Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Int J Mol Sci ; 24(19)2023 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-37834245

RÉSUMÉ

Sarcopenia is a progressive muscle disease characterized by the loss of skeletal muscle mass, strength, function, and physical performance. Since the disease code was assigned, attention has been focused on natural products that can protect against muscle atrophy. Cibotium barometz (Cibotium Rhizome) has been used as an herbal medicine for the treatment of bone or joint diseases in Asian countries. However, no studies have identified the mechanism of action of Cibotium Rhizome on muscle atrophy related to sarcopenia at the site of myotubes. The aim of this study was to investigate the improvement effect of the ethanol extract of Cibotium Rhizome (ECR) on dexamethasone-induced muscle atrophy in an in vitro cell model, i.e., the C2C12 myotubes. High-performance liquid chromatography was performed to examine the phytochemicals in ECR. Seven peaks in the ECR were identified, corresponding to the following compounds: protocatechuic acid, (+)-catechin hydrate, p-coumaric acid, ellagic acid, chlorogenic acid, caffeic acid, and ferulic acid. In atrophy-like conditions induced by 100 µM dexamethasone for 24 h in C2C12, ECR increased the expression of the myosin heavy chain, p-Akt, the p-mammalian target of rapamycin (mTOR), p-p70S6K, and repressed the expression of regulated in development and DNA damage responses 1 (REDD1), kruppel-like factor 15 (KLF 15), muscle atrophy F-box, and muscle-specific RING finger protein-1 in C2C12. In addition, ECR alleviated dexamethasone-induced muscle atrophy by repressing REDD1 and KLF15 transcription in C2C12 myotubes, indicating the need for further studies to provide a scientific basis for the development of useful therapeutic agents using ECR to alleviate the effects of skeletal muscle atrophy or sarcopenia.


Sujet(s)
Sarcopénie , Tracheobionta , Rhizome/métabolisme , Sarcopénie/métabolisme , Fibres musculaires squelettiques/métabolisme , Amyotrophie/induit chimiquement , Amyotrophie/traitement médicamenteux , Amyotrophie/métabolisme , Extraits de plantes/composition chimique , Dexaméthasone/usage thérapeutique , Muscles squelettiques/métabolisme
2.
J Mass Spectrom Adv Clin Lab ; 26: 23-27, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-36388060

RÉSUMÉ

Background: Atovaquone has traditionally been used as an antiparasitic and antifungal agent, but recent studies have shown its potential as an anticancer agent. The high variability in atovaquone bioavailability highlights the need for therapeutic drug monitoring, especially in pediatric patients. The goal of our study was to develop and validate the performance of an assay to quantify atovaquone plasma concentrations collected from pediatric cancer patients using LC-MS/MS. Methods: Atovaquone was extracted from a 10 µL volume of K2-EDTA human plasma using a solution consisting of ACN: EtOH: DMF (8:1:1 v:v:v), separated using reverse-phase chromatography, and detected using a SCIEX 5500 QTrap MS system. LC-MS/MS assay performance was evaluated for precision, accuracy, carryover, sensitivity, specificity, linearity, and interferences. Results: Atovaquone and its deuterated internal standard were analyzed using a gradient chromatographic method that had an overall cycle-time of 7.4 min per injection, and retention times of 4.3 min. Atovaquone was measured over a dynamic concentration range of 0.63 - 80 µM with a deviation within ≤ ± 5.1 % of the target value. Intra- and inter-assay precision were ≤ 2.7 % and ≤ 8.4 %, respectively. Dilutional, carryover, and interference studies were also within acceptable limits. Conclusions: Our studies have shown that our LC-MS/MS-based method is both reliable and robust for the quantification of plasma atovaquone concentrations and can be used to determine the effective dose of atovaquone for pediatric patients treated for AML.

3.
FASEB J ; 35(9): e21788, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34425031

RÉSUMÉ

Hypoxia increases fetal hepatic insulin-like growth factor binding protein-1 (IGFBP-1) phosphorylation mediated by mechanistic target of rapamycin (mTOR) inhibition. Whether maternal nutrient restriction (MNR) causes fetal hypoxia remains unclear. We used fetal liver from a baboon (Papio sp.) model of intrauterine growth restriction due to MNR (70% global diet of Control) and liver hepatocellular carcinoma (HepG2) cells as a model for human fetal hepatocytes and tested the hypothesis that mTOR-mediated IGFBP-1 hyperphosphorylation in response to hypoxia requires hypoxia-inducible factor-1α (HIF-1α) and regulated in development and DNA-damage responses-1 (REDD-1) signaling. Western blotting (n = 6) and immunohistochemistry (n = 3) using fetal liver indicated greater expression of HIF-1α, REDD-1 as well as erythropoietin and its receptor, and vascular endothelial growth factor at GD120 (GD185 term) in MNR versus Control. Moreover, treatment of HepG2 cells with hypoxia (1% pO2 ) (n = 3) induced REDD-1, inhibited mTOR complex-1 (mTORC1) activity and increased IGFBP-1 secretion/phosphorylation (Ser101/Ser119/Ser169). HIF-1α inhibition by echinomycin or small interfering RNA silencing prevented the hypoxia-mediated inhibition of mTORC1 and induction of IGFBP-1 secretion/phosphorylation. dimethyloxaloylglycine (DMOG) induced HIF-1α and also REDD-1 expression, inhibited mTORC1 and increased IGFBP-1 secretion/phosphorylation. Induction of HIF-1α (DMOG) and REDD-1 by Compound 3 inhibited mTORC1, increased IGFBP-1 secretion/ phosphorylation and protein kinase PKCα expression. Together, our data demonstrate that HIF-1α induction, increased REDD-1 expression and mTORC1 inhibition represent the mechanistic link between hypoxia and increased IGFBP-1 secretion/phosphorylation. We propose that maternal undernutrition limits fetal oxygen delivery, as demonstrated by increased fetal liver expression of hypoxia-responsive proteins in baboon MNR. These findings have important implications for our understanding of the pathophysiology of restricted fetal growth.


Sujet(s)
Techniques de culture cellulaire , Modèles animaux de maladie humaine , Retard de croissance intra-utérin/métabolisme , Foetus/métabolisme , Hypoxie/métabolisme , Protéine-1 de liaison aux IGF/métabolisme , Animaux , Érythropoïétine/métabolisme , Poids du foetus , Foetus/composition chimique , Cellules HepG2 , Humains , Sous-unité alpha du facteur-1 induit par l'hypoxie/antagonistes et inhibiteurs , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Techniques in vitro , Protéine-1 de liaison aux IGF/composition chimique , Complexe-1 cible mécanistique de la rapamycine/antagonistes et inhibiteurs , Microscopie de fluorescence , Taille d'organe , Papio , Phosphorylation , Protein kinase C-alpha/métabolisme , Récepteur érythropoïétine/métabolisme , Facteurs de transcription/métabolisme , Facteur de croissance endothéliale vasculaire de type A/métabolisme
4.
Oncol Lett ; 19(1): 431-441, 2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-31897156

RÉSUMÉ

The association between the hypoxia-inducible gene termed regulated in development and DNA damage responses 1 (REDD1) and microvessel density (MVD) in human oral cancer has rarely been reported. The present study aimed to explore REDD1 expression in oral squamous cell carcinoma (OSCC), its clinical prognostic significance and its correlation with angiogenesis. REDD1 expression in 23 pairs of fresh-frozen OSCC and matched peritumoral mucosal tissues was quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Furthermore, 74 formalin-fixed paraffin-embedded OSCC tissues were collected to detect REDD1 expression and CD34-positive MVD by immunohistochemistry (IHC). The association between REDD1 expression and MVD, patients' clinicopathological characteristics and cancer-associated survival rate was also evaluated using the log-rank (Mantel-Cox) test. The results from RT-qPCR and western blotting demonstrated that REDD1 expression was significantly higher in OSCC tissues compared with peritumoral mucosal tissues (P<0.05). In addition, the results from IHC revealed that REDD1 expression was higher in OSCC tissues compared with peritumoral tissues. Furthermore, REDD1 expression was associated with advanced clinical stage, poorer tumor differentiation, lymphatic metastasis and tumor recurrence (P=0.000, P=0.003, P=0.006 and P<0.001, respectively). Additionally, REDD1 overexpression was positively correlated with MVD (r=0.7316; P<0.001). The results from Kaplan-Meier survival analysis demonstrated a significantly reduced disease-free survival and overall survival in patients with OSCC and high REDD1 expression (P<0.001). REDD1 may therefore serve as a novel prognostic biomarker, a key regulatory checkpoint that could coordinate angiogenesis and a new therapeutic target for patients with OSCC.

5.
J Med Biochem ; 37(1): 31-38, 2018 Jan.
Article de Anglais | MEDLINE | ID: mdl-30581339

RÉSUMÉ

BACKGROUND: Sporadic clear-cell renal cell carcinoma (ccRCC) is associated with mutations in the VHL gene, upregulated mammalian target of rapamycin (mTOR) activity and glycolytic metabolism. Here, we analyze the effect of VHL mutational status on the expression level of mTOR, eIF4E-BP1, AMPK, REDD1, and PDK3 proteins. METHODS: Total proteins were isolated from 21 tumorous samples with biallelic inactivation, 10 with monoallelic inactivation and 6 tumors with a wild-type VHL (wtVHL) gene obtained from patients who underwent total nephrectomy. The expressions of target proteins were assessed using Western blot. RESULTS: Expressions of mTOR, eIF4EBP1 and AMPK were VHL independent. Tumors with monoallelic inactivation of VHL underexpressed REDD1 in comparison to wtVHL tumors (P = 0.042), tumors with biallelic VHL inactivation (P < 0.005) and control tissue (P = 0.004). Additionally, REDD1 expression was higher in tumors with VHL biallelic inactivation than in control tissue (P = 0.008). Only in wt tumor samples PDK3 was overexpressed in comparison to tumors with biallelic inactivation of VHL gene (P = 0.012) and controls (P = 0.016). In wtVHL ccRCC, multivariate linear regression analysis revealed that 97.4% of variability in PDK3 expression can be explained by variations in AMPK amount. CONCLUSION: Expressions of mTOR, eIF4EBP1 and AMPK were VHL independent. We have shown for the first time VHL dependent expression of PDK3 and we provide additional evidence that VHL mutational status affects REDD1 expression in sporadic ccRCC.

6.
J Allergy Clin Immunol ; 140(5): 1378-1387.e13, 2017 Nov.
Article de Anglais | MEDLINE | ID: mdl-28342915

RÉSUMÉ

BACKGROUND: Familial Mediterranean fever (FMF) is an IL-1ß-dependent autoinflammatory disease caused by mutations of Mediterranean fever (MEFV) encoding pyrin and characterized by inflammatory attacks induced by physical or psychological stress. OBJECTIVE: We investigated the underlying mechanism that links stress-induced inflammatory attacks with neutrophil activation and release of IL-1ß-bearing neutrophil extracellular traps (NETs) in patients with FMF. METHODS: RNA sequencing was performed in peripheral neutrophils from 3 patients with FMF isolated both during attacks and remission, 8 patients in remission, and 8 healthy subjects. NET formation and proteins were analyzed by using confocal immunofluorescence microscopy, immunoblotting, myeloperoxidase-DNA complex ELISA, and flow cytometry. Samples from patients with Still's disease and bacterial infections were used also. RESULTS: The stress-related protein regulated in development and DNA damage responses 1 (REDD1) is significantly overexpressed during FMF attacks. Neutrophils from patients with FMF during remission are resistant to autophagy-mediated NET release, which can be overcome through REDD1 induction. Stress-related mediators (eg, epinephrine) decrease this threshold, leading to autophagy-driven NET release, whereas the synchronous inflammatory environment of FMF attack leads to intracellular production of IL-1ß and its release through NETs. REDD1 in autolysosomes colocalizes with pyrin and nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing 3. Mutated pyrin prohibits this colocalization, leading to higher IL-1ß levels on NETs. CONCLUSIONS: This study provides a link between stress and initiation of inflammatory attacks in patients with FMF. REDD1 emerges as a regulator of neutrophil function upstream to pyrin, is involved in NET release and regulation of IL-1ß, and might constitute an important piece in the IL-1ß-mediated inflammation puzzle.


Sujet(s)
Fièvre méditerranéenne familiale/immunologie , Inflammation/immunologie , Granulocytes neutrophiles/immunologie , Stress psychologique/immunologie , Facteurs de transcription/métabolisme , Adulte , Autophagie , Évolution de la maladie , Pièges extracellulaires/métabolisme , Fièvre méditerranéenne familiale/génétique , Femelle , Humains , Interleukine-1 bêta/métabolisme , Mâle , Pyrine/génétique , Rémission spontanée , Stress physiologique/immunologie , Jeune adulte
7.
Int J Biochem Cell Biol ; 45(10): 2245-56, 2013 Oct.
Article de Anglais | MEDLINE | ID: mdl-23827718

RÉSUMÉ

Skeletal muscle wasting contributes to impaired exercise capacity, reduced health-related quality of life and is an independent determinant of mortality in chronic obstructive pulmonary disease. An imbalance between protein synthesis and myogenesis on the one hand, and muscle proteolysis and apoptosis on the other hand, has been proposed to underlie muscle wasting in this disease. In this review, the current understanding of the state and regulation of these processes governing muscle mass in this condition is presented. In addition, a conceptual mode of action of disease-related determinants of muscle wasting including disuse, hypoxemia, malnutrition, inflammation and glucocorticoids is provided by overlaying the available associative clinical data with causal evidence, mostly derived from experimental models. Significant progression has been made in understanding and managing muscle wasting in chronic obstructive pulmonary disease. Further examination of the time course of muscle wasting and specific disease phenotypes, as well as the application of systems biology and omics approaches in future research will allow the development of tailored strategies to prevent or reverse muscle wasting in chronic obstructive pulmonary disease. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Sujet(s)
Muscles squelettiques/anatomopathologie , Amyotrophie/étiologie , Broncho-pneumopathie chronique obstructive/complications , Animaux , Humains , Muscles squelettiques/métabolisme , Amyotrophie/métabolisme , Amyotrophie/anatomopathologie , Biosynthèse des protéines , Broncho-pneumopathie chronique obstructive/métabolisme , Broncho-pneumopathie chronique obstructive/anatomopathologie , Transduction du signal
8.
Int J Biochem Cell Biol ; 45(10): 2163-72, 2013 Oct.
Article de Anglais | MEDLINE | ID: mdl-23806868

RÉSUMÉ

Many pathological states characterized by muscle atrophy (e.g., sepsis, cachexia, starvation, metabolic acidosis and severe insulinopenia) are associated with an increase in circulating glucocorticoids (GC) levels, suggesting that GC could trigger the muscle atrophy observed in these conditions. GC-induced muscle atrophy is characterized by fast-twitch, glycolytic muscles atrophy illustrated by decreased fiber cross-sectional area and reduced myofibrillar protein content. GC-induced muscle atrophy results from increased protein breakdown and decreased protein synthesis. Increased muscle proteolysis, in particular through the activation of the ubiquitin proteasome and the lysosomal systems, is considered to play a major role in the catabolic action of GC. The stimulation by GC of these two proteolytic systems is mediated through the increased expression of several Atrogenes ("genes involved in atrophy"), such as FOXO, Atrogin-1, and MuRF-1. The inhibitory effect of GC on muscle protein synthesis is thought to result mainly from the inhibition of the mTOR/S6 kinase 1 pathway. These changes in muscle protein turnover could be explained by changes in the muscle production of two growth factors, namely Insulin-like Growth Factor (IGF)-I, a muscle anabolic growth factor and Myostatin, a muscle catabolic growth factor. This review will discuss the recent progress made in the understanding of the mechanisms involved in GC-induced muscle atrophy and consider the implications of these advancements in the development of new therapeutic approaches for treating GC-induced myopathy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Sujet(s)
Glucocorticoïdes/effets indésirables , Glucocorticoïdes/métabolisme , Amyotrophie/induit chimiquement , Amyotrophie/métabolisme , Animaux , Glucocorticoïdes/toxicité , Humains , Amyotrophie/anatomopathologie , Biosynthèse des protéines , Transduction du signal
9.
J Control Release ; 172(2): 484-94, 2013 Dec 10.
Article de Anglais | MEDLINE | ID: mdl-23742881

RÉSUMÉ

Hypoxia is a hallmark of various ischemic diseases such as ischemic heart disease, ischemic limb, ischemic stroke, and solid tumors. Gene therapies for these diseases have been developed with various therapeutic genes including growth factors, anti-apoptotic genes, and toxins. However, non-specific expression of these therapeutic genes may induce dangerous side effects in the normal tissues. To avoid the side effects, gene expression should be tightly regulated in an oxygen concentration dependent manner. The hypoxia inducible promoters and enhancers have been evaluated as a transcriptional regulation tool for hypoxia inducible gene therapy. The hypoxia inducible UTRs were also used in gene therapy for spinal cord injury as a translational regulation strategy. In addition to transcriptional and translational regulations, post-translational regulation strategies have been developed using the HIF-1α ODD domain. Hypoxia inducible transcriptional, translational, and post-translational regulations are useful for tissue specific gene therapy of ischemic diseases. In this review, hypoxia inducible gene expression systems are discussed and their applications are introduced.


Sujet(s)
Régulation de l'expression des gènes , Thérapie génétique/méthodes , Hypoxie/génétique , Hypoxie/thérapie , Animaux , Humains , Hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Régions promotrices (génétique) , Régions non traduites
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE