Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 19 de 19
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nano Lett ; 24(13): 4038-4043, 2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38511834

RÉSUMÉ

Specific heat capacity is one of the most fundamental thermodynamic properties of materials. In this work, we measured the specific heat capacity of PbSe nanocrystals with diameters ranging from 5 to 23 nm, and its value increases significantly from 0.2 to 0.6 J g-1 °C-1. We propose a mass assignment model to describe the specific heat capacity of nanocrystals, which divides it into four parts: electron, inner, surface, and ligand. By eliminating the contribution of ligand and electron specific heat capacity, the specific heat capacity of the inorganic core is linearly proportional to its surface-to-volume ratio, showing the size dependence. Based on this linear relationship, surface specific heat capacity accounts for 40-60% of the specific heat capacity of nanocrystals with size decreasing. It can be attributed to the uncoordinated surface atoms, which is evidenced by the appearance of extra surface phonons in Raman spectra and ab initio molecular dynamics (AIMD) simulations.

2.
Nano Lett ; 24(7): 2125-2130, 2024 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-38341872

RÉSUMÉ

Semiconductor nanocrystals (NCs) with high elemental and structural complexity can be engineered to tailor for electronic, photovoltaic, thermoelectric, and battery applications etc. However, this greater complexity causes ambiguity in the atomic structure understanding. This in turn hinders the mechanistic studies of nucleation and growth, the theoretical calculations of functional properties, and the capability to extend functional design across complementary semiconductor nanocrystals. Herein, we successfully deciphered the atomic arrangements of 4 different nanocrystal domains in CuαZnßSnγSeδ (CZTSe) nanocrystals using crucial zone axis analysis on multiple crystals in different orientations. The results show that the essence of crystallographic progression from binary to multielemental semiconductors is actually the change of theoretical periodicity. This transition is caused by decreased symmetry in the crystal instead of previously assumed crystal deformation. We further reveal that these highly complex crystalline entities have highly ordered element arrangements as opposed to the previous understanding that their elemental orderings are random.

3.
Nano Lett ; 23(9): 3687-3693, 2023 May 10.
Article de Anglais | MEDLINE | ID: mdl-37093047

RÉSUMÉ

Infrared-pump, electronic-probe (IPEP) spectroscopy is used to measure heat flow into and out of CdSe nanocrystals suspended in an organic solvent, where the surface ligands are initially excited with an infrared pump pulse. Subsequently, the heat is transferred from the excited ligands to the nanocrystals and in parallel to the solvent. Parallel heat transfer in opposite directions uniquely enables us to differentiate the thermal conductances at the nanocrystal/ligand and ligand/solvent interfaces. Using a novel solution to the heat diffusion equation, we fit the IPEP data to find that the nanocrystal/ligand conductances range from 88 to 135 MW m-2 K-1 and are approximately 1 order of magnitude higher than the ligand/solvent conductances, which range from 7 to 26 MW m-2 K-1. Transient nonequilibrium molecular dynamics (MD) simulations of nanocrystal suspensions agree with IPEP data and show that ligands bound to the nanocrystal by bidentate bonds have more than twice the per-ligand conductance as those bound by monodentate bonds.

4.
Proc Natl Acad Sci U S A ; 120(17): e2206975120, 2023 04 25.
Article de Anglais | MEDLINE | ID: mdl-37068259

RÉSUMÉ

Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis. Semiconductor nanocrystals are highly active and robust photocatalysts for hydrogen (H2) evolution, but their use is hindered by the oxidative side of the reaction. In this system, Shewanella oneidensis MR-1 provides electrons to a CdSe nanocrystalline photocatalyst, enabling visible light-driven H2 production. Unlike microbial electrolysis cells, this system requires no external potential. Illuminating this system at 530 nm yields continuous H2 generation for 168 h, which can be lengthened further by replenishing bacterial nutrients.


Sujet(s)
Composés du cadmium , Boîtes quantiques , Composés du sélénium , Shewanella , Boîtes quantiques/composition chimique , Composés du cadmium/composition chimique , Hydrogène/métabolisme , Composés du sélénium/composition chimique , Composés du sélénium/métabolisme , Shewanella/métabolisme
5.
Annu Rev Phys Chem ; 70: 353-377, 2019 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-31112459

RÉSUMÉ

This article reviews thermal properties of semiconductor and emergent plasmonic nanomaterials, focusing on mechanisms through which hot carriers and phonons are produced and dissipated as well as the related impacts on optoelectronic properties. Elevated equilibrium temperatures, of particular relevance for implementation of nanomaterials in devices, affect absorptive and radiative transitions as well as emission efficiency that can present reversible and irreversible changes with temperature. In noble metal or doped semiconductor/insulator nanomaterials, hot carriers and lattice heating can substantially influence localized surface plasmon resonances and yield large ultrafast changes in transmission or strongly oscillatory coherences. Transient optical and diffraction characterizations enable nonequilibrium investigations of phonon dynamics and cooling such as lattice expansion and crystal phase stability. Timescales of nanoparticle thermalization with surroundings and transport of heat within films of such materials are also discussed.

6.
Nano Lett ; 19(3): 1695-1700, 2019 03 13.
Article de Anglais | MEDLINE | ID: mdl-30721068

RÉSUMÉ

The mechanisms of exciton generation and recombination in semiconductor nanocrystals are crucial to the understanding of their photophysics and for their application in nearly all fields. While many studies have been focused on type-I heterojunction nanocrystals, the photophysics of type-II nanorods, where the hole is located in the core and the electron is located in the shell of the nanorod, remain largely unexplored. In this work, by scanning single nanorods through the focal spot of radially and azimuthally polarized laser beams and by comparing the measured excitation patterns with a theoretical model, we determine the dimensionality of the excitation transition dipole of single type-II nanorods. Additionally, by recording defocused patterns of the emission of the same particles, we measure their emission transition dipoles. The combination of these techniques allows us to unambiguously deduce the dimensionality and orientation of both excitation and emission transition dipoles of single type-II semiconductor nanorods. The results show that in contrast to previously studied quantum emitters, the particles possess a 3D degenerate excitation and a fixed linear emission transition dipole.

7.
Annu Rev Phys Chem ; 70: 21-43, 2019 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-30633637

RÉSUMÉ

The ability to predict and describe nonradiative processes in molecules via the identification and characterization of conical intersections is one of the greatest recent successes of theoretical chemistry. Only recently, however, has this concept been extended to materials science, where nonradiative recombination limits the efficiencies of materials for various optoelectronic applications. In this review, we present recent advances in the theoretical study of conical intersections in semiconductor nanomaterials. After briefly introducing conical intersections, we argue that specific defects in materials can induce conical intersections between the ground and first excited electronic states, thus introducing pathways for nonradiative recombination. We present recent developments in theoretical methods, computational tools, and chemical intuition for the prediction of such defect-induced conical intersections. Through examples in various nanomaterials, we illustrate the significance of conical intersections for nanoscience. We also discuss challenges facing research in this area and opportunities for progress.

8.
Nano Lett ; 19(1): 308-317, 2019 01 09.
Article de Anglais | MEDLINE | ID: mdl-30584809

RÉSUMÉ

We report lightly Ag/Mn co-doped CdS/ZnS (core/shell) nanocrystals (NCs) as a model system for studying interactions between co-dopants and between NCs and dopants. The co-doped NCs were prepared with a varying average number of Ag dopant atoms per CdS core of the NC from zero to eight; at the same time, the depth profile of the Mn dopants in the ZnS shells was controlled to be either close to or far from the Ag dopants. The incorporation of an average of one to two Ag dopant atoms per NC increased the band-edge photoluminescence (PL); however, it was quenched at higher doping concentration. This alternation is attributed to change of the Ag ion occupancy from PL-enhancing interstitial sites to PL-quenching substitutional sites. Mn PL increased as the number of Ag atoms per NC increased up to approximately seven and then decreased. For NCs doped only with Ag ions, the Ag dopants in substitutional sites acted as PL-quenching hole traps. In Ag/Mn co-doped NCs, the Ag dopants acted as Dexter-type relay sites that enhanced the energy transfer from NC to Mn ions; this effect increased as the distance between Ag and Mn dopants decreased. This model study demonstrates that the simultaneous control of dopant concentrations and spatial distributions in co-doped semiconductor NCs enables sophisticated control of their optical properties.

9.
Nano Lett ; 18(8): 5153-5158, 2018 08 08.
Article de Anglais | MEDLINE | ID: mdl-30016109

RÉSUMÉ

Multiexcitons in emerging semiconducting nanomaterials play a critical role in potential optoelectronic and quantum computational devices. We describe photon resolved single molecule methods to directly probe the dynamics of biexcitons and triexcitons in colloidal CdSe quantum dots. We confirm that biexcitons emit from a spin-correlated state, consistent with statistical scaling. Contrary to current understanding, we find that triexciton emission is dominated by band-edge 1Se1S3/2 recombination rather than the higher energy 1Pe1P3/2 recombination.

10.
Nano Lett ; 18(3): 1888-1895, 2018 03 14.
Article de Anglais | MEDLINE | ID: mdl-29481098

RÉSUMÉ

Nanoparticles are the bridge between the molecular and the macroscopic worlds. The growing number of commercial applications for nanoparticles spans from consumer products to new frontiers of medicine and next-generation optoelectronic technology. They are most commonly deployed in the form of a colloid, or "ink", which are formulated with solvents, surfactants, and electrolytes to kinetically prevent the solid particulate phase from reaching the thermodynamically favored state of separate solid and liquid phases. In this work, we theoretically determine the thermodynamic requirements for forming a single-phase solution of spherical particles and engineer a model system to experimentally demonstrate the spontaneous formation of solutions composed of only solvent and bare inorganic nanoparticles. We show molecular interactions at the nanoparticle interface are the driving force in high-concentration nanoparticle solutions. The work establishes a regime where inorganic nanoparticles behave as molecular solutes as opposed to kinetically stable colloids, which has far-reaching implications for the future design and deployment of nanomaterial technologies.

11.
Nano Lett ; 17(9): 5607-5613, 2017 09 13.
Article de Anglais | MEDLINE | ID: mdl-28776995

RÉSUMÉ

Auger recombination is a nonradiative three-particle process wherein the electron-hole recombination energy dissipates as a kinetic energy of a third carrier. Auger decay is enhanced in quantum-dot (QD) forms of semiconductor materials compared to their bulk counterparts. Because this process is detrimental to many prospective applications of the QDs, the development of effective approaches for suppressing Auger recombination has been an important goal in the QD field. One such approach involves "smoothing" of the confinement potential, which suppresses the intraband transition involved in the dissipation of the electron-hole recombination energy. The present study evaluates the effect of increasing "smoothness" of the confinement potential on Auger decay employing a series of CdSe/CdS-based QDs wherein the core and the shell are separated by an intermediate layer of a CdSexS1-x alloy comprised of 1-5 sublayers with a radially tuned composition. As inferred from single-dot measurements, use of the five-step grading scheme allows for strong suppression of Auger decay for both biexcitons and charged excitons. Further, due to nearly identical emissivities of neutral and charged excitons, these QDs exhibit an interesting phenomenon of lifetime blinking for which random fluctuations of a photoluminescence lifetime occur for a nearly constant emission intensity.

12.
Nano Lett ; 17(8): 4820-4830, 2017 08 09.
Article de Anglais | MEDLINE | ID: mdl-28715222

RÉSUMÉ

We present a theoretical model for the effect of symmetry breaking introduced by the doping of semiconductor nanocrystals with Coulomb impurities. The presence of a Coulomb center breaks the nanocrystal symmetry and affects its optical properties through the mixing of the hole spin and parity sublevels, breaking the selection rules responsible for the exciton dark state in undoped nanocrystals. After reviewing the effects on the exciton fine structure and optical selection rules using symmetry theory, we present a perturbative model to quantify the effects. We find that the symmetry breaking proceeds by two mechanisms: First, mixing by even parity terms in the Coulomb multipole expansion results in an exciton fine structure consisting of three optically active doublets which are polarized along x, y, and z axes with a ground optically passive dark exciton state, and second, odd parity terms which break inversion symmetry significantly activate optical transitions which are optically forbidden in the unperturbed nanocrystal due to both spin and parity selection rules. In the case of small sized "quasi-spherical" nanocrystals, the introduction of a single positively charged Coulomb center is shown here to result in significant enhancement of the radiative decay rate at room temperatures by up to a factor of 10.

13.
Nano Lett ; 17(4): 2433-2439, 2017 04 12.
Article de Anglais | MEDLINE | ID: mdl-28349694

RÉSUMÉ

Herein, we report unique features of the assemblies of tetrapod-shaped colloidal nanocrystals (TpNCs) with lengthy arms applicable to flexible thin-film transistors. Due to the extended nature of tetrapod geometry, films made of the TpNC assemblies require reduced numbers of inter-NC hopping for the transport of charge carriers along a given channel length; thus, enhanced conductivity can be achieved compared to those made of typical spherical NCs without arms. Moreover, electrical conduction through the assemblies is tolerant against mechanical bending because interconnections between TpNCs can be well-preserved under bending. Interestingly, both the conductivity of the assemblies and their mechanical tolerance against bending are improved with an increase in the length of tetrapod arms. The arm length-dependency was demonstrated in a series of CdSe TpNC assemblies with different arm lengths (l = 0-90 nm), whose electrical conduction was modulated through electrolyte gating. From the TpNCs with the longest arm length included in the study (l = 90 nm), the film conductivity as high as 20 S/cm was attained at 3 V of gate voltage, corresponding to electron mobility of >10 cm2/(V s) even when evaluated conservatively. The high channel conductivity was retained (∼90% of the value obtained from the flat geometry) even under high bending (bending radius = 5 mm). The results of the present study provide new insights and guidelines for the use of colloidal nanocrystals in solution-processed flexible electronic device applications.

14.
Nano Lett ; 15(11): 7319-28, 2015 Nov 11.
Article de Anglais | MEDLINE | ID: mdl-26397312

RÉSUMÉ

Nanocrystal quantum dots (QDs) are attractive materials for applications as laser media because of their bright, size-tunable emission and the flexibility afforded by colloidal synthesis. Nonradiative Auger recombination, however, hampers optical amplification in QDs by rapidly depleting the population of gain-active multiexciton states. In order to elucidate the role of Auger recombination in QD lasing and isolate its influence from other factors that might affect optical gain, we study two types of CdSe/CdS core/shell QDs with the same core radii and the same total sizes but different properties of the core/shell interface ("sharp" vs "smooth"). These samples exhibit distinctly different biexciton Auger lifetimes but are otherwise virtually identical. The suppression of Auger recombination in the sample with a smooth (alloyed) interface results in a notable improvement in the optical gain performance manifested in the reduction of the threshold for amplified spontaneous emission and the ability to produce dual-color lasing involving both the band-edge (1S) and the higher-energy (1P) electronic states. We develop a model, which explicitly accounts for the multiexciton nature of optical gain in QDs, and use it to analyze the competition between stimulated emission from multiexcitons and their decay via Auger recombination. These studies re-emphasize the importance of Auger recombination control for the realization of real-life QD-based lasing technologies and offer practical strategies for suppression of Auger recombination via "interface engineering" in core/shell structures.

15.
ACS Appl Mater Interfaces ; 6(22): 19905-13, 2014 Nov 26.
Article de Anglais | MEDLINE | ID: mdl-25369420

RÉSUMÉ

Solar-driven photocatalytic process based on electron-hole pair production in semiconductors is a long sought-after solution to a green and renewable energy and has attracted a renaissance of interest recently. The relatively low photocatalytic efficiency, however, is a main obstacle to their practical applications. A promising attempt to solve this problem is by combined use of metal nanoparticles, by taking advantage of strong and localized plasmonic near-field to enhance solar absorption and to increase the electron-hole pair generation rate at the surface of semiconductor. Here, we report a semiconductor/metal visible-light photocatalyst based on CdSe/CdS-Au (QD-Au) core-satellite heteronanocrystals, and assemble them on graphene nanosheets for better photocatalytic reaction. The as-synthesized photocatalyst exhibits excellent plasmon-enhanced photocatalytic activities toward both photodegradation of organic dye and visible-light H2 generation from water. The H2 evolution rate achieves a maximum of 3113 µmol h(-1) g(-1) for the heteronanocrystal-graphene composites, which is about 155% enhancement compared to nonplasmonic QD-G sample and 340% enhancement compared to control QD-Au-G sample, and the apparent quantum efficiency (QE) reaches to 25.4% at wavelength of 450 nm.

16.
Small ; 10(6): 1194-201, 2014 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-24395590

RÉSUMÉ

Pyrite nanocrystals are currently considered as a promising material for large scale photovoltaic applications due to their non-toxicity and large abundance. While scalable synthetic routes for phase-pure and shape controlled colloidal pyrite nanocrystals have been reported, their use in solar cells has been hampered by the detrimental effects of their surface defects. Here, we report a systematic study of optical and electronic properties of pyrite nanocrystal thin films employing a series of different ligands varying both the anchor and bridging group. The effect of the ligands on the optical and electronic properties is investigated by UV-vis/NIR absorption spectroscopy, current voltage characteristic measurements and surface photovoltage spectroscopy. We find that the optical absorption is mainly determined by the anchor group. The absorption onset in the thin films shifts up to ∼100 meV to the red. This is attributed to changes in the dielectric environment induced by different anchors. The conductivity and photoconductivity, on the other hand, are determined by combined effects of anchor and bridging group, which modify the effective hopping barrier. Employing different ligands, the differential conductance varies over four orders of magnitude. The largest redshift and differential conductance are observed for ammonium sulfides and thiolated aromatic linkers. Pyridine and long chain amines, on the other hand, lead to smaller modifications. Our findings highlight the importance of surface functionalization and interparticle electronic coupling in the use of pyrite nanocrystals for photovoltaic devices.

17.
J Phys Chem Lett ; 5(1): 167-73, 2014 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-26276197

RÉSUMÉ

Donor-Acceptor transition was previously suggested as a mechanism for luminescence in (ZnS)1-x(AgInS2)x nanocrystals. Here we show the participation of delocalized valence/conduction band in the luminescence. Two emission pathways are observed: Path-1 involves transition between a delocalized state and a localized state exhibiting higher energy and shorter lifetime (∼25 ns) and Path-2 (donor-acceptor) involves two localized defect states exhibiting lower emission energy and longer lifetime (>185 ns). Surprisingly, Path-1 dominates (82% for x = 0.33) for nanocrystals with lower x, in sharp difference with prior assignment. Luminescence peak blue shifts systematically by 0.57 eV with decreasing x because of this large contribution from Path-1. X-ray absorption fine structure (XAFS) study of (ZnS)1-x(AgInS2)x nanocrystals shows larger AgS4 tetrahedra compared with InS4 tetrahedra with Ag-S and In-S bond lengths 2.52 and 2.45 Šrespectively, whereas Zn-S bond length is 2.33 Šalong with the absence of second nearest-neighbor Zn-S-metal correlation.

18.
J Phys Chem Lett ; 3(6): 714-9, 2012 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-26286278

RÉSUMÉ

On the basis of a tight binding system-bath model, we investigated carrier mobility of PbSe nanocrystal (NC) arrays as a function of NC size and inter-NC separation. The size-dependent trend of calculated carrier mobilities are in excellent agreement with recent experimental measurements: electron mobility increased up to NC diameter of ∼6 nm and then decreased for larger NCs, whereas hole mobility showed a monotonic size-dependency. Carrier mobility increase was associated with reduced activation energy that governs charge-transfer processes. In contrast, the decrease in electron mobility for large NCs was found to be due to smaller electronic coupling. Control of inter-NC separation is crucial for mobility enhancement: the mobility may change by an order of magnitude when inter-NC separation varies by as little as 1 to 2 Å. We anticipate similar size-dependency of the mobility in other semiconductor NC arrays, although crossover diameter in which mobility reaches its maximum depends on the material.

19.
Article de Anglais | MEDLINE | ID: mdl-29167594

RÉSUMÉ

A new method for in vitro and possibly in vivo ultrahigh-resolution colocalization and distance measurement between biomolecules is described, based on semiconductor nanocrystal probes. This ruler bridges the gap between FRET and far-field (or near-field scanning optical microscope) imaging and has a dynamic range from few nanometers to tens of micrometers. The ruler is based on a stage-scanning confocal microscope that allows the simultaneous excitation and localization of the excitation point-spread-function (PSF) of various colors nanocrystals while maintaining perfect registry between the channels. Fit of the observed diffraction and photophysics-limited images of the PSFs with a two-dimensional Gaussian allows one to determine their position with nanometer accuracy. This new high-resolution tool opens new windows in various molecular, cell biology and biotechnology applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE