Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 139
Filtrer
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-39046457

RÉSUMÉ

Short association fibres (SAF) are the most abundant fibre pathways in the human white matter. Until recently, SAF could not be mapped comprehensively in vivo because diffusion weighted magnetic resonance imaging with sufficiently high spatial resolution needed to map these thin and short pathways was not possible. Recent developments in acquisition hardware and sequences allowed us to create a dedicated in vivo method for mapping the SAF based on sub-millimetre spatial resolution diffusion weighted tractography, which we validated in the human primary (V1) and secondary (V2) visual cortex against the expected SAF retinotopic order. Here, we extended our original study to assess the feasibility of the method to map SAF in higher cortical areas by including SAF up to V3. Our results reproduced the expected retinotopic order of SAF in the V2-V3 and V1-V3 stream, demonstrating greater robustness to the shorter V1-V2 and V2-V3 than the longer V1-V3 connections. The demonstrated ability of the method to map higher-order SAF connectivity patterns in vivo is an important step towards its application across the brain.


Sujet(s)
Cartographie cérébrale , Imagerie par tenseur de diffusion , Cortex visuel , Voies optiques , Humains , Cortex visuel/physiologie , Cortex visuel/imagerie diagnostique , Mâle , Femelle , Adulte , Imagerie par tenseur de diffusion/méthodes , Cartographie cérébrale/méthodes , Voies optiques/physiologie , Voies optiques/imagerie diagnostique , Substance blanche/imagerie diagnostique , Substance blanche/physiologie , Jeune adulte , Traitement d'image par ordinateur/méthodes
2.
Neuroimage ; 297: 120760, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39069225

RÉSUMÉ

Identifying and segmenting objects in an image is generally achieved effortlessly and is facilitated by the presence of symmetry: a principle of perceptual organisation used to interpret sensory inputs from the retina into meaningful representations. However, while imaging studies show evidence of symmetry selective responses across extrastriate visual areas in the human brain, whether symmetry is processed automatically is still under debate. We used functional Magnetic Resonance Imaging (fMRI) to study the response to and representation of two types of symmetry: reflection and rotation. Dot pattern stimuli were presented to 15 human participants (10 female) under stimulus-relevant (symmetry) and stimulus-irrelevant (luminance) task conditions. Our results show that symmetry-selective responses emerge from area V3 and extend throughout extrastriate visual areas. This response is largely maintained when participants engage in the stimulus irrelevant task, suggesting an automaticity to processing visual symmetry. Our multi-voxel pattern analysis (MVPA) results extend these findings by suggesting that not only spatial organisation of responses to symmetrical patterns can be distinguished from that of non-symmetrical (random) patterns, but also that representation of reflection and rotation symmetry can be differentiated in extrastriate and object-selective visual areas. Moreover, task demands did not affect the neural representation of the symmetry information. Intriguingly, our MVPA results show an interesting dissociation: representation of luminance (stimulus irrelevant feature) is maintained in visual cortex only when task relevant, while information of the spatial configuration of the stimuli is available across task conditions. This speaks in favour of the automaticity for processing perceptual organisation: extrastriate visual areas compute and represent global, spatial properties irrespective of the task at hand.


Sujet(s)
Cartographie cérébrale , Imagerie par résonance magnétique , Reconnaissance visuelle des formes , Cortex visuel , Humains , Femelle , Mâle , Adulte , Jeune adulte , Reconnaissance visuelle des formes/physiologie , Cortex visuel/physiologie , Cortex visuel/imagerie diagnostique , Cartographie cérébrale/méthodes , Rotation , Stimulation lumineuse/méthodes , Encéphale/physiologie , Encéphale/imagerie diagnostique
3.
bioRxiv ; 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38915587

RÉSUMÉ

The population receptive field method, which measures the region in visual space that elicits a BOLD signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that population receptive field (pRF) estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a 'log-bar' stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus. The log-bar stimulus was better able to identify pRFs near the foveal representation, and pRFs were smaller in size, consistent with simulation estimates of receptive field sizes in the fovea.

4.
J Neurosci ; 44(28)2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38769009

RÉSUMÉ

While the exertion of mental effort improves performance on cognitive tasks, the neural mechanisms by which motivational factors impact cognition remain unknown. Here, we used fMRI to test how changes in cognitive effort, induced by changes in task difficulty, impact neural representations of working memory (WM). Participants (both sexes) were precued whether WM difficulty would be hard or easy. We hypothesized that hard trials demanded more effort as a later decision required finer mnemonic precision. Behaviorally, pupil size was larger and response times were slower on hard compared with easy trials suggesting our manipulation of effort succeeded. Neurally, we observed robust persistent activity during delay periods in the prefrontal cortex (PFC), especially during hard trials. Yet, details of the memoranda could not be decoded from patterns in prefrontal activity. In the patterns of activity in the visual cortex, however, we found strong decoding of memorized targets, where accuracy was higher on hard trials. To potentially link these across-region effects, we hypothesized that effort, carried by persistent activity in the PFC, impacts the quality of WM representations encoded in the visual cortex. Indeed, we found that the amplitude of delay period activity in the frontal cortex predicted decoded accuracy in the visual cortex on a trial-wise basis. These results indicate that effort-related feedback signals sculpt population activity in the visual cortex, improving mnemonic fidelity.


Sujet(s)
Cognition , Imagerie par résonance magnétique , Mémoire à court terme , Cortex préfrontal , Humains , Mémoire à court terme/physiologie , Mâle , Femelle , Jeune adulte , Adulte , Cortex préfrontal/physiologie , Cortex préfrontal/imagerie diagnostique , Cognition/physiologie , Temps de réaction/physiologie , Cartographie cérébrale , Cortex visuel/physiologie , Cortex visuel/imagerie diagnostique , Stimulation lumineuse/méthodes
5.
bioRxiv ; 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38659957

RÉSUMÉ

Perception, working memory, and long-term memory each evoke neural responses in visual cortex, suggesting that memory uses encoding mechanisms shared with perception. While previous research has largely focused on how perception and memory are similar, we hypothesized that responses in visual cortex would differ depending on the origins of the inputs. Using fMRI, we quantified spatial tuning in visual cortex while participants (both sexes) viewed, maintained in working memory, or retrieved from long-term memory a peripheral target. In each of these conditions, BOLD responses were spatially tuned and were aligned with the target's polar angle in all measured visual field maps including V1. As expected given the increasing sizes of receptive fields, polar angle tuning during perception increased in width systematically up the visual hierarchy from V1 to V2, V3, hV4, and beyond. In stark contrast, the widths of tuned responses were broad across the visual hierarchy during working memory and long-term memory, matched to the widths in perception in later visual field maps but much broader in V1. This pattern is consistent with the idea that mnemonic responses in V1 stem from top-down sources. Moreover, these tuned responses when biased (clockwise or counterclockwise of target) predicted matched biases in memory, suggesting that the readout of maintained and reinstated mnemonic responses influences memory guided behavior. We conclude that feedback constrains spatial tuning during memory, where earlier visual maps inherit broader tuning from later maps thereby impacting the precision of memory.

6.
Curr Biol ; 34(6): 1222-1233.e7, 2024 03 25.
Article de Anglais | MEDLINE | ID: mdl-38417446

RÉSUMÉ

Neurons in the mouse superior colliculus ("colliculus") are arranged in ordered spatial maps. While orientation-selective (OS) neurons form a concentric map aligned to the center of vision, direction-selective (DS) neurons are arranged in patches with changing preferences across the visual field. It remains unclear whether these maps are a consequence of feedforward input from the retina or local computations in the colliculus. To determine whether these maps originate in the retina, we mapped the local and global distribution of OS and DS retinal ganglion cell axon boutons using in vivo two-photon calcium imaging. We found that OS boutons formed patches that matched the distribution of OS neurons within the colliculus. DS boutons displayed fewer regional specializations, better reflecting the organization of DS neurons in the retina. Both eyes convey similar orientation but different DS inputs to the colliculus, as shown in recordings from retinal explants. These data demonstrate that orientation and direction maps within the colliculus are independent, where orientation maps are likely inherited from the retina, but direction maps require additional computations.


Sujet(s)
Rétine , Colliculus supérieurs , Souris , Animaux , Colliculus supérieurs/physiologie , Rétine/physiologie , Cellules ganglionnaires rétiniennes/physiologie , Champs visuels , Axones , Voies optiques/physiologie
7.
bioRxiv ; 2023 Dec 08.
Article de Anglais | MEDLINE | ID: mdl-38106094

RÉSUMÉ

The neural mechanisms by which motivational factors influence cognition remain unknown. Using fMRI, we tested how cognitive effort impacts working memory (WM). Participants were precued whether WM difficulty would be hard or easy. Hard trials demanded more effort as a later decision required finer mnemonic precision. Behaviorally, pupil size was larger and response times were slower on hard trials suggesting our manipulation of effort succeeded. Neurally, we observed robust persistent activity in prefrontal cortex, especially during hard trials. We found strong decoding of location in visual cortex, where accuracy was higher on hard trials. Connecting these across-region effects, we found that the amplitude of delay period activity in frontal cortex predicted decoded accuracy in visual cortex on a trial-wise basis. We conclude that the gain of persistent activity in frontal cortex may be the source of effort-related feedback signals that improve the quality of WM representations stored in visual cortex.

8.
Curr Biol ; 33(22): 4950-4959.e4, 2023 11 20.
Article de Anglais | MEDLINE | ID: mdl-37918397

RÉSUMÉ

Early visual areas are retinotopically organized in human and non-human primates. Population receptive field (pRF) size increases with eccentricity and from lower- to higher-level visual areas. Furthermore, the cortical magnification factor (CMF), a measure of how much cortical space is devoted to each degree of visual angle, is typically larger for foveal as opposed to peripheral regions of the visual field. Whether this fine-scale organization within and across visual areas depends on early visual experience has yet been unknown. Here, we employed 7T functional magnetic resonance imaging pRF mapping to assess the retinotopic organization of early visual regions (i.e., V1, V2, and V3) in eight sight recovery individuals with a history of congenital blindness until a maximum of 4 years of age. Compared with sighted controls, foveal pRF sizes in these individuals were larger, and pRF sizes did not show the typical increase with eccentricity and down the visual cortical processing stream (V1-V2-V3). Cortical magnification was overall diminished and decreased less from foveal to parafoveal visual field locations. Furthermore, cortical magnification correlated with visual acuity in sight recovery individuals. The results of this study suggest that early visual experience is essential for refining a presumably innate prototypical retinotopic organization in humans within and across visual areas, which seems to be crucial for acquiring full visual capabilities.


Sujet(s)
Cartographie cérébrale , Cortex visuel , Animaux , Humains , Cartographie cérébrale/méthodes , Champs visuels , Perception visuelle , Vision , Imagerie par résonance magnétique/méthodes , Voies optiques
9.
Elife ; 122023 08 15.
Article de Anglais | MEDLINE | ID: mdl-37580963

RÉSUMÉ

Visual field maps in human early extrastriate areas (V2 and V3) are traditionally thought to form mirror-image representations which surround the primary visual cortex (V1). According to this scheme, V2 and V3 form nearly symmetrical halves with respect to the calcarine sulcus, with the dorsal halves representing lower contralateral quadrants, and the ventral halves representing upper contralateral quadrants. This arrangement is considered to be consistent across individuals, and thus predictable with reasonable accuracy using templates. However, data that deviate from this expected pattern have been observed, but mainly treated as artifactual. Here, we systematically investigate individual variability in the visual field maps of human early visual cortex using the 7T Human Connectome Project (HCP) retinotopy dataset. Our results demonstrate substantial and principled inter-individual variability. Visual field representation in the dorsal portions of V2 and V3 was more variable than in their ventral counterparts, including substantial departures from the expected mirror-symmetrical patterns. In addition, left hemisphere retinotopic maps were more variable than those in the right hemisphere. Surprisingly, only one-third of individuals had maps that conformed to the expected pattern in the left hemisphere. Visual field sign analysis further revealed that in many individuals the area conventionally identified as dorsal V3 shows a discontinuity in the mirror-image representation of the retina, associated with a Y-shaped lower vertical representation. Our findings challenge the current view that inter-individual variability in early extrastriate cortex is negligible, and that the dorsal portions of V2 and V3 are roughly mirror images of their ventral counterparts.


Sujet(s)
Cortex visuel , Champs visuels , Humains , Voies optiques , Cartographie cérébrale , Lobe occipital
10.
Hum Brain Mapp ; 44(16): 5221-5237, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37555758

RÉSUMÉ

Human visual cortex contains topographic visual field maps whose organization can be revealed with retinotopic mapping. Unfortunately, constraints posed by standard mapping hinder its use in patients, atypical subject groups, and individuals at either end of the lifespan. This severely limits the conclusions we can draw about visual processing in such individuals. Here, we present a novel data-driven method to estimate connective fields, resulting in fine-grained maps of the functional connectivity between brain areas. We find that inhibitory connectivity fields accompany, and often surround facilitatory fields. The visual field extent of these inhibitory subfields falls off with cortical magnification. We further show that our method is robust to large eye movements and myopic defocus. Importantly, freed from the controlled stimulus conditions in standard mapping experiments, using entertaining stimuli and unconstrained eye movements our approach can generate retinotopic maps, including the periphery visual field hitherto only possible to map with special stimulus displays. Generally, our results show that the connective field method can gain knowledge about retinotopic architecture of visual cortex in patients and participants where this is at best difficult and confounded, if not impossible, with current methods.


Sujet(s)
Mouvements oculaires , Cortex visuel , Humains , Rétine/imagerie diagnostique , Cartographie cérébrale/méthodes , Cortex visuel/imagerie diagnostique , Champs visuels , Voies optiques , Imagerie par résonance magnétique/méthodes
11.
J Neural Eng ; 20(4)2023 08 10.
Article de Anglais | MEDLINE | ID: mdl-37531948

RÉSUMÉ

Objective.We developed a realistic simulation paradigm for cortical prosthetic vision and investigated whether we can improve visual performance using a novel clustering algorithm.Approach.Cortical visual prostheses have been developed to restore sight by stimulating the visual cortex. To investigate the visual experience, previous studies have used uniform phosphene maps, which may not accurately capture generated phosphene map distributions of implant recipients. The current simulation paradigm was based on the Human Connectome Project retinotopy dataset and the placement of implants on the cortices from magnetic resonance imaging scans. Five unique retinotopic maps were derived using this method. To improve performance on these retinotopic maps, we enabled head scanning and a density-based clustering algorithm was then used to relocate centroids of visual stimuli. The impact of these improvements on visual detection performance was tested. Using spatially evenly distributed maps as a control, we recruited ten subjects and evaluated their performance across five sessions on the Berkeley Rudimentary Visual Acuity test and the object recognition task.Main results.Performance on control maps is significantly better than on retinotopic maps in both tasks. Both head scanning and the clustering algorithm showed the potential of improving visual ability across multiple sessions in the object recognition task.Significance.The current paradigm is the first that simulates the experience of cortical prosthetic vision based on brain scans and implant placement, which captures the spatial distribution of phosphenes more realistically. Utilisation of evenly distributed maps may overestimate the performance that visual prosthetics can restore. This simulation paradigm could be used in clinical practice when making plans for where best to implant cortical visual prostheses.


Sujet(s)
Cortex visuel , Prothèse visuelle , Humains , Phosphènes , Perception visuelle , Imagerie par résonance magnétique
12.
Curr Biol ; 33(13): 2784-2793.e3, 2023 07 10.
Article de Anglais | MEDLINE | ID: mdl-37343556

RÉSUMÉ

Cephalopods are highly visual animals with camera-type eyes, large brains, and a rich repertoire of visually guided behaviors. However, the cephalopod brain evolved independently from those of other highly visual species, such as vertebrates; therefore, the neural circuits that process sensory information are profoundly different. It is largely unknown how their powerful but unique visual system functions, as there have been no direct neural measurements of visual responses in the cephalopod brain. In this study, we used two-photon calcium imaging to record visually evoked responses in the primary visual processing center of the octopus central brain, the optic lobe, to determine how basic features of the visual scene are represented and organized. We found spatially localized receptive fields for light (ON) and dark (OFF) stimuli, which were retinotopically organized across the optic lobe, demonstrating a hallmark of visual system organization shared across many species. An examination of these responses revealed transformations of the visual representation across the layers of the optic lobe, including the emergence of the OFF pathway and increased size selectivity. We also identified asymmetries in the spatial processing of ON and OFF stimuli, which suggest unique circuit mechanisms for form processing that may have evolved to suit the specific demands of processing an underwater visual scene. This study provides insight into the neural processing and functional organization of the octopus visual system, highlighting both shared and unique aspects, and lays a foundation for future studies of the neural circuits that mediate visual processing and behavior in cephalopods.


Sujet(s)
Octopodiformes , Animaux , Oeil , Perception visuelle , Système nerveux , Voies optiques/physiologie
13.
Bioengineering (Basel) ; 10(5)2023 May 05.
Article de Anglais | MEDLINE | ID: mdl-37237623

RÉSUMÉ

A brain-computer interface (BCI) allows users to control external devices through brain activity. Portable neuroimaging techniques, such as near-infrared (NIR) imaging, are suitable for this goal. NIR imaging has been used to measure rapid changes in brain optical properties associated with neuronal activation, namely fast optical signals (FOS) with good spatiotemporal resolution. However, FOS have a low signal-to-noise ratio, limiting their BCI application. Here FOS were acquired with a frequency-domain optical system from the visual cortex during visual stimulation consisting of a rotating checkerboard wedge, flickering at 5 Hz. We used measures of photon count (Direct Current, DC light intensity) and time of flight (phase) at two NIR wavelengths (690 nm and 830 nm) combined with a machine learning approach for fast estimation of visual-field quadrant stimulation. The input features of a cross-validated support vector machine classifier were computed as the average modulus of the wavelet coherence between each channel and the average response among all channels in 512 ms time windows. An above chance performance was obtained when differentiating visual stimulation quadrants (left vs. right or top vs. bottom) with the best classification accuracy of ~63% (information transfer rate of ~6 bits/min) when classifying the superior and inferior stimulation quadrants using DC at 830 nm. The method is the first attempt to provide generalizable retinotopy classification relying on FOS, paving the way for the use of FOS in real-time BCI.

14.
Front Behav Neurosci ; 17: 1094226, 2023.
Article de Anglais | MEDLINE | ID: mdl-37234404

RÉSUMÉ

There is a growing appreciation for the role of the thalamus in high-level cognition. Motivated by findings that internal cognitive state drives activity in feedback layers of primary visual cortex (V1) that target the lateral geniculate nucleus (LGN), we investigated the role of LGN in working memory (WM). Specifically, we leveraged model-based neuroimaging approaches to test the hypothesis that human LGN encodes information about spatial locations temporarily encoded in WM. First, we localized and derived a detailed topographic organization in LGN that accords well with previous findings in humans and non-human primates. Next, we used models constructed on the spatial preferences of LGN populations in order to reconstruct spatial locations stored in WM as subjects performed modified memory-guided saccade tasks. We found that population LGN activity faithfully encoded the spatial locations held in memory in all subjects. Importantly, our tasks and models allowed us to dissociate the locations of retinal stimulation and the motor metrics of memory-guided saccades from the maintained spatial locations, thus confirming that human LGN represents true WM information. These findings add LGN to the growing list of subcortical regions involved in WM, and suggest a key pathway by which memories may influence incoming processing at the earliest levels of the visual hierarchy.

15.
Neuroimage ; 269: 119916, 2023 04 01.
Article de Anglais | MEDLINE | ID: mdl-36736638

RÉSUMÉ

There is growing evidence that blood-oxygen-level-dependent (BOLD) activity in the white matter (WM) can be detected by functional magnetic resonance imaging (fMRI). However, the functional relevance and significance of WM BOLD signals remain controversial. Here we investigated whether 7T BOLD fMRI can reveal fine-scale functional organizations of a WM bundle. Population receptive field (pRF) analyses of the 7T retinotopy dataset from the Human Connectome Project revealed clear contralateral retinotopic organizations of two visual WM bundles: the optic radiation (OR) and the vertical occipital fasciculus (VOF). The retinotopic maps of OR are highly consistent with post-mortem dissections and diffusion tractographies, while the VOF maps are compatible with the dorsal and ventral visual areas connected by the WM. Similar to the grey matter (GM) visual areas, both WM bundles show over-representations of the central visual field and increasing pRF size with eccentricity. Hemodynamic response functions of visual WM were slower and wider compared with those of GM areas. These findings clearly demonstrate that WM BOLD at 7 Tesla is closely coupled with neural activity related to axons, encoding highly specific information that can be used to characterize fine-scale functional organizations of a WM bundle.


Sujet(s)
Substance blanche , Humains , Substance blanche/physiologie , Champs visuels , Imagerie par résonance magnétique , Imagerie par tenseur de diffusion/méthodes , Substance grise
16.
Front Comput Neurosci ; 17: 1232005, 2023.
Article de Anglais | MEDLINE | ID: mdl-38164408

RÉSUMÉ

Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.

17.
Neuroimage ; 264: 119723, 2022 12 01.
Article de Anglais | MEDLINE | ID: mdl-36328274

RÉSUMÉ

fMRI is an indispensable tool for neuroscience investigation, but this technique is limited by multiple sources of physiological and measurement noise. These noise sources are particularly problematic for analysis techniques that require high signal-to-noise ratio for stable model fitting, such as voxel-wise modeling. Multi-echo data acquisition in combination with echo-time dependent ICA denoising (ME-ICA) represents one promising strategy to mitigate physiological and hardware-related noise sources as well as motion-related artifacts. However, most studies employing ME-ICA to date are resting-state fMRI studies, and therefore we have a limited understanding of the impact of ME-ICA on complex task or model-based fMRI paradigms. Here, we addressed this knowledge gap by comparing data quality and model fitting performance of data acquired during a visual population receptive field (pRF) mapping (N = 13 participants) experiment after applying one of three preprocessing procedures: ME-ICA, optimally combined multi-echo data without ICA-denoising, and typical single echo processing. As expected, multi-echo fMRI improved temporal signal-to-noise compared to single echo fMRI, with ME-ICA amplifying the improvement compared to optimal combination alone. However, unexpectedly, this boost in temporal signal-to-noise did not directly translate to improved model fitting performance: compared to single echo acquisition, model fitting was only improved after ICA-denoising. Specifically, compared to single echo acquisition, ME-ICA resulted in improved variance explained by our pRF model throughout the visual system, including anterior regions of the temporal and parietal lobes where SNR is typically low, while optimal combination without ICA did not. ME-ICA also improved reliability of parameter estimates compared to single echo and optimally combined multi-echo data without ICA-denoising. Collectively, these results suggest that ME-ICA is effective for denoising task-based fMRI data for modeling analyzes and maintains the integrity of the original data. Therefore, ME-ICA may be beneficial for complex fMRI experiments, including voxel-wise modeling and naturalistic paradigms.


Sujet(s)
Traitement d'image par ordinateur , Imagerie par résonance magnétique , Humains , Imagerie par résonance magnétique/méthodes , Traitement d'image par ordinateur/méthodes , Reproductibilité des résultats , Encéphale/imagerie diagnostique , Encéphale/physiologie , Artéfacts , Cartographie cérébrale/méthodes
18.
J Neurosci ; 42(46): 8629-8646, 2022 11 16.
Article de Anglais | MEDLINE | ID: mdl-36180226

RÉSUMÉ

How variable is the functionally defined structure of early visual areas in human cortex and how much variability is shared between twins? Here we quantify individual differences in the best understood functionally defined regions of cortex: V1, V2, V3. The Human Connectome Project 7T Retinotopy Dataset includes retinotopic measurements from 181 subjects (109 female, 72 male), including many twins. We trained four "anatomists" to manually define V1-V3 using retinotopic features. These definitions were more accurate than automated anatomical templates and showed that surface areas for these maps varied more than threefold across individuals. This threefold variation was little changed when normalizing visual area size by the surface area of the entire cerebral cortex. In addition to varying in size, we find that visual areas vary in how they sample the visual field. Specifically, the cortical magnification function differed substantially among individuals, with the relative amount of cortex devoted to central vision varying by more than a factor of 2. To complement the variability analysis, we examined the similarity of visual area size and structure across twins. Whereas the twin sample sizes are too small to make precise heritability estimates (50 monozygotic pairs, 34 dizygotic pairs), they nonetheless reveal high correlations, consistent with strong effects of the combination of shared genes and environment on visual area size. Collectively, these results provide the most comprehensive account of individual variability in visual area structure to date, and provide a robust population benchmark against which new individuals and developmental and clinical populations can be compared.SIGNIFICANCE STATEMENT Areas V1, V2, and V3 are among the best studied functionally defined regions in human cortex. Using the largest retinotopy dataset to date, we characterized the variability of these regions across individuals and the similarity between twin pairs. We find that the size of visual areas varies dramatically (up to 3.5×) across healthy young adults, far more than the variability of the cerebral cortex size as a whole. Much of this variability appears to arise from inherited factors, as we find very high correlations in visual area size between monozygotic twin pairs, and lower but still substantial correlations between dizygotic twin pairs. These results provide the most comprehensive assessment of how functionally defined visual cortex varies across the population to date.


Sujet(s)
Cortex visuel , Voies optiques , Femelle , Humains , Mâle , Jeune adulte , Cartographie cérébrale/méthodes , Imagerie par résonance magnétique , Cortex visuel primaire , Champs visuels
19.
Proc Biol Sci ; 289(1980): 20221230, 2022 08 10.
Article de Anglais | MEDLINE | ID: mdl-35946160

RÉSUMÉ

A person's focus of attention is conveyed by the direction of their eyes and face, providing a simple visual cue fundamental to social interaction. A growing body of research examines the visual mechanisms that encode the direction of another person's gaze as we observe them. Here we investigate the spatial receptive field properties of these mechanisms, by testing the spatial selectivity of sensory adaptation to gaze direction. Human observers were adapted to faces with averted gaze presented in one visual hemifield, then tested in their perception of gaze direction for faces presented in the same or opposite hemifield. Adaptation caused strong, repulsive perceptual aftereffects, but only for faces presented in the same hemifield as the adapter. This occurred even though adapting and test stimuli were in the same external location across saccades. Hence, there was clear evidence for retinotopic adaptation and a relative lack of either spatiotopic or spatially invariant adaptation. These results indicate that adaptable representations of gaze direction in the human visual system have retinotopic spatial receptive fields. This strategy of coding others' direction of gaze with positional specificity relative to one's own eye position may facilitate key functions of gaze perception, such as socially cued shifts in visual attention.


Sujet(s)
Saccades , Perception visuelle , Adaptation physiologique , Signaux , Oeil , Fixation oculaire , Humains , Stimulation lumineuse/méthodes
20.
Hum Brain Mapp ; 43(17): 5111-5125, 2022 12 01.
Article de Anglais | MEDLINE | ID: mdl-35796159

RÉSUMÉ

The physiological blind spot is a naturally occurring scotoma corresponding with the optic disc in the retina of each eye. Even during monocular viewing, observers are usually oblivious to the scotoma, in part because the visual system extrapolates information from the surrounding area. Unfortunately, studying this visual field region with neuroimaging has proven difficult, as it occupies only a small part of retinotopic cortex. Here, we used functional magnetic resonance imaging and a novel data-driven method for mapping the retinotopic organization in and around the blind spot representation in V1. Our approach allowed for highly accurate reconstructions of the extent of an observer's blind spot, and out-performed conventional model-based analyses. This method opens exciting opportunities to study the plasticity of receptive fields after visual field loss, and our data add to evidence suggesting that the neural circuitry responsible for impressions of perceptual completion across the physiological blind spot most likely involves regions of extrastriate cortex-beyond V1.


Sujet(s)
Papille optique , Cortex visuel , Humains , Scotome/imagerie diagnostique , Scotome/étiologie , Scotome/anatomopathologie , Cortex visuel/physiologie , Champs visuels , Papille optique/anatomopathologie , Papille optique/physiologie , Tests du champ visuel/effets indésirables , Cartographie cérébrale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE