Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 39
Filtrer
1.
mSphere ; : e0042324, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39171923

RÉSUMÉ

Carbapenemase-producing Klebsiella pneumoniae represents a major public health issue globally. Isolates with resistance to the newest drugs, like ceftazidime/avibactam (CZA), are increasingly reported. In this study, we analyzed the evolution of KPC-3-producing sequence type (ST) 512 K. pneumoniae strains isolated at three different times (hospitalization days 45, 56, and 78) from the same patient, two of which were observed in a pericholecystic liver abscess. The three K. pneumoniae isolates (295Kp, 304Kp, and hmv-318Kp) from the same patient were subjected to antimicrobial susceptibility testing, whole-genome sequencing, sedimentation assay, biofilm measurement, serum resistance assay, macrophage phagocytosis, and adhesion assays. KPC-producing isolate hmv-318Kp exhibited carbapenem susceptibility, hypermucoviscous (hmv) colony phenotype and CZA resistance. Virulence markers of hypervirulent Klebsiella were absent. Two non-synonymous mutations were identified in the hmv-318Kp genome comparing with isogenic strains: a single-nucleotide polymorphism (SNP) occurred in the pKpQIL plasmid, changing blaKPC-3 in the blaKPC-31 gene variant, conferring CZA resistance; and a second SNP occurred in the wzc gene of the capsular biosynthesis cluster, encoding a tyrosine kinase, resulting in the F557S Wzc protein mutation. The Klebsiella pneumoniae strain exhibiting an hmv phenotype (hmv-Kp) phenotype has been previously associated with amino acid substitutions occurring in the Wzc tyrosin kinase protein. We observed in vivo evolution of the ST512 strain to CZA resistance and acquisition of hypermucoviscosity. The pathogenetic role of the detected Wzc substitution is not fully elucidated, but other Wzc mutations were previously reported in hmv K. pneumoniae. Wzc mutants may be more frequent than expected and an underreported cause of hypermucoviscosity in K. pneumoniae clinical isolates. IMPORTANCE: Here we describe the evolution of KPC-3-producing ST512 K. pneumoniae isolated at three different times from the same patient of which the last one, from a biliary abscess, showed CZA resistance by KPC-31 production and manifested hmv colony phenotype. Hypervirulent Klebsiella pneumoniae (hv-Kp) isolates are increasingly reported worldwide. Their hypervirulent traits are associated with the presence of rmpA/A2 genes and an hmv. In this study, we identified an hmv-Kp that lacked the rmpA-D cluster but showed an amino acid substitution in the Wzc tyrosin kinase protein, involved in the capsular biosynthesis. This hmv-Kp strain emerged in vivo and evolved resistance to ceftazidime/avibactam resistance in a liver abscess of a patient. Our findings suggest that wzc mutations may be underreported, making it challenging to distinguish hv-Kp from "classic" K. pneumoniae with an hmv phenotype.

2.
mSystems ; 9(6): e0136323, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38752758

RÉSUMÉ

The emergence of nosocomial infections caused by hypervirulent and carbapenem-resistant K. pneumoniae (hv-CRKP) has become a significant public health challenge. The genetic traits of virulence and resistance plasmids in hv-CRKP have been extensively studied; however, research on the adaptive evolution strategies of clinical strains inside the host was scarce. This study aimed to understand the effects of antibiotic treatment on the phenotype and genotype characteristics of hv-CRKP. We investigated the evolution of hv-CRKP strains isolated from the same patient to elucidate the transition between hospital invasion and colonization. A comparative genomics analysis was performed to identify single nucleotide polymorphisms in the rmpA promoter. Subsequent validation through RNA-seq and gene deletion confirmed that distinct rmpA promoter sequences exert control over the mucoid phenotype. Additionally, biofilm experiments, cell adhesion assays, and animal infection models were conducted to illuminate the influence of rmpA promoter diversity on virulence changes. We demonstrated that the P12T and P11T promoters of rmpA possess strong activity, which leads to the evolution of CRKP into infectious and virulent strains. Meanwhile, the specific sequence of polyT motifs in the rmpA promoter led to a decrease in the lethality of hv-CRKP and enhanced cell adhesion and colonization. To summarize, the rmpA promoter of hv-CRKP is utilized to control capsule production, thereby modifying pathogenicity to better suit the host's ecological environment.IMPORTANCEThe prevalence of hospital-acquired illness caused by hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is significant, leading to prolonged antibiotic treatment. However, there are few reports on the phenotypic changes of hv-CRKP in patients undergoing antibiotic treatment. We performed a comprehensive examination of the genetic evolutionary traits of hv-CRKP obtained from the same patient and observed variations in the promoter sequences of the virulence factor rmpA. The strong activity of the promoter sequences P11T and P12T enhances the consistent production of capsule polysaccharides, resulting in an invasive strain. Conversely, weak promoter activity of P9T and P10T is advantageous for exposing pili, hence improving bacterial cell attachment ability and facilitating bacterial colonization. This finding also explains the confusion of some clinical strains carrying wild-type rmpA but exhibiting a low mucoid phenotype. This adaptive alteration facilitates the dissemination of K. pneumoniae within the hospital setting.


Sujet(s)
Carbapénèmes , Infections à Klebsiella , Klebsiella pneumoniae , Régions promotrices (génétique) , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Klebsiella pneumoniae/génétique , Klebsiella pneumoniae/pathogénicité , Virulence/génétique , Humains , Infections à Klebsiella/microbiologie , Infections à Klebsiella/traitement médicamenteux , Régions promotrices (génétique)/génétique , Carbapénèmes/pharmacologie , Animaux , Antibactériens/pharmacologie , Antibactériens/usage thérapeutique , Souris , Enterobacteriaceae résistantes aux carbapénèmes/génétique , Enterobacteriaceae résistantes aux carbapénèmes/pathogénicité , Enterobacteriaceae résistantes aux carbapénèmes/effets des médicaments et des substances chimiques , Biofilms/effets des médicaments et des substances chimiques , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Polymorphisme de nucléotide simple , Infection croisée/microbiologie , Infection croisée/traitement médicamenteux
3.
Int J Med Microbiol ; 314: 151601, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38359735

RÉSUMÉ

BACKGROUND: Klebsiella (K.) pneumoniae is a ubiquitous Gram-negative bacterium and a common coloniser of animals and humans. Today, K. pneumoniae is one of the most persistent nosocomial pathogens worldwide and poses a severe threat/burden to public health by causing urinary tract infections, pneumonia and bloodstream infections. Infections mainly affect immunocompromised individuals and hospitalised patients. In recent years, a new type of K. pneumoniae has emerged associated with community-acquired infections such as pyogenic liver abscess in otherwise healthy individuals and is therefore termed hypervirulent K. pneumoniae (hvKp). The aim of this study was the characterisation of K. pneumoniae isolates with properties of hypervirulence from Germany. METHODS: A set of 62 potentially hypervirulent K. pneumoniae isolates from human patients was compiled. Inclusion criteria were the presence of at least one determinant that has been previously associated with hypervirulence: (I) clinical manifestation, (II) a positive string test as a marker for hypermucoviscosity, and (III) presence of virulence associated genes rmpA and/or rmpA2 and/or magA. Phenotypic characterisation of the isolates included antimicrobial resistance testing by broth microdilution. Whole genome sequencing (WGS) was performed using Illumina® MiSeq/NextSeq to investigate the genetic repertoire such as multi-locus sequence types (ST), capsule types (K), further virulence associated genes and resistance genes of the collected isolates. For selected isolates long-read sequencing was applied and plasmid sequences with resistance and virulence determinants were compared. RESULTS: WGS analyses confirmed presence of several signature genes for hvKp. Among them, the most prevalent were the siderophore loci iuc and ybt and the capsule regulator genes rmpA and rmpA2. The most dominant ST among the hvKp isolates were ST395 capsule type K2 and ST395 capsule type K5; both have been described previously and were confirmed by our data as multidrug-resistant (MDR) isolates. ST23 capsule type K1 was the second most abundant ST in this study; this ST has been described as commonly associated with hypervirulence. In general, resistance to beta-lactams caused by the production of extended-spectrum beta-lactamases (ESBL) and carbapenemases was observed frequently in our isolates, confirming the threatening rise of MDR-hvKp strains. CONCLUSIONS: Our study results show that K. pneumoniae strains that carry several determinants of hypervirulence are present for many years in Germany. The detection of carbapenemase genes and hypervirulence associated genes on the same plasmid is highly problematic and requires intensified screening and molecular surveillance. However, the non-uniform definition of hvKp complicates their detection. Testing for hypermucoviscosity alone is not specific enough to identify hvKp. Thus, we suggest that the classification of hvKp should be applied to isolates that not only fulfil phenotypical criteria (severe clinical manifestations, hypermucoviscosity) but also (I) the presence of at least two virulence loci e.g. iuc and ybt, and (II) the presence of rmpA and/or rmpA2.


Sujet(s)
Infections communautaires , Infections à Klebsiella , Humains , Klebsiella pneumoniae , Virulence/génétique , Facteurs de virulence/génétique , Plasmides , Infections communautaires/microbiologie , Infections à Klebsiella/microbiologie , Antibactériens/pharmacologie
4.
Sci Bull (Beijing) ; 68(23): 3027-3047, 2023 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-37949739

RÉSUMÉ

The spread of hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKP) is a global health concern. Here, we report the intrahospital colonization and spread of Hv-CRKP isolates in a tertiary hospital from 2017 to 2022. Analyses of 90 nonredundant CRKP isolates from 72 patients indicated that Hv-CRKP transferability relies on the dominant ST11-K64 clone. Whole-genome sequencing of 11 representative isolates gave 31 complete plasmid sequences, including 12 KPC-2 resistance carriers and 10 RmpA virulence vehicles. Apart from the binary vehicles, we detected two types of fusion plasmids, favoring the cotransfer of RmpA virulence and KPC-2 resistance. The detection of ancestry/relic plasmids enabled us to establish genetic mechanisms by which rare fusion plasmids form. Unexpectedly, we found a total of five rmpA promoter variants (P9T-P13T) exhibiting distinct activities and varying markedly in their geographic distributions. CRISPR/Cas9 manipulation confirmed that an active PT11-rmpA regulator is a biomarker for the "high-risk" ST11-K64/CRKP clone. These findings suggest clonal spread and clinical evolution of the prevalent ST11-K64/Hv-CRKP clones. Apart from improved public awareness of Hv-CRKP convergence, our findings might benefit the development of surveillance (and/or intervention) strategies for the dominant ST11-K64 lineage of the Hv-CRKP population in healthcare sectors.


Sujet(s)
Enterobacteriaceae résistantes aux carbapénèmes , Infections à Klebsiella , Humains , Klebsiella pneumoniae/génétique , Typage par séquençage multilocus , Infections à Klebsiella/traitement médicamenteux , Plasmides/génétique , Enterobacteriaceae résistantes aux carbapénèmes/génétique , Carbapénèmes/pharmacologie
5.
Front Microbiol ; 14: 1247091, 2023.
Article de Anglais | MEDLINE | ID: mdl-37869673

RÉSUMÉ

Klebsiella pneumoniae is an opportunistic pathogen that mainly causes nosocomial infections and hospital-associated pneumonia in elderly and immunocompromised people. However, multidrug-resistant hypervirulent K. pneumoniae (MDR-hvKp) has emerged recently as a serious threat to global health that can infect both immunocompromised and healthy individuals. It is scientifically established that plasmid-mediated regulator of mucoid phenotype genes (rmpA and rmpA2) and other virulence factors (aerobactin and salmochelin) are mainly responsible for this phenotype. In this study, we collected 23 MDR-hvKp isolates and performed molecular typing, whole genome sequencing, comparative genomic analysis, and phenotypic experiments, including the Galleria mellonella infection model, to reveal its genetic and phenotypic features. Meanwhile, we discovered two MDR-hvKp isolates (22122315 and 22091569) that showed a wide range of hypervirulence and hypermucoviscosity without rmpA and rmpA2 and any virulence factors. In phenotypic experiments, isolate 22122315 showed the highest hypervirulence (infection model) with significant mucoviscosity, and conversely, isolate 22091569 exhibited the highest mucoviscosity (string test) with higher virulence compared to control. These two isolates carried carbapenemase (blaKPC - 2), ß-lactamase (blaOXA - 1, blaTEM - 1B), extended-spectrum ß-lactamase (ESBL) genes (blaCTX - M - 15, blaSHV - 106), outer membrane protein-coding genes (ompA), fimbriae encoding genes (ecpABCDER), and enterobactin coding genes (entAB, fepC). In addition, single nucleotide polymorphism analysis indicated that both isolates, 22122315 and 22091569, were found to have novel mutations in loci FEBNDAKP_03184 (c. 2084A > C, p. Asn695Thr), and EOFMAFIB_02276 (c. 1930C > A, p. Pro644Thr), respectively. Finally, NCBI blast analysis suggested these mutations are located in the wzc of the capsule polysaccharide (cps) region and are responsible for putative tyrosine kinase. This study would be a strong reference for enhancing the current understanding of identifying the MDR-hvKp isolates that lacked both mucoid regulators and virulence factors.

6.
Front Cell Infect Microbiol ; 13: 1108818, 2023.
Article de Anglais | MEDLINE | ID: mdl-37180440

RÉSUMÉ

Introduction: Hypervirulent Klebsiella pneumoniae produce an increased amount of capsular substance and are associated with a hypermucoviscous phenotype. Capsule production is regulated by capsular regulatory genes and capsular gene cluster variations. In the present study, we focus on the effect of rmpA and wcaJon capsule biosynthesis. Methods: Phylogenetic trees were constructed to analyze wcaJ and rmpA sequence diversity in different serotypes hypervirulent strains. Then mutant strains (K2044ΔwcaJ, K2044K1wcaJ, K2044K2wcaJand K2044K64wcaJ) were used to verify the effects of wcaJ and its diversity on capsule synthesis and strain virulence. Furthmore, the role of rmpA in capsular synthesis and its mechanisms were detected in K2044ΔrmpA strain. Results: RmpA sequences are conversed in different serotypes. And rmpA promoted the production of hypercapsules by simultaneously acting on three promoters in cps cluster. Whereas wcaJ, its sequences are different in different serotypes, and its loss result in the termination of capsular synthesis. Moreover, the results verified that K2 wcaJ could form hypercapsule in K2044 strains (K1 serotype), but K64 wcaJ could not. Discussion: The interaction of multiple factors is involved in capsule synthesis, including wcaJ and rmpA. RmpA, an known conserved capsular regulator gene, acts on cps cluster promoters to promote the production of the hypercapsule. WcaJ as initiating enzyme of CPS biosynthesis, its presence determines the synthesis of capsule. Besides, different from rmpA, wcaJ sequence consistency is limited to the same serotype, which cause wcaJ functioning in different serotype strains with sequence recognition specificity.


Sujet(s)
Infections à Klebsiella , Pneumopathie infectieuse , Humains , Klebsiella pneumoniae , Protéines bactériennes/génétique , Protéines bactériennes/pharmacologie , Phylogenèse , Virulence/génétique , Facteurs de virulence/génétique , Facteurs de virulence/pharmacologie
7.
Infect Drug Resist ; 16: 1221-1230, 2023.
Article de Anglais | MEDLINE | ID: mdl-36879852

RÉSUMÉ

Purpose: Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative bacterium that is predominantly associated with liver abscesses in global diabetic patients. High levels of glucose in the surrounding of K. pneumonia increase its pathogenicity including capsular polysaccharide (CPS) and fimbriae. Other important virulent factors include outer membrane protein A (ompA) and regulator mucoid phenotype A (rmpA). The objective of this investigation was to elucidate the effects of high glucose on rmpA and ompA gene expression and serum resistance of K. pneumoniae causing liver abscess. Patients and Methods: The clinical history of 57 patients suffering from K. pneumoniae-caused liver abscesses (KLA) was acquired and their clinical and laboratory manifestations in the presence or absence of diabetes were analyzed. The antimicrobial susceptibility, serotypes, and virulence genes were tested. Clinical isolates of 3 serotype-K1 hypervirulent K. pneumoniae (hvKP) were used to detect the effect of exogenous high glucose on rmpA, ompA, and clbB genes expression, and bacterial serum resistance. Results: KLA patients with diabetes showed higher C-reactive protein (CRP) compared to non-diabetic KLA patients. Furthermore, the diabetic group showed increased incidences of sepsis and invasive infections, and their length of hospital stay was also prolonged. Pre-incubation of K. pneumoniae in high glucose (0.5%) concentration up-regulated rmpA, ompA, and clbB genes expression. However, cAMP supplementation, which was inhibited by environmental glucose, reversed the increase of rmpA and ompA in a cAMP-dependent manner. Moreover, hvKP strains incubated in high glucose also exhibited enhanced protection from serum killing. Conclusion: High glucose levels reflected by poor glycemic control has increased gene expression of rmpA and ompA in hvKP by the cAMP signaling pathway and enhanced its resistance to serum killing, thus providing a new and reasonable explanation for the high incidences of sepsis and invasive infections in KLA patients with diabetes.

8.
Microbiol Spectr ; : e0398422, 2023 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-36912637

RÉSUMÉ

Hypervirulent Klebsiella pneumoniae (hvKp) is a major human pathogen associated with liver abscess, pneumonia, meningitis, and endophthalmitis. It is challenging to differentiate hvKp from classical Klebsiella pneumoniae (cKp) using conventional methods, necessitating the development of a rapid, sensitive, and convenient assay for hvKp detection. In this study, we constructed a recombinase-aided amplification (RAA) method targeting hvKp genes peg344 and rmpA, and also analyzed the pathogenic characteristics of hvKp. We optimized the reaction temperature and system, and evaluated its sensitivity, specificity, and clinical application. The primer and probe sets peg344-set1 and rmpA-set2 delivered significant fluorescent signals at 39°C with the shortest gene amplification times (sensitivity: 20 copies/reaction). This RAA assay showed no cross-reactivity with 15 other common pathogenic bacteria. Its applicability was confirmed by the evaluation of 208 clinical specimens, of which 45 were confirmed to be hvKp. The sensitivity and specificity of the RAA assay were both 100% compared with real-time PCR as the reference standard. To verify the assay, we also assessed the diversity of molecular characteristics among the hvKp isolates and identified serotype K1 and sequence type ST23 as the dominant clone. Virulence factors iroN and iutA were highly associated with virulence level. In conclusion, our novel RAA assay is a powerful tool for early diagnosis and epidemiological surveillance of hvKp. IMPORTANCEKlebsiella pneumoniae is the most common opportunistic bacterial species and a major threat to public health. Since the 1990s, hvKp has received increasing attention from public health officials and infectious disease specialists. Hypervirulent strains differ from classical strains in terms of phenotypic features and clinical outcomes. It is hard to identify hvKp from cKp using the conventional methods including colony morphology analysis, serum killing assays, mouse lethality assays, string tests, and real-time PCR. In this study, we established a rapid, sensitive and convenient recombinase-aided amplification assay for hvKp detection targeting virulence genes peg344 and rmpA. Our RAA assay provides an important tool for the rapid diagnosis of infectious diseases caused by hvKp, particularly in primary laboratories.

9.
Front Cell Infect Microbiol ; 12: 968955, 2022.
Article de Anglais | MEDLINE | ID: mdl-36439210

RÉSUMÉ

This study aimed to analyze the influence of the main aerobactin-encoding gene iucB and the regulator of mucoid phenotype rmpA on the virulence of Klebsiella pneumoniae causing liver abscess. In addition, the possible regulatory effects of the main encoding gene iucB on the regulator of mucoid phenotype rmpA were explored, thus providing novel strategies for the prevention and control of hypervirulent K. pneumoniae (hvKp) causing liver abscess. The virulence-related genes iucB and rmpA of K. pneumoniae were detected by PCR. iucB and rmpA were cloned into K. pneumoniae strain by using plasmid pET28b as vector. Quantitative real-time PCR (RT-qPCR) was employed to detect the relative expression of rmpA gene in K. pneumoniae. We investigated the potential effects of aerobactin coding gene iucB and regulator of mucoid phenotype rmpA on the virulence of K. pneumoniae by establishing the Galleria mellonella infection model. Capsule quantitative experiment was conducted to investigate the impact of aerobactin-encoding gene iucB on the modulation of regulator of mucoid phenotype rmpA. The results of the G. mellonella infection model indicated that iucB gene could significantly enhance the virulence of K. pneumoniae, but the presence of rmpA gene did not markedly affect the virulence of K. pneumoniae. RT-qPCR showed that iucB inhibited the expression of rmpA gene. Quantitative capsulation experiments showed that the presence of rmpA gene could not increase the capsulation production of K. pneumoniae. The main encoding gene of aerobactin, namely iucB, could substantially enhance the virulence of K. pneumoniae. The gene iucB might be involved in the biosynthesis of the capsular polysaccharide through an unknown mechanism instead of the gene rmpA. Overall, these findings provide important theoretical support for the treatment of infections caused by hvKp.


Sujet(s)
Infections à Klebsiella , Abcès du foie , Humains , Klebsiella pneumoniae , Virulence/génétique , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Phénotype
10.
Front Cell Infect Microbiol ; 12: 877649, 2022.
Article de Anglais | MEDLINE | ID: mdl-35663473

RÉSUMÉ

Highly virulent Klebsiella pneumoniae often causes invasive infections with high morbidity and mortality rates, posing an immense clinical challenge. Rapid and accurate detection of pathogenic bacteria is of great significance for treatment and preventive control. Conventional detection by polymerase chain reaction (PCR) is limited by a dependence on laboratory equipment and professional staff. Recombinase polymerase amplification (RPA) combined with a lateral flow strip (LFS) can rapidly amplify and visualize target genes in a short period of time. The aim of this study was to develop an RPA-LFS technique for detection of the K. pneumoniae virulence gene rmpA2. Primers were designed against conserved sequences specific to the virulence gene, and primer probe design was optimized by introducing base substitution to obtain a specific and sensitive primer-probe combination for clinical detection. We tested 65 actual samples collected from clinics to evaluate the performance of the newly established RPA-LFS system in comparison with conventional PCR methods and qPCR methods. The RPA-LFS assay was performed at for 25 min a constant temperature of 37°C, and results could be observed without instrumentation. The system could specifically identify highly virulent K. pneumoniae carrying the virulence gene rmpA2 with a minimum detection limit of 10-1 ng/µL and 10 copies/µL. For the 65 clinical samples tested, The RPA-LFS assay results were in complete agreement with the qPCR results and PCR results. The RPA-LFS assay provides a rapid, accurate, and simple method for identification of highly virulent K. pneumoniae carrying rmpA2.


Sujet(s)
Klebsiella pneumoniae , Recombinases , Humains , Klebsiella pneumoniae/génétique , Techniques d'amplification d'acides nucléiques/méthodes , Nucleotidyltransferases , Réaction de polymérisation en chaine en temps réel , Recombinases/génétique , Sensibilité et spécificité , Virulence/génétique
11.
Infect Drug Resist ; 15: 2293-2299, 2022.
Article de Anglais | MEDLINE | ID: mdl-35517899

RÉSUMÉ

Purpose: To investigate the phenotypic and genomic characteristics of the multi-drug resistant and hypervirulent Klebsiella pneumoniae strain recovered from bacteremia. Methods: Antimicrobial susceptibility testing (AST) was performed by the microdilution method. Antimicrobial resistance genes, virulence-associated genes, multilocus sequence typing (MLST), and plasmid replicon were characterized by next-generation sequencing (NGS) and nanopore sequencing. S1 nuclease-pulsed field gel electrophoresis (S1-PFGE) and Southern blotting were performed to characterize the plasmid profile. Results: The hypervirulent colistin- and carbapenem-resistant K. pneumoniae strain DY2009 was identified as ST5571, co-carrying mcr-1, bla NDM-1, and bla OXA-10. In silico analysis found that it was K2 serotype. AST results revealed that DY2009 was resistant to carbapenems, cephalosporins, ciprofloxacin, chloramphenicol, and colistin but remained susceptible to aztreonam, gentamicin, amikacin, and tigecycline. Through the whole-genome analysis, a variety of virulence determinants were identified, including rmpA. Plasmid analysis confirmed that the mcr-1 and bla NDM-1 gene harbored a ~33 kb IncX4 plasmid and a ~44 kb IncX3 plasmid. In contrast, bla OXA-10 was encoded by chromosome. Conclusion: To the best of our knowledge, we first report the clinical hypervirulent K. pneumoniae isolate co-producing MCR-1, NDM-1, and OXA-10 causing bacteremia. We found that mcr-1 and bla NDM-1 genes were located on two self-conjugative epidemic plasmids, contributing to the widespread MCR-1 and NDM-1 in China. The results of this work improve our understanding of the genetic background of colistin- and carbapenem-resistant K. pneumoniae isolate from bacteremia and the resistance mechanisms. Our findings highlight the urgent need for infection control of such strain to prevent it from becoming an extensive-drug resistant clone.

12.
Ann Clin Microbiol Antimicrob ; 21(1): 2, 2022 Feb 05.
Article de Anglais | MEDLINE | ID: mdl-35123505

RÉSUMÉ

BACKGROUND: The key virulence factors responsible for hypervirulent Klebsiella pneumoniae (hvKp) infection remains elusive. METHODS: We analyzed K. pneumoniae isolates collected between 2017 and 2019 and defined hvKp as a pyogenic infection. Classical K. pneumoniae (cKp) involved a non-invasive infection or uncomplicated bacteremia. Isolates belonging to the K. pneumoniae species complex were excluded. RESULTS: We analyzed 112 isolates, including 19 hvKp, 67 cKp, and 26 colonizers, using whole-genome sequencing. Population genomics revealed that the K1-sequence type (ST) 82 (O1v1) clade was distinct from that of the K1-ST23 (O1v2) clone. The virulence gene profiles also differed between K1-ST82 (aerobactin and rmpA) and K1-ST23 (aerobactin, yersiniabactin, salmochelin, colibactin, and rmpA/rmpA2). The K2 genotype was more diverse than that of K1. A neighboring subclade of K1-ST23 (comprising ST29, ST412, ST36, and ST268) showed multidrug resistance and hypervirulence potentials. Logistic-regression analysis revealed that diabetes mellitus was associated with K. pneumoniae infection (odds ratio [OR]: 4.11; 95% confidence interval [CI]: 1.14-14.8). No significant association was found between hvKp diagnosis and clinical characteristics, such as diabetes mellitus or community acquisition. However, the K1 genotype (OR: 9.02; 95% CI: 2.49-32.7; positive-likelihood ratio [LR]: 4.08), rmpA (OR: 8.26; 95% CI: 1.77-38.5; positive LR: 5.83), and aerobactin (OR: 4.59; 95% CI: 1.22-17.2; positive LR: 3.49) were substantial diagnostic predictors of hvKp. CONCLUSIONS: The K1 genotype, rmpA, and aerobactin are prominent predictors of hvKp, suggesting that further pyogenic (metastatic) infection should be examined clinically. These findings may shed light on key hvKp virulence factors.


Sujet(s)
Protéines bactériennes/génétique , Infections à Klebsiella/diagnostic , Klebsiella pneumoniae/isolement et purification , Facteurs de virulence/génétique , Virulence/génétique , Sujet âgé , Sujet âgé de 80 ans ou plus , Femelle , Génomique , Humains , Acides hydroxamiques , Klebsiella pneumoniae/génétique , Mâle , Études rétrospectives , Séquençage du génome entier
13.
Future Microbiol ; 17: 27-40, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34877876

RÉSUMÉ

Aim: The authors aimed to examine antibiotic resistance genes and representative virulence determinants among 100 Klebsiella pneumoniae isolates with an emphasis on capsular serotypes and clonality of some of the isolates. Methods: PCR amplification of (rmpA, rmpA2, iutA, iroN and IncHI1B plasmid) and (NDM, OXA-48, KPC, CTX-M-15, VIM, IMP, SPM) was conducted. Wzi sequencing and multilocus sequence typing (MLST) were performed. Results: K2 was the only detected serotype in the authors' collection. RMPA2 was the most common capsule-associated virulence gene detected. All studied isolates harbored OXA-48-like (100%) and NDM (43%) (n = 43). ST147 was the most common sequence type. Conclusion: This work provides insight into the evolution of the coexistence of virulence and resistance genes in a tertiary healthcare setting in Cairo, Egypt.


Sujet(s)
Infection croisée , Infections à Klebsiella , Antibactériens/pharmacologie , Infection croisée/épidémiologie , Humains , Klebsiella , Infections à Klebsiella/épidémiologie , Klebsiella pneumoniae , Typage par séquençage multilocus , Virulence/génétique , bêta-Lactamases/génétique
14.
IDCases ; 26: e01276, 2021.
Article de Anglais | MEDLINE | ID: mdl-34522614

RÉSUMÉ

Hypervirulent Klebsiella pneumoniae (hvKP) with a high mucus phenotype, can cause liver abscess and extrahepatic invasive infection. The morbidity of hvKP infections has increased recently. Here we describe a case report of septicemia caused by hvKP due to the term septic arthritis of right knee joint in a 29-year-old male. The patient was persistent fever with a peak temperature at 40.6 °C. However, based on the drug sensitivity, the treatment failed frequently. The patient did not improve clinically on susceptible monotherapy antimicrobial. Combination therapy with meropenem and rifampicin (RFP) lead to clinical improvement and discharge.

15.
Front Cell Infect Microbiol ; 11: 709681, 2021.
Article de Anglais | MEDLINE | ID: mdl-34589442

RÉSUMÉ

Background: The incidence of hypervirulent (hv) carbapenem-resistant (CR) Klebsiella pneumoniae (Kp) is increasing globally among various clones and is also responsible for nosocomial infections. The CR-hvKp is formed by the uptake of a virulence plasmid by endemic high-risk clones or by the uptake of plasmids carrying antimicrobial resistance genes by the virulent clones. Here, we describe CR-hvKp from India belonging to high-risk clones that have acquired a virulence plasmid and are phenotypically unidentified due to lack of hypermucoviscosity. Methods: Twenty-seven CRKp isolates were identified to possess rmpA2 by whole-genome sequencing; and resistance and virulence determinants were characterized. By in silico protein modeling (and validation), protein backbone stability analysis, and coarse dynamics study, the fitness of RmpA, RmpA2, and aerobactin-associated proteins-IucA and IutA, were determined to establish a reliable marker for clinical identification of CR-hvKp. Results: The CR-hvKp belonged to multidrug-resistant (MDR) high-risk clones such as CG11, CG43, ST15, and ST231 and carried OXA-232 as the predominant carbapenemase followed by NDM. The virulence plasmid belonged to IncHI1B replicon type and carried frameshifted and truncated rmpA and rmpA2. This resulted in a lack of hypermucoviscous phenotype. However, functional aerobactin was expressed in all high-risk clones. In silico analysis portrayed that IucA and IutA were more stable than classical RmpA. Furthermore, IucA and IutA had lower conformational fluctuations in the functional domains than the non-functional RmpA2, which increases the fitness cost of the latter for its maintenance and expression among CR-hvKp. Hence, RmpA and RmpA2 are likely to be lost among CR-hvKp owing to the increased fitness cost while coding for essential antimicrobial resistance and virulence factors. Conclusion: Increasing incidence of convergence of AMR and virulence is observed among K. pneumoniae globally, which warrants the need for reliable markers for identifying CR-hvKp. The presence of non-functional RmpA2 among high-risk clones highlights the significance of molecular identification of CR-hvKp. The negative string test due to non-functional RmpA2 among CR-hvKp isolates challenges phenotypic screening and faster identification of this pathotype. This can potentially be counteracted by projecting aerobactin as a stable, constitutively expressed, and functional marker for rapidly evolving CR-hvKp.


Sujet(s)
Infections à Klebsiella , Klebsiella pneumoniae , Carbapénèmes/pharmacologie , Simulation numérique , Humains , Acides hydroxamiques , Klebsiella pneumoniae/génétique
16.
J Glob Antimicrob Resist ; 25: 359-362, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-33991746

RÉSUMÉ

OBJECTIVES: ST11 is a high-risk sequence type associated with carbapenem-resistant Klebsiella pneumoniae strains. Carbapenemase-producing hypervirulent K. pneumoniae (hvKp) are a major concern as they harbour a diverse range of pathogenicity traits. Here we describe the characteristics of K. pneumoniae strain KP75w isolated from a tertiary-care hospital in Pakistan. METHODS: Antimicrobial susceptibility testing was performed by the Kirby-Bauer disk diffusion test and broth microdilution assay. The virulence phenotype was determined by string test as well as biofilm and cell adhesion assays. Genome sequencing was performed using MiSeq and HiSeq 2500 platforms with 30 × coverage. RESULTS: Antimicrobial resistance profiling characterised strain KP75w as a multidrug-resistant carbapenemase-producing strain with a meropenem minimum inhibitory concentration (MIC) of 4 µg/mL, which is above the CLSI susceptible breakpoint (≤1 µg/mL). The annotated contigs indicated a genome size of 5 644 609 bp with 5679 coding regions. KP75w (ST11) was designated as a carbapenemase-producing hvKp strain on the basis of the presence of a carbapenemase gene (blaNDM-1) and hypervirulence genes (rmpA2, iucABCD-iutA, fyuA, irp, mrk, ybt, fep and virB2). KP75w was found to contain a 163-kb virulence region showing 58.8% identity to the large virulence plasmid pLVPK, supporting the hypervirulence of KP75w. CONCLUSION: KP75w is a novel non-hypermucoviscous carbapenemase-producing hvKp ST11 strain that appears to represent the convergence of multidrug resistance with hypervirulence traits in clinical K. pneumoniae strains from the Southeast Asian region.


Sujet(s)
Infections à Klebsiella , Klebsiella pneumoniae , Protéines bactériennes , Humains , Klebsiella pneumoniae/génétique , Typage par séquençage multilocus , Mutation , Pakistan , Phénotype , bêta-Lactamases
17.
Clin Microbiol Infect ; 27(4): 583-589, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-32461145

RÉSUMÉ

OBJECTIVES: The 'hypervirulent' variant of Klebsiella pneumoniae (hvKp) is a predominant cause of community-acquired pyogenic liver abscess in Asia, and is an emerging pathogen in Western countries. hvKp infections have demonstrated 'metastatic' dissemination in immunocompetent hosts, an unusual mode of infection associated with severe complications. Two cases alerted us to the possible presence of hvKp at our hospital, both involving elderly Hispanic males who presented with recurrent fever, bacteraemia, epigastric pain and liver abscesses/phlegmon, thus prompting an assessment of hvKp prevalence. METHODS: A surveillance of K. pneumoniae blood, body fluid and wound isolates was conducted using real-time PCR to detect virulence-associated genes (uni-rmpA, iucA and peg344). Positive isolates were further characterized by wzi gene sequencing to determine capsular types (K-type) and by multilocus sequence typing and pulsed-field gel electrophoresis to determine strain relatedness. RESULTS: Four-hundred and sixty-three K. pneumoniae isolates, derived from 412 blood, 21 body fluids and 30 abdominal wound specimens, were screened over a 3-year period. Isolates included 98 multidrug-resistant strains. Eighteen isolates from 17 patients, including two from the index patient, screened positive for all three virulence genes. Sixteen of 18 positive isolates had K-types associated with hvKp, and isolates from different patients were unrelated strains, indicating likely community acquisition. Of 13 patients with significant morbidity, five died; eight patients had co-existing hepatobiliary disease, and six had diabetes mellitus. CONCLUSIONS: Multiple strains of hvKp are emerging in New York City and are associated with high mortality relative to multidrug-resistant and classical Klebsiella infections. Co-existing hepatobiliary disease appears to be a potential risk factor for these infections.


Sujet(s)
Infections à Klebsiella/microbiologie , Klebsiella pneumoniae/pathogénicité , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Antibactériens/usage thérapeutique , Femelle , Régulation de l'expression des gènes bactériens , Hôpitaux , Humains , Nourrisson , Infections à Klebsiella/traitement médicamenteux , Infections à Klebsiella/mortalité , Klebsiella pneumoniae/effets des médicaments et des substances chimiques , Mâle , Adulte d'âge moyen , New York (ville)/épidémiologie , Facteurs de risque , Virulence/génétique
18.
mBio ; 11(5)2020 09 22.
Article de Anglais | MEDLINE | ID: mdl-32963003

RÉSUMÉ

Klebsiella pneumoniae has a remarkable ability to cause a wide range of human diseases. It is divided into two broad classes: classical strains that are a notable problem in health care settings due to multidrug resistance, and hypervirulent (hv) strains that are historically drug sensitive but able to establish disease in immunocompetent hosts. Alarmingly, there has been an increased frequency of clinical isolates that have both drug resistance and hv-associated genes. One such gene, rmpA, encodes a transcriptional regulator required for maximal capsule (cps) gene expression and confers hypermucoviscosity (HMV). This link has resulted in the assumption that HMV is caused by elevated capsule production. However, we recently reported a new cps regulator, RmpC, and ΔrmpC mutants have reduced cps expression but retain HMV, suggesting that capsule production and HMV may be separable traits. Here, we report the identification of a small protein, RmpD, that is essential for HMV but does not impact capsule. RmpD is 58 residues with a putative N-terminal transmembrane domain and highly positively charged C-terminal half, and it is conserved among other hv K. pneumoniae strains. Expression of rmpD in trans complements both ΔrmpD and ΔrmpA mutants for HMV, suggesting that RmpD is the key driver of this phenotype. The rmpD gene is located between rmpA and rmpC, within an operon regulated by RmpA. These data, combined with our previous work, suggest a model in which the RmpA-associated phenotypes are largely due to RmpA activating the expression of rmpD to produce HMV and rmpC to stimulate cps expression.IMPORTANCE Capsule is a critical virulence factor in Klebsiella pneumoniae, in both antibiotic-resistant classical strains and hypervirulent strains. Hypervirulent strains usually have a hypermucoviscosity (HMV) phenotype that contributes to their heightened virulence capacity, but the production of HMV is not understood. The transcriptional regulator RmpA is required for HMV and also activates capsule gene expression, leading to the assumption that HMV is caused by hyperproduction of capsule. We have identified a new gene (rmpD) required for HMV but not for capsule production. This distinction between HMV and capsule production will promote a better understanding of the mechanisms of hypervirulence, which is in great need given the alarming increase in clinical isolates with both drug resistance and hypervirulence traits.


Sujet(s)
Protéines bactériennes/génétique , Klebsiella pneumoniae/génétique , Klebsiella pneumoniae/pathogénicité , Mucus , Facteurs de virulence/génétique , Animaux , Protéines bactériennes/métabolisme , Régulation de l'expression des gènes bactériens , Humains , Infections à Klebsiella/microbiologie , Klebsiella pneumoniae/métabolisme , Souris , Souris de lignée C57BL , Phénotype , Transcription génétique , Viscosité
19.
IDCases ; 21: e00893, 2020.
Article de Anglais | MEDLINE | ID: mdl-32642439

RÉSUMÉ

Herein, we report a case of breakthrough and persistent bacteremia due to serotype K1 Klebsiella pneumoniae in an immunocompetent 53- year-old man. He was diagnosed with pyogenic spondylitis owing to back pain and based on magnetic resonance imaging findings. On admission, several imaging studies were taken to search for other abscesses and infective endocarditis; however, there were no significant findings. Additionally, blood cultures were negative. Upon treatment with intravenous ampicillin/sulbactam, the patient's symptoms improved. However, eleven days after admission, the patient experienced a fever and worsening back pain. Blood cultures were taken again, and K. pneumoniae was detected, which showed sensitivity to ampicillin/sulbactam. Fourteen days after admission, K. pneumoniae was detected again, suggesting breakthrough and persistent bacteremia with K. pneumoniae. The source of the K. pneumoniae infection was unknown. The antimicrobial regimen was changed to a combination of ceftriaxone and gentamicin. Sixty days after admission, the patient was discharged without any sequelae. The isolated K. pneumoniae strains were found to carry rmpA and were confirmed as serotype K1; thus, detected hypervirulent K. pneumoniae (HvKP). HvKP is an increasingly recognized pathotype of K. pneumoniae characterized clinically by its ability to cause organ- or life-threatening infections in healthy persons. To the best of our knowledge, our case is the first report of spondylitis due to confirmed HvKP. Moreover, HvKP caused breakthrough and persistent bacteremia on an immunocompetent patient.

20.
Front Microbiol ; 11: 436, 2020.
Article de Anglais | MEDLINE | ID: mdl-32256482

RÉSUMÉ

Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) has been increasingly reported and is now recognized as a significant threat to public health; however, characterization of MDR-hvKP has not been systematically investigated. In the present study, 124 of 428 (28.92%) K. pneumoniae clinical isolates collected from January 2010 to December 2016 were identified with aerobactin and defined as hvKP; these included 94 non-MDR-KP, 20 extended-spectrum ß-lactamase-producing K. pneumoniae (ESBL-KP), and 10 carbapenem-resistant K. pneumoniae (CR-KP) isolates. The remaining 304 isolates without presence of virulence factor aerobactin were defined as classic K. pneumoniae (cKP). The antimicrobial resistance rate of cKP was significantly higher than that of the hvKP isolates in the non-MDR-KP group, but showed no significant differences in the ESBL-KP and CR-KP groups. The detection frequencies of capsular serotype K1 (magA), hypermucoviscosity, sequence type 23 (ST23), and the virulence gene rmpA were significantly higher in the hvKP than cKP isolates in all three groups (P < 0.05). Most of the hypervirulent ESBL-KP and CR-KP isolates were K non-typeable (16/30) and harbored at least one gene for virulence (26/30). The hypervirulent ESBL-KP isolates primarily carried bla CTX-M (12/20, 60%) genes, and the hypervirulent CR-KP isolates mainly carried bla NDM- 1 (8/10, 80%) genes. Moreover, three hypervirulent ESBL-KP and two hypervirulent CR-KP isolates showed resistance to tigecycline but were sensitive to colistin. The transcriptional levels of rmpA in cKP were much lower than that in hvKP isolates in all three groups. Furthermore, overexpression of rmpA in the rmpA-low-expression cKP isolates could enhance bacterial virulence in the mouse infection experiment. In conclusion, our data suggest that the capsular serotype K1 (magA), rmpA, hypermucoviscosity, and ST23 were strongly associated with hvKP in non-MDR-KP, ESBL-KP, and CR-KP groups, and low rmpA expression levels contributed to the absence of hypervirulent phenotype.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE