Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Sujet principal
Gamme d'année
1.
Front Genet ; 13: 884072, 2022.
Article de Anglais | MEDLINE | ID: mdl-35801083

RÉSUMÉ

Eukaryotic genomes are usually enriched in repetitive DNA sequences, which can be classified as dispersed or tandemly repeated elements. Satellite DNAs are noncoding monomeric sequences organized in a head-to-tail fashion that are generally located on the subtelomeric and/or pericentromeric heterochromatin. In general, a single species incorporates a diverse group of satellite DNA families, which collection is called satellitome. Here, we characterized three new satellitomes from distinct characid fish (Psalidodon fasciatus, P. bockmanni, and Astyanax lacustris) using a combination of genomic, cytogenetic, and bioinformatic protocols. We also compared our data with the available satellitome of P. paranae. We described 57 satellite DNA (satDNA) families of P. fasciatus (80 variants), 50 of P. bockmanni (77 variants), and 33 of A. lacustris (54 variants). Our analyses demonstrated that several sequences were shared among the analyzed species, while some were restricted to two or three species. In total, we isolated 104 distinctive satDNA families present in the four species, of which 10 were shared among all four. Chromosome mapping revealed that the clustered satDNA was mainly located in the subtelomeric and pericentromeric areas. Although all Psalidodon species demonstrated the same pattern of clusterization of satDNA, the number of clusters per genome was variable, indicating a high dynamism of these sequences. In addition, our results expand the knowledge of the As51 satellite DNA family, revealing that P. bockmanni and P. paranae exhibited an abundant variant of 39 bp, while P. fasciatus showed a variant of 43 bp. The majority of satDNAs in the satellitomes analyzed here presented a common library repetitive sequence in Psalidodon and Astyanax, with abundance variations in each species, as expected for closely related groups. In addition, we concluded that the most abundant satDNA in Psalidodon (As51) passed through a diversification process in this group, resulting in new variants exclusive of Psalidodon.

2.
Chromosoma ; 131(1-2): 29-45, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-35099570

RÉSUMÉ

Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.


Sujet(s)
Characiformes , Animaux , Characiformes/génétique , ADN , Évolution moléculaire , Femelle , Poissons/génétique , Génome , Génomique , Chromosomes sexuels/génétique
3.
Front Genet ; 12: 728670, 2021.
Article de Anglais | MEDLINE | ID: mdl-34659353

RÉSUMÉ

Neotropical fishes have highly diversified karyotypic and genomic characteristics and present many diverse sex chromosome systems, with various degrees of sex chromosome differentiation. Knowledge on their sex-specific composition and evolution, however, is still limited. Satellite DNAs (satDNAs) are tandemly repeated sequences with pervasive genomic distribution and distinctive evolutionary pathways, and investigating satDNA content might shed light into how genome architecture is organized in fishes and in their sex chromosomes. The present study investigated the satellitome of Megaleporinus elongatus, a freshwater fish with a proposed Z1Z1Z2Z2/Z1W1Z2W2 multiple sex chromosome system that encompasses a highly heterochromatic and differentiated W1 chromosome. The species satellitome comprises of 140 different satDNA families, including previously isolated sequences and new families found in this study. This diversity is remarkable considering the relatively low proportion that satDNAs generally account for the M. elongatus genome (around only 5%). Differences between the sexes in regards of satDNA content were also evidenced, as these sequences are 14% more abundant in the female genome. The occurrence of sex-biased signatures of satDNA evolution in the species is tightly linked to satellite enrichment associated with W1 in females. Although both sexes share practically all satDNAs, the overall massive amplification of only a few of them accompanied the W1 differentiation. We also investigated the expansion and diversification of the two most abundant satDNAs of M. elongatus, MelSat01-36 and MelSat02-26, both highly amplified sequences in W1 and, in MelSat02-26's case, also harbored by Z2 and W2 chromosomes. We compared their occurrences in M. elongatus and the sister species M. macrocephalus (with a standard ZW sex chromosome system) and concluded that both satDNAs have led to the formation of highly amplified arrays in both species; however, they formed species-specific organization on female-restricted sex chromosomes. Our results show how satDNA composition is highly diversified in M. elongatus, in which their accumulation is significantly contributing to W1 differentiation and not satDNA diversity per se. Also, the evolutionary behavior of these repeats may be associated with genome plasticity and satDNA variability between the sexes and between closely related species, influencing how seemingly homeologous heteromorphic sex chromosomes undergo independent satDNA evolution.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE