Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 56
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nano Lett ; 24(8): 2429-2436, 2024 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-38363878

RÉSUMÉ

DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl4]2-. It provided the stabilization of different DNA origami nanostructures against mechanical compression, temperatures up to 100 °C, double-distilled water, and pH values between 4 and 12. Additionally, DNA origami superstructures and bound cargos are stabilized with yields of up to 98%. To demonstrate the general applicability of our approach, we employed our protocol with a Pd metallization procedure at elevated temperatures. In the future, we think that our method opens up new possibilities for applications of DNA origami nanostructures beyond their usual reaction conditions.


Sujet(s)
Métaux lourds , Nanostructures , Conformation d'acide nucléique , ADN/composition chimique , Nanostructures/composition chimique , Température , Nanotechnologie
2.
J Colloid Interface Sci ; 649: 826-831, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37390530

RÉSUMÉ

Highly site-specific growth of gold nanoparticles (AuNPs) on Bismuth Selenide (Bi2Se3) hexagonal nanoplates was achieved by fine-tuning the growth kinetics of Au through controlling the coordination number of the Au ion in MBIA-Au3+ complex. With increasing concentration of MBIA, the increased amount and the coordination number of the MBIA-Au3+ complex results in the decrease of the reduction rate of Au. The slowed growth kinetics of Au allowed the recognition of the sites with different surface energy on the anisotropic Bi2Se3 hexagonal nanoplates. As a result, the site-specific growth of AuNPs at the corner, the edge, and the surface of the Bi2Se3 nanoplates were successfully achieved. This way of growth kinetic control was proven to be effective in constructing well-defined heterostructures with precise site-specificity and high purity of the product. This is helpful for the rational design and controlled synthesis of sophisticated hybrid nanostructures and would eventually promote their applications in various fields.

3.
Chem Asian J ; 18(11): e202300218, 2023 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-37062962

RÉSUMÉ

Highly b-oriented MFI zeolite (abbreviated as BOMZ) membranes are attractive due to less grain boundary defects and straight channels normal to the substrate, enhancing selectivity and flux in membrane separation. Herein, we demonstrate a novel, effective and easily-amplified printing-transfer oriented-seed-layer technique to manufacture uniform BOMZ seed monolayer on porous supports. Furthermore, a facile and effective approach for the synthesis of highly BOMZ membranes by introducing poly(hexamethylene biguanide) hydrochloride as a twin crystal inhibitor during seeded growth is demonstrated. Well-intergrown BOMZ membranes (∼650 nm thick) obtained on porous Al2 O3 supports show a flux of 2.8 kg m-2 h-1 with a separation factor as high as 71 for pervaporation in the 60 °C feed of EtOH/H2 O (5 wt%), which is much higher than those of random membranes. The developed seed assembly technique on porous supports underlines great potential for facile preparation of oriented seed layers on porous supports.

4.
Small ; 19(26): e2206438, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-36960479

RÉSUMÉ

DNA origami molds allow a shape-controlled growth of metallic nanoparticles. So far, this approach is limited to gold and silver. Here, the fabrication of linear palladium nanostructures with controlled lengths and patterns is demonstrated. To obtain nucleation centers for a seeded growth, a synthesis procedure of palladium nanoparticles (PdNPs) using Bis(p-sulfonatophenyl)phenylphosphine (BSPP) both as reductant and stabilizer is developed to establish an efficient functionalization protocol of the particles with single-stranded DNA. Attaching the functionalized particles to complementary DNA strands inside DNA mold cavities supports subsequently a highly specific seeded palladium deposition. This provides rod-like PdNPs with diameters of 20-35 nm of grainy morphology. Using an annealing procedure and a post-reduction step with hydrogen, homogeneous palladium nanostructures can be obtained. With the adaptation of the procedure to palladium the capabilities of the mold-based tool-box are expanded. In the future, this may allow a facile adaptation of the mold approach to less noble metals including magnetic materials such as Ni and Co.


Sujet(s)
Nanoparticules métalliques , Nanostructures , Palladium , Nanoparticules métalliques/composition chimique , Nanostructures/composition chimique , ADN/composition chimique , Or/composition chimique
5.
J Colloid Interface Sci ; 633: 284-290, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36459933

RÉSUMÉ

HYPOTHESIS: Except for chemical composition, surface morphology may endue colloidal nanoparticles with special interfacial behaviors, which is highly desired in certain scenarios, for example, ultra-stable Pickering emulsion for pharmaceutical applications where only limited chemicals are allowed. Herein, silica colloidal nanoparticle was chosen as a demo to illustrate a kinetically-controlled seeded growth strategy for the surface morphology regulation of colloidal nanoparticles. EXPERIMENTS: Surface chemical heterogeneity was primarily introduced to the silica seed nanoparticles by a seeded growth process in the presence of mixed silicate moieties with thermodynamical incompatibility. Then a further kinetically-controlled seeded growth step was performed to regulate the surface morphology of silica nanoparticles by promoting the selective condensation of tetraethoxysilane on the hydrophilic microdomains. FINDINGS: Upon reducing the growing rate, tetraethoxysilane hydrolysates tend to condensate on silica microdomains, resulting in the formation of raspberry-like nanoparticles. The generality of the kinetically-controlled seeded growth strategy was validated by its success on differently-sized silica seeds modified with a range of silane coupling agents. This established strategy is facile and effective for massive production of raspberry-like silica colloidal nanoparticles with precisely-designed surface morphology and size, offering an ideal platform for the investigation on the exclusive contribution of morphology to the interfacial behaviors of nanoparticles.


Sujet(s)
Nanoparticules , Propriétés de surface , Nanoparticules/composition chimique , Silanes , Silice/composition chimique
6.
Adv Mater ; 35(1): e2208299, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36239273

RÉSUMÉ

A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology may hold the key to the practical utilization of these materials. An optimized chiral growth method to prepare fourfold twisted gold nanorods is described herein, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges are found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4 , in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, it is proposed that the dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.


Sujet(s)
Nanoparticules , Nanotubes , Cystéine/composition chimique , Pouvoir rotatoire , Or/composition chimique , Nanotubes/composition chimique , Nanoparticules/composition chimique
7.
Nano Lett ; 22(24): 10120-10127, 2022 12 28.
Article de Anglais | MEDLINE | ID: mdl-36472631

RÉSUMÉ

We report the formation of an intermediate lamellar Cu-thiolate complex, and tuning its relative stability using alkylphosphonic acids are crucial to enabling controlled heteronucleation to form Bi(Cu2-xS)n heterostructures with a tunable number of Cu2-xS stems on a Bi core. The denticity of the phosphonic acid group, concentration, and chain length of alkylphosphonic acids are critical factors determining the stability of the Cu-thiolate complex. Increasing the stability of the Cu-thiolate results in single Cu2-xS stem formation, and decreased stability of the Cu-thiolate complex increases the degree of heteronucleation to form multiple Cu2-xS stems on the Bi core. Spatially separated multiple Cu2-xS stems transform into a support network to hold a fragmented Bi core when used as an anode in a K-ion battery, leading to a more stable cycling performance showing a specific capacity of ∼170 mAh·g-1 after 200 cycles compared to ∼111 mAh·g-1 for Bi-Cu2-xS single-stem heterostructures.


Sujet(s)
Nanoparticules , Ligands , Cations , Électrodes , Potassium
8.
ACS Nano ; 16(11): 19281-19292, 2022 Nov 22.
Article de Anglais | MEDLINE | ID: mdl-36288463

RÉSUMÉ

Chiral plasmonics is a rapidly developing field where breakthroughs and unsolved problems coexist. We have recently reported binary surfactant-assisted seeded growth of chiral gold nanorods (Au NRs) with high chiroptical activity. Such a seeded-growth process involves the use of a chiral cosurfactant that induces micellar helicity, in turn driving the transition from achiral to chiral Au NRs, from both the morphological and the optical points of view. We report herein a detailed study on both transitions, which reveals intermediate states that were hidden so far. The correlation between structure and optical response is carefully analyzed, including the (linear and CD) spectral evolution over time, electron tomography, the impact of NR dimensions on their optical response, the variation of the absorption-to-scattering ratio during the evolution from achiral to chiral Au NRs, and the near-field enhancement related to chiral plasmon modes. Our findings provide further understanding of the growth process of chiral Au NRs and the associated optical changes, which will facilitate further study and applications of chiral nanomaterials.

9.
ACS Nano ; 16(7): 10589-10599, 2022 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-35758937

RÉSUMÉ

General synthesis of a highly oriented metallic heterodimer array based on a selective electrodeposition technique onto a metal nanoparticle-embedded carbon film is proposed, which enables the preparation of heterodimers with a wide variety of metal combinations. This method requires no surfactant, capping agent, organic solvent, or heat treatment. As a representative metal combination, a nickel (Ni)/palladium (Pd) heterodimer array was prepared by selective electrodeposition of Ni nanoparticles (Ni NPs) on top of partially exposed Pd NPs embedded in carbon film electrodes fabricated by a cosputtering technique. Such a selective electrodeposition becomes possible by utilizing the difference in electrodeposition overpotentials between carbon and Pd NP surfaces. X-ray photoelectron spectroscopy revealed a charge transfer from Ni NPs to Pd NPs, implying that the catalytic and optical properties can be expected to be controllable. The formed heterodimer array structure was mechanically stable against ultrasonication in ethanol for over 1 h because most parts of the Pd NPs were tightly embedded in the carbon film. After conversion from Ni to nickel hydroxide (Ni(OH)2), the electrode showed high electrocatalytic activity toward glucose oxidation, with a higher turnover rate and lower overpotential compared to Ni(OH)2 electrodeposited on pure carbon film electrodes.

10.
Nanomaterials (Basel) ; 12(10)2022 May 18.
Article de Anglais | MEDLINE | ID: mdl-35630951

RÉSUMÉ

Composite inorganic nanoarchitectures, based on combinations of distinct materials, represent advanced solid-state constructs, where coexistence and synergistic interactions among nonhomologous optical, magnetic, chemical, and catalytic properties lay a basis for the engineering of enhanced or even unconventional functionalities. Such systems thus hold relevance for both theoretical and applied nanotechnology-based research in diverse areas, spanning optics, electronics, energy management, (photo)catalysis, biomedicine, and environmental remediation. Wet-chemical colloidal synthetic techniques have now been refined to the point of allowing the fabrication of solution free-standing and easily processable multicomponent nanocrystals with sophisticated modular heterostructure, built upon a programmed spatial distribution of the crystal phase, composition, and anchored surface moieties. Such last-generation breeds of nanocrystals are thus composed of nanoscale domains of different materials, assembled controllably into core/shell or heteromer-type configurations through bonding epitaxial heterojunctions. This review offers a critical overview of achievements made in the design and synthetic elaboration of colloidal nanocrystal heterostructures based on diverse associations of transition metals (with emphasis on plasmonic metals) and transition-metal oxides. Synthetic strategies, all leveraging on the basic seed-mediated approach, are described and discussed with reference to the most credited mechanisms underpinning regioselective heteroepitaxial deposition. The unique properties and advanced applications allowed by such brand-new nanomaterials are also mentioned.

11.
ACS Nano ; 16(1): 910-920, 2022 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-35023718

RÉSUMÉ

Plasmonic nanomaterials with strong absorption at near-infrared frequencies are promising photothermal therapy agents (PTAs). The pursuit of high photothermal conversion efficiency has been the central focus of this research field. Here, we report the development of plasmonic nanoparticle clusters (PNCs) as highly efficient PTAs and provide a semiquantitative approach for calculating their resonant frequency and absorption efficiency by combining the effective medium approximation (EMA) theory and full-wave electrodynamic simulations. Guided by the theoretical prediction, we further develop a universal strategy of space-confined seeded growth to prepare various PNCs. Under optimized growth conditions, we achieve a record photothermal conversion efficiency of up to ∼84% for gold-based PNCs, which is attributed to the collective plasmon-coupling-induced near-unity absorption efficiency. We further demonstrate the extraordinary photothermal therapy performance of the optimized PNCs in in vivo application. Our work demonstrates the high feasibility and efficacy of PNCs as nanoscale PTAs.


Sujet(s)
Nanoparticules métalliques , Nanostructures , Or , Thérapie photothermique , Photothérapie , Nanoparticules métalliques/usage thérapeutique
12.
J Mater Sci Mater Med ; 32(12): 142, 2021 Nov 24.
Article de Anglais | MEDLINE | ID: mdl-34817698

RÉSUMÉ

Calcium phosphate (CaP) compounds may occur in the body as abnormal pathogenic phases in addition to their normal occurrence as bones and teeth. Dicalcium phosphate dihydrate (DCPD; CaPO4·2H2O), along with other significant CaP phases, have been observed in pathogenic calcifications such as dental calculi, kidney stones and urinary stones. While other studies have shown that polar amino acids can inhibit the growth of CaPs, these studies have mainly focused on hydroxyapatite (HAp; Ca10(PO4)6(OH)2) formation from highly supersaturated solutions, while their effects on DCPD nucleation and growth from metastable solutions have been less thoroughly explored. By further elucidating the mechanisms of DCPD formation and the influence of amino acids on those mechanisms, insights may be gained into ways that amino acids could be used in treatment and prevention of unwanted calcifications. The current study involved seeded growth of DCPD from metastable solutions at constant pH in the presence of neutral, acidic and phosphorylated amino acid side chains. As a comparison, solutions were also seeded with calcium pyrophosphate (CPP; Ca2P2O7), a known calcium phosphate inhibitor. The results show that polar amino acids inhibit DCPD growth; this likely occurs due to electrostatic interactions between amino acid side groups and charged DCPD surfaces. Phosphoserine had the greatest inhibitory ability of the amino acids tested, with an effect equal to that of CPP. Clustering of DCPD crystals giving rise to a "chrysanthemum-like" morphology was noted with glutamic acid. This study concludes that molecules containing an increased number of polar side groups will enhance the inhibition of DCPD seeded growth from metastable solutions.


Sujet(s)
Calcinose , Phosphates de calcium/synthèse chimique , Animaux , Humains , Microscopie électronique à balayage , Diffraction des rayons X
13.
ACS Appl Mater Interfaces ; 13(38): 45870-45880, 2021 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-34541850

RÉSUMÉ

Magnetically induced hyperthermia has reached a milestone in medical nanoscience and in phase III clinical trials for cancer treatment. As it relies on the heat generated by magnetic nanoparticles (NPs) when exposed to an external alternating magnetic field, the heating ability of these NPs is of paramount importance, so is their synthesis. We present a simple and fast method to produce iron oxide nanostructures with excellent heating ability that are colloidally stable in water. A polyol process yielded biocompatible single core nanoparticles and nanoflowers. The effect of parameters such as the precursor concentration, polyol molecular weight as well as reaction time was studied, aiming to produce NPs with the highest possible heating rates. Polyacrylic acid facilitated the formation of excellent nanoheating agents iron oxide nanoflowers (IONFs) within 30 min. The progressive increase of the size of the NFs through applying a seeded growth approach resulted in outstanding enhancement of their heating efficiency with intrinsic loss parameter up to 8.49 nH m2 kgFe-1. The colloidal stability of the NFs was maintained when transferring to an aqueous solution via a simple ligand exchange protocol, replacing polyol ligands with biocompatible sodium tripolyphosphate to secure the IONPs long-term colloidal stabilization.


Sujet(s)
Chauffage , Nanoparticules magnétiques d'oxyde de fer/composition chimique , Résines acryliques/composition chimique , Ligands , Phénomènes magnétiques , Taille de particule , Polyéthylène glycols/composition chimique , Polyphosphates/composition chimique
14.
Nanomaterials (Basel) ; 11(9)2021 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-34578501

RÉSUMÉ

Core-shell Au-Ag nanostructures (Au-AgNSs) are prepared by a seed-meditated growth, i.e., by a two-step process. The synthetic parameters greatly influence the morphologies of the final bimetallic Au-AgNSs, their stability and application potential as surface-enhanced Raman scattering (SERS) substrates. Direct comparison of several types of Au NPs possessing different surface species and serving as seeds in Au-AgNSs synthesis is the main objective of this paper. Borohydride-reduced (with varying stages of borohydride hydrolysis) and citrate-reduced Au NPs were prepared and used as seeds in Au-AgNSs generation. The order of reactants in seed-mediated growth procedure represents another key factor influencing the final Au-AgNSs characteristics. Electronic absorption spectra, dynamic light scattering, zeta potential measurements, energy dispersive spectroscopy and transmission electron microscopy were employed for Au-AgNSs characterization. Subsequently, possibilities and limitations of SERS-detection of unperturbed cationic porphyrin, 5,10,15,20-tetrakis(1-methyl-4-pyridyl)21H,23H-porphine (TMPyP), were investigated by using these Au-AgNSs. Only the free base (unperturbed) SERS spectral form of TMPyP is detected in all types of Au-AgNSs. It reports about a well-developed envelope of organic molecules around each Au-AgNSs which prevents metalation from occuring. TMPyP, attached via ionic interaction, was successfully detected in 10 nM concentration due to Au-AgNSs.

15.
Nanomaterials (Basel) ; 11(8)2021 Aug 04.
Article de Anglais | MEDLINE | ID: mdl-34443831

RÉSUMÉ

Ge nanowires are playing a big role in the development of new functional microelectronic modules, such as gate-all-around field-effect transistor devices, on-chip lasers and photodetectors. The widely used three-phase bottom-up growth method utilising a foreign catalyst metal or metalloid is by far the most popular for Ge nanowire growth. However, to fully utilise the potential of Ge nanowires, it is important to explore and understand alternative and functional growth paradigms such as self-seeded nanowire growth, where nanowire growth is usually directed by the in situ-formed catalysts of the growth material, i.e., Ge in this case. Additionally, it is important to understand how the self-seeded nanowires can benefit the device application of nanomaterials as the additional metal seeding can influence electron and phonon transport, and the electronic band structure in the nanomaterials. Here, we review recent advances in the growth and application of self-seeded Ge and Ge-based binary alloy (GeSn) nanowires. Different fabrication methods for growing self-seeded Ge nanowires are delineated and correlated with metal seeded growth. This review also highlights the requirement and advantage of self-seeded growth approach for Ge nanomaterials in the potential applications in energy storage and nanoelectronic devices.

16.
Adv Mater ; 33(29): e2100381, 2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-34085729

RÉSUMÉ

Advances in DNA nanotechnology allow the design and fabrication of highly complex DNA structures, uisng specific programmable interactions between smaller nucleic acid building blocks. To convey this concept to the fabrication of metallic nanoparticles, an assembly platform is developed based on a few basic DNA structures that can serve as molds. Programming specific interactions between these elements allows the assembly of mold superstructures with a range of different geometries. Subsequent seeded growth of gold within the mold cavities enables the synthesis of complex metal structures including tightly DNA-caged particles, rolling-pin- and dumbbell-shaped particles, as well as T-shaped and loop particles with high continuity. The method further supports the formation of higher-order assemblies of the obtained metal geometries. Based on electrical and optical characterizations, it is expected that the developed platform is a valuable tool for a self-assembly-based fabrication of nanoelectronic and nanooptic devices.


Sujet(s)
ADN , Or , Nanostructures , Nanotechnologie , Conformation d'acide nucléique
17.
ACS Nano ; 15(6): 9987-9999, 2021 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-34110780

RÉSUMÉ

Colloidal heteronanocrystals allow for the synergistic combination of properties of different materials. For example, spatial separation of the photogenerated electron and hole can be achieved by coupling different semiconductors with suitable band offsets in one single nanocrystal, which is beneficial for improving the efficiency of photocatalysts and photovoltaic devices. From this perspective, axially segmented semiconductor heteronanorods with a type-II band alignment are particularly attractive since they ensure the accessibility of both photogenerated charge carriers. Here, a two-step synthesis route to Cu2-xS/CuInS2 Janus-type heteronanorods is presented. The heteronanorods are formed by injection of a solution of preformed Cu2-xS seed nanocrystals in 1-dodecanethiol into a solution of indium oleate in oleic acid at 240 °C. By varying the reaction time, Janus-type heteronanocrystals with different sizes, shapes, and compositions are obtained. A mechanism for the formation of the heteronanocrystals is proposed. The first step of this mechanism consists of a thiolate-mediated topotactic, partial Cu+ for In3+ cation exchange that converts one of the facets of the seed nanocrystals into CuInS2. This is followed by homoepitaxial anisotropic growth of wurtzite CuInS2. The Cu2-xS seed nanocrystals also act as sacrificial Cu+ sources, and therefore, single composition CuInS2 nanorods are eventually obtained if the reaction is allowed to proceed to completion. The two-stage seeded growth method developed in this work contributes to the rational synthesis of Cu2-xS/CuInS2 heteronanocrystals with targeted architectures by allowing one to exploit the size and faceting of premade Cu2-xS seed nanocrystals to direct the growth of the CuInS2 segment.

18.
Angew Chem Int Ed Engl ; 60(33): 18209-18216, 2021 08 09.
Article de Anglais | MEDLINE | ID: mdl-34111324

RÉSUMÉ

Synthesis of supramolecular block co-polymers (BCP) with small monomers and predictive sequence requires elegant molecular design and synthetic strategies. Herein we report the unparalleled synthesis of tri-component supramolecular BCPs with tunable microstructure by a kinetically controlled sequential seeded supramolecular polymerization of fluorescent π-conjugated monomers. Core-substituted naphthalene diimide (cNDI) derivatives with different core substitutions and appended with ß-sheet forming peptide side chains provide perfect monomer design with spectral complementarity, pathway complexity and minimal structural mismatch to synthesize and characterize the multi-component BCPs. The distinct fluorescent nature of various cNDI monomers aids the spectroscopic probing of the seeded growth process and the microscopic visualization of resultant supramolecular BCPs using Structured Illumination Microscopy (SIM). Kinetically controlled sequential seeded supramolecular polymerization presented here is reminiscent of the multi-step synthesis of covalent BCPs via living chain polymerization. These findings provide a promising platform for constructing unique functional organic heterostructures for various optoelectronic and catalytic applications.

19.
Front Chem ; 9: 671220, 2021.
Article de Anglais | MEDLINE | ID: mdl-33968907

RÉSUMÉ

We report a facile synthesis of Au@CuxO core-shell mesoporous nanospheres with tunable size in the aqueous phase via seeded growth. The success of the current work relies on the use of a halide-free copper (Cu) precursor and n-oleyl-1,3-propanediamine as a capping agent to facilitate the formation of a copperish oxide shell with a mesoporous structure and the presence of mixed oxidation states of Cu. By varying the amount of spherical Au seeds while keeping other parameters unchanged, their diameters could be readily tuned without noticeable change in morphology. As compared with commercial Cu2O, the as-prepared Au@CuxO core-shell mesoporous nanospheres exhibit the higher adsorption ability, enhanced activity, and excellent stability toward photocatalytic degradation of methyl orange (MO) under visible light irradiation, indicating their potential applications in water treatment.

20.
ACS Appl Mater Interfaces ; 13(18): 21194-21206, 2021 May 12.
Article de Anglais | MEDLINE | ID: mdl-33914507

RÉSUMÉ

With the rapid improvement of perovskite solar cells (PSCs), long-life operational stability has become a major requirement for their commercialization. In this work, we devised a pristine cesium-formamidinium-methylammonium (termed as CsFAMA) triple-cation-based perovskite precursor solution into the ionic liquid (IL)-assisted MAPbI3 nanoparticles (NPs) through a seeded growth approach in which the host IL-assisted MAPbI3 NPs remarkably promote high-quality perovskite films with large single-crystal domains, enhancing the device performance and stability. The power conversion efficiency (PCE) of the MAPbI3 NP-seeded growth of MAPbI3 NPs/CsFAMA-based PSCs is as high as 19.44%, which is superior to those of MAPbI3 NPs and pristine CsFAMA films as the photoactive layer (9.52 and 17.33%, respectively). The long-term light-soaking and moisture stability of IL-aided MAPbI3 NPs/CsFAMA-based devices (non-encapsulated) remain above 90 and 80%, respectively, of their initial output after 2 h of light illumination (1 sun) and 6000 h storage at ambient with a relative humidity range of 30-40%. The use of the IL-assisted MAPbI3 NP-seeded growth for PSCs is a significant step toward developing stable and reliable perovskite photovoltaic devices.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE