINE | ID: mdl-39331330

RÉSUMÉ

The current study aimed to produce an amyloglucosidase enzyme from the fungal consortium. The best amylolytic fungal consortia were identified as Alternaria alternata and Aspergillus niger through the 18S rDNA technique. Fermentation kinetics and various nutritional and cultural parameters were analyzed. Maximum production was obtained in M4 media, pH 5.5, 30 °C, and 4 mL inoculum at 150 rpm after 72 h of incubation. Along with that, sodium nitrate at 2.5%, maltose, beef extract 1%, zinc sulfate (0.1%), and Tween 80 (0.1%) supported the maximum amyloglucosidase production. Amyloglucosidase was partially purified up to 1.6 purification fold with a specific activity of 1.84 Umg-1 in a stepwise manner by ammonium sulfate purification, dialysis, and ion exchange chromatography. The AMG enzyme also revealed maximum activity at 50 °C with 5.0 pH. Upon the kinetic analysis, the specific yield coefficient Yp/x and volumetric rates Qp and Qx were also found to be significant in the above optimized conditions. The Km value 0.33 mg mL-1 and Vmax 26.31 U mL-1 were obtained at 1% soluble starch substrate. Thermodynamic parameters for soluble starch hydrolysis were as follows: ΔH = 48.78 kJ mol-1, (Ea) = - 46.0 kJ mol-1, and ΔS = - 43.10 J mol-1 K-1. This finding indicates the indigenously isolated fungal consortium can be the best candidate for industrial applications.

17.
Exp Appl Acarol ; 2024 Sep 08.
Article de Anglais | MEDLINE | ID: mdl-39244702

RÉSUMÉ

A reliable phylogeny is crucial for understanding the evolution and radiation of animal taxa. Phylogenies based on morphological data may be misleading due to frequent convergent evolution of traits-a problem from which molecular phylogenies suffer less. This may be particularly relevant in oribatid mites, an ancient soil animal taxon with more than 11,000 species, where the classification of species into high-ranking taxa such as superfamilies is equivocal. Here, we present a molecular phylogeny of 317 oribatid, 4 astigmatid and 17 endeostigmatid mite species/taxa based on 18S rDNA sequences. We aimed at testing the validity of the 41 superfamilies of oribatid mites recognized by Norton and Behan-Pelletier (in Krantz and Walter, A manual of Acarology, 3rd ed., Texas Technical University Press, Lubbock, 2009). The results indicate that 17 of the 41 oribatid mite superfamilies are monophyletic but that 18 superfamilies are paraphyletic or polyphyletic (5 superfamilies were only included with one species and Microzetoidea were not included). Our findings point to the importance of convergent evolution in polyphyletic oribatid mite taxa. Convergent evolution and the old age of mites likely resulted in a mosaic-like distribution of morphological characters impeding phylogenetic reconstructions based on morphology, calling for molecular approaches to improve oribatid mite systematics.

18.
PeerJ ; 12: e17864, 2024.
Article de Anglais | MEDLINE | ID: mdl-39221285

RÉSUMÉ

Meiosis is a critical process in sexual reproduction, and errors during this cell division can significantly impact fertility. Successful meiosis relies on the coordinated action of numerous genes involved in DNA replication, strand breaks, and subsequent rejoining. DNA topoisomerase enzymes play a vital role by regulating DNA topology, alleviating tension during replication and transcription. To elucidate the specific function of DNA topoisomerase 1α ( A t T O P 1 α ) in male reproductive development of Arabidopsis thaliana, we investigated meiotic cell division in Arabidopsis flower buds. Combining cytological and biochemical techniques, we aimed to reveal the novel contribution of A t T O P 1 α to meiosis. Our results demonstrate that the absence of A t T O P 1 α leads to aberrant chromatin behavior during meiotic division. Specifically, the top1α1 mutant displayed altered heterochromatin distribution and clustered centromere signals at early meiotic stages. Additionally, this mutant exhibited disruptions in the distribution of 45s rDNA signals and a reduced frequency of chiasma formation during metaphase I, a crucial stage for genetic exchange. Furthermore, the atm-2×top1α1 double mutant displayed even more severe meiotic defects, including incomplete synapsis, DNA fragmentation, and the presence of polyads. These observations collectively suggest that A t T O P 1 α plays a critical role in ensuring accurate meiotic progression, promoting homologous chromosome crossover formation, and potentially functioning in a shared DNA repair pathway with ATAXIA TELANGIECTASIA MUTATED (ATM) in Arabidopsis microspore mother cells.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Ségrégation des chromosomes , ADN topoisomérases de type I , Méiose , Arabidopsis/génétique , Arabidopsis/enzymologie , Méiose/physiologie , Méiose/génétique , ADN topoisomérases de type I/métabolisme , ADN topoisomérases de type I/génétique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Recombinaison génétique , Mutation
19.
BMC Cancer ; 24(1): 1154, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-39289617

RÉSUMÉ

OBJECTIVES: The aim of this study was to characterize the microbiome of multiple mucosal organs in cervical cancer (CC) patients. METHODS: We collected oral, gut, urinary tract, and vaginal samples from enrolled study participants, as well as tumor tissue from CC patients. The microbiota of different mucosal organs was identified by 16S rDNA sequencing and correlated with clinical-pathological characteristics of cervical cancer cases. RESULTS: Compared with controls, CC patients had reduced α-diversity of oral and gut microbiota (pOral_Sob < 0.001, pOral_Shannon = 0.049, pOral_Simpson = 0.013 pFecal_Sob = 0.030), although there was an opposite trend in the vaginal microbiota (pVaginal_Pielou = 0.028, pVaginal_Simpson = 0.006). There were also significant differences in the ß-diversity of the microbiota at each site between cases and controls (pOral = 0.002, pFecal = 0.037, pUrine = 0.001, pVaginal = 0.001). The uniformity of urine microbiota was lower in patients with cervical squamous cell carcinoma (pUrine = 0.036) and lymph node metastasis (pUrine_Sob = 0.027, pUrine_Pielou = 0.028, pUrine_Simpson = 0.021, pUrine_Shannon = 0.047). The composition of bacteria in urine also varied among patients with different ages (p = 0.002), tumor stages (p = 0.001) and lymph node metastasis (p = 0.002). In CC cases, Pseudomonas were significantly enriched in the oral, gut, and urinary tract samples. In addition, Gardnerella, Anaerococcus, and Prevotella were biomarkers of urinary tract microbiota; Abiotrophia and Lautropia were obviously enriched in the oral microbiota. The microbiota of tumor tissue correlated with other mucosal organs (except the gut), with a shift in the microflora between mucosal organs and tumors. CONCLUSIONS: Our study not only revealed differences in the composition and diversity of the vaginal and gut microflora between CC cases and controls, but also showed dysbiosis of the oral cavity and urethra in cervical cancer cases.


Sujet(s)
Microbiote , Tumeurs du col de l'utérus , Humains , Femelle , Tumeurs du col de l'utérus/microbiologie , Tumeurs du col de l'utérus/anatomopathologie , Adulte d'âge moyen , Microbiote/génétique , Adulte , Vagin/microbiologie , Vagin/anatomopathologie , Microbiome gastro-intestinal/génétique , ARN ribosomique 16S/génétique , Muqueuse/microbiologie , Muqueuse/anatomopathologie , Études cas-témoins , Bactéries/classification , Bactéries/isolement et purification , Bactéries/génétique , Voies urinaires/microbiologie , Voies urinaires/anatomopathologie , Sujet âgé , Biodiversité , Bouche/microbiologie
20.
BMC Plant Biol ; 24(1): 872, 2024 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-39294576

RÉSUMÉ

Nilgirianthus ciliatus, extensively exploited for its pharmacological properties, is now classified as vulnerable. In vitro micropropagation offers a sustainable approach for ecological conservation and rational utilization of this biodiversity resource. This study aimed to reduce endophytes during in vitro propagation and isolating antimicrobial-resistant endophytes from N. ciliatus by employing various concentrations and exposure times of Plant Preservative Mixture (PPM). Optimal results were observed when nodal explants treated with 0.3% PPM for 8 h, followed by inoculation in Murashige and Skoog (MS) medium supplemented with 3 mg/L 6-benzylaminopurine (BAP) and 0.3% PPM. This protocol achieved 82% shoot regeneration with minimal endophytic contamination, suggesting that the duration of explant exposure to PPM significantly influences endophyte reduction. Two antimicrobial-resistant endophytes were isolated and identified as Bacillus cereus and Acinetobacter pittii through 16S rDNA sequencing. These endophytes exhibited plant growth-promoting characteristics, including amylolytic, proteolytic, lipolytic activities, indole-3-acetic acid production, phosphate solubilization, and stress tolerance. In vivo application of these endophytes as bioinoculants to N. ciliatus not only improved growth parameters but also significantly increased the levels of pharmacologically important compounds, squalene, and stigmasterol, as confirmed by High-performance thin-layer chromatography (HPTLC). This study demonstrates that PPM is a promising alternative for sustainable micropropagation of N. ciliatus. Furthermore, it highlights the potential of antimicrobial-resistant endophytes as bioinoculants to improve growth and medicinal value, offering a sustainable solution for conservation and large-scale cultivation of this species.


Sujet(s)
Endophytes , Endophytes/physiologie , Régénération/effets des médicaments et des substances chimiques , Métabolisme secondaire/effets des médicaments et des substances chimiques , Anti-infectieux/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE