Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 5.270
Filtrer
1.
Front Genet ; 15: 1417613, 2024.
Article de Anglais | MEDLINE | ID: mdl-39113684

RÉSUMÉ

Background: Family partial lipodystrophy (FPLD) is a rare autosomal dominant disease characterized by disorders of variable body fat loss associated with metabolic complications. FPLD6 has only been reported in a limited number of cases. Here, we reported a Chinese FPLD6 patient with compound heterozygous mutations in the lipase E, hormone-sensitive type (LIPE) gene. Case presentation: A 20-year-old female patient presented with hypertriglyceridemia, diabetes mellitus, hepatomegaly, and hepatic steatosis. Subcutaneous fat was significantly diminished in her face, abdomen, and limbs. The patient was assessed by detailed clinical and biochemical examinations. A liver biopsy showed severe lipodystrophy. In addition, there were retinal changes, peripheral nerve damage, and renal tubular injury. Sequencing was performed on extracted DNA. Genetic analysis revealed that the patient had compound heterozygous mutations in the LIPE gene: c.2497_250ldel (p.Glu833LysfsTer22) and c.2705del (p.Ser902ThrfsTer27) heterozygous mutations. Verification revealed that this mutation was inherited from her father and mother, respectively, and that they formed newly discovered compound heterozygous mutations occurring in the LIPE gene, causing FPLD6. Conclusion: We reported the first case of FPLD6 in China. Gene analysis demonstrated compound heterozygous mutations in LIPE in this patient. Our case emphasizes the importance of genetic testing in young patients with severe metabolic syndromes.

2.
J Ethnopharmacol ; : 118662, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39117022

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bge. (SMB) is an herbal medicine extensively used for improving metabolic disorders, including Nonalcoholic fatty liver disease (NAFLD). However, the potential material basis and working mechanism still remained to be elucidated. AIM OF THE STUDY: To find potential ingredients for therapy of NAFLD by high content screening and further verify the efficacy on restoring hepatic steatosis and insulin resistance, and clarify the potential working mechanism. MATERIALS AND METHODS: The mouse transcription factor EB (Tfeb) in preadipocytes was knocked out by CRISPR-Cas9 gene editing. High content screening of TFEB nuclear translocation was performed to identify TFEB activators. The effect of candidate compounds on reducing lipid accumulation was evaluated using Caenorhabditis elegans (C. elegans). Then the role of Salvia miltiorrhiza extract (SMB) containing Tanshinone IIA and the derivatives were further investigated on high-fat diet (HFD) fed mice. RNA-seq was performed to explore potential molecular mechanism of SMB. Finally, the gut microbiota diversity was evaluated using 16S rRNA sequencing to investigate the protective role of SMB on regulating gut microbiota homeostasis. RESULTS: Knockout of Tfeb led to excessive lipid accumulation in adipocytes while expression of TFEB homolog HLH-30 in C. elegans (MAH240) attenuated lipid deposition. Screening of TFEB activators identified multiple candidates from Salvia miltiorrhiza, all of them markedly induced lysosome biogenesis in HepG2 cells. One of the candidate compounds Tanshinone IIA significantly decreased lipid droplet deposition in HFD fed C. elegans. Administration of SMB on C57BL/6J mice via gastric irrigation at the dose of 15 g/kg/d markedly alleviated hepatic steatosis, restored serum lipid profile, and glucose tolerance. RNA-seq showed that gene expression profile was altered and the genes related to lipid metabolism were restored. The disordered microbiome was remodeled by SMB, Firmicutes and Actinobacteriotawere notably reduced, Bacteroidota and Verrucomicrobiota were significantly increased. CONCLUSION: Taken together, the observations presented here help address the question concerning what were the main active ingredients in SMB for alleviating NAFLD, and established that targeting TFEB was key molecular basis for the efficacy of SMB.

3.
Clin Nutr ESPEN ; 63: 604-614, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39089652

RÉSUMÉ

BACKGROUND & AIMS: There is a need to identify new treatment options for depression with its comorbidities. Depression often coexists with liver steatosis and the two may share a pathophysiological overlap, including inflammation and microbiota changes. Probiotics might represent a safe option as an adjunctive therapy in patients with depression and possible liver steatosis. The paper presents the secondary analysis of a clinical trial of the effect of probiotic supplementation on the levels of non-invasive markers of liver steatosis and fibrosis in adult patients with depressive disorders. METHODS: The research had a two-arm, parallel-group, prospective, randomized, double-blind, controlled design on probiotics in depression. 116 participants received a probiotic preparation containing Lactobacillus helveticus Rosell®-52 and Bifidobacterium longum Rosell®-175 over 60 days. Here, data from 92 subjects was analyzed. The following were assessed: alanine aminotransferase (ALT), alanine aminotransferase/aspartate aminotransferase (ALT/AST) ratio, Hepatic Steatosis Index, Framingham Steatosis Index, as well as non-invasive biomarkers of liver fibrosis (AST to Platelet Ratio Index, Fibosis-4 Index), or baseline socio-demographic, clinical, and laboratory parameters. RESULTS: The probiotics did not influence liver steatosis and fibrosis parameters compared with placebo (p = 0.940 for HSI). However, the subgroup analysis revealed significant differences in liver-related parameters when stratified by the main diagnosis group (better improvement in steatosis indices after probiotics in depressive episode than mixed depression and anxiety disorder patients) or psychotropic medications use (better improvement in ALT-based indices after probiotics in antidepressant-treated subjects than those non-antidepressant-treated). The interplay between probiotics, medications, clinical and metabolic profiles of depression, and the changes in liver-related parameters has been discussed. CONCLUSIONS: Multiple factors may modulate the postulated hepatoprotective properties of probiotics efficacy in patients with depression. Further studies with larger sample sizes, different probiotic strains, and longer intervention period are necessary to assess the real significance of probiotics for liver health in this population. GOV IDENTIFIER: NCT04756544.

4.
BMC Endocr Disord ; 24(1): 135, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090659

RÉSUMÉ

BACKGROUND: Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is higher in men than in women. Hormonal and genetic causes may account for the sex differences in MASLD. Current human in vitro liver models do not sufficiently take the influence of biological sex and sex hormones into consideration. METHODS: Primary human hepatocytes (PHHs) were isolated from liver specimen of female and male donors and cultured with sex hormones (17ß-estradiol, testosterone and progesterone) for up to 72 h. mRNA expression levels of 8 hepatic lipid metabolism genes were analyzed by RT-qPCR. Sex hormones and their metabolites were determined in cell culture supernatants by LC-MS analyses. RESULTS: A sex-specific expression was observed for LDLR (low density lipoprotein receptor) with higher mRNA levels in male than female PHHs. All three sex hormones were metabolized by PHHs and the effects of hormones on gene expression levels varied depending on hepatocyte sex. Only in female PHHs, 17ß-estradiol treatment affected expression levels of PPARA (peroxisome proliferator-activated receptor alpha), LIPC (hepatic lipase) and APOL2 (apolipoprotein L2). Further changes in mRNA levels of female PHHs were observed for ABCA1 (ATP-binding cassette, sub-family A, member 1) after testosterone and for ABCA1, APOA5 (apolipoprotein A-V) and PPARA after progesterone treatment. Only the male PHHs showed changing mRNA levels for LDLR after 17ß-estradiol and for APOA5 after testosterone treatment. CONCLUSIONS: Male and female PHHs showed differences in their expression levels of hepatic lipid metabolism genes and their responsiveness towards sex hormones. Thus, cellular sex should be considered, especially when investigating the pathophysiological mechanisms of MASLD.


Sujet(s)
Hormones sexuelles stéroïdiennes , Hépatocytes , Métabolisme lipidique , Humains , Mâle , Femelle , Hépatocytes/métabolisme , Hépatocytes/effets des médicaments et des substances chimiques , Métabolisme lipidique/génétique , Métabolisme lipidique/effets des médicaments et des substances chimiques , Hormones sexuelles stéroïdiennes/pharmacologie , Hormones sexuelles stéroïdiennes/métabolisme , Cellules cultivées , Adulte d'âge moyen , Testostérone/pharmacologie , Testostérone/métabolisme , Oestradiol/pharmacologie , Adulte , Progestérone/pharmacologie , Progestérone/métabolisme , Facteurs sexuels
5.
Eur J Med Chem ; 276: 116728, 2024 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-39089002

RÉSUMÉ

In consideration of several serious side effects induced by the classical AF-2 involved "lock" mechanism, recently disclosed PPARγ-Ser273 phosphorylation mode of action has become an alternative and mainstream mechanism for currently PPARγ-based drug discovery and development with an improved therapeutic index. In this study, by virtue of structure-based virtual high throughput screening (SB-VHTS), structurally chemical optimization by targeting the inhibition of the PPARγ-Ser273 phosphorylation as well as in vitro biological evaluation, which led to the final identification of a chrysin-based potential hit (YGT-31) as a novel selective PPARγ modulator with potent binding affinity and partial agonism. Further in vivo evaluation demonstrated that YGT-31 possessed potent glucose-lowering and relieved hepatic steatosis effects without involving the TZD-associated side effects. Mechanistically, YGT-31 presented such desired therapeutic index, mainly because it effectively inhibited the CDK5-mediated PPARγ-Ser273 phosphorylation, selectively elevated the level of insulin sensitivity-related Glut4 and adiponectin but decreased the expression of insulin-resistance-associated genes PTP1B and SOCS3 as well as inflammation-linked genes IL-6, IL-1ß and TNFα. Finally, the molecular docking study was also conducted to uncover an interesting hydrogen-bonding network of YGT-31 with PPARγ-Ser273 phosphorylation-related key residues Ser342 and Glu343, which not only gave a clear verification for our targeting modification but also provided a proof of concept for the abovementioned molecular mechanism.


Sujet(s)
Stéatose hépatique , Flavonoïdes , Récepteur PPAR gamma , Récepteur PPAR gamma/métabolisme , Récepteur PPAR gamma/agonistes , Flavonoïdes/pharmacologie , Flavonoïdes/composition chimique , Flavonoïdes/synthèse chimique , Relation structure-activité , Stéatose hépatique/traitement médicamenteux , Stéatose hépatique/métabolisme , Humains , Structure moléculaire , Diabète de type 2/traitement médicamenteux , Animaux , Hypoglycémiants/pharmacologie , Hypoglycémiants/composition chimique , Hypoglycémiants/synthèse chimique , Simulation de docking moléculaire , Relation dose-effet des médicaments , Souris , Mâle , Évaluation préclinique de médicament
6.
World J Hepatol ; 16(7): 1051-1066, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39086531

RÉSUMÉ

BACKGROUND: The modified Xiaoyao San (MXS) formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer, which has the effect of preventing postoperative recurrence and metastasis of hepatocellular carcinoma and prolonging patient survival. However, the molecular mechanisms underlying that remain unclear. AIM: To investigate the role and mechanisms of MXS in ameliorating hepatic injury, steatosis and inflammation. METHODS: A choline-deficient/high-fat diet-induced rat nonalcoholic steatohepatitis (NASH) model was used to examine the effects of MXS on lipid accumulation in primary hepatocytes. Liver tissues were collected for western blotting and immunohistochemistry (IHC) assays. Lipid accumulation and hepatic fibrosis were detected using oil red staining and Sirius red staining. The serum samples were collected for biochemical assays and NMR-based metabonomics analysis. The inflammation/lipid metabolism-related signaling and regulators in liver tissues were also detected to reveal the molecular mechanisms of MXS against NASH. RESULTS: MXS showed a significant decrease in lipid accumulation and inflammatory response in hepatocytes under metabolic stress. The western blotting and IHC results indicated that MXS activated AMPK pathway but inhibited the expression of key regulators related to lipid accumulation, inflammation and hepatic fibrosis in the pathogenesis of NASH. The metabonomics analysis systemically indicated that the arachidonic acid metabolism and steroid hormone synthesis are the two main target metabolic pathways for MXS to ameliorate liver inflammation and hepatic steatosis. Mechanistically, we found that MXS protected against NASH by attenuating the sex hormone-related metabolism, especially the metabolism of male hormones. CONCLUSION: MXS ameliorates inflammation and hepatic steatosis of NASH by inhibiting the metabolism of male hormones. Targeting male hormone related metabolic pathways may be the potential therapeutic approach for NASH.

7.
Metabolism ; : 155983, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39089490

RÉSUMÉ

BACKGROUND: Steatotic liver disease (SLD) is characterized by excessive accumulation of lipids in the liver. It is associated with elevated risk of hepatic and cardiometabolic diseases, as well as mental disorders such as depression. Previous studies revealed global gray matter reduction in SLD. To investigate a possible shared neurobiology with depression, we examined liver-fat-related regional gray matter alterations in SLD and its most significant clinical subgroup metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: We analyzed regional cortical thickness and area obtained from brain MRI in 29,051 participants in UK Biobank. Liver fat amount was computed as proton density fat fraction (PDFF) from liver MRI scans. We examined the relationship between brain structure and PDFF, adjusting for sociodemographic, physical, lifestyle, and environmental factors, as well as alcohol intake and a spectrum of cardiometabolic covariates. Finally, we compared patterns of brain alterations in SLD/MASLD and major depressive disorder (MDD) using previously published results. RESULTS: PDFF-related gray matter alterations were region-specific, involving both increases and decreases in cortical thickness, and increased cortical area. In several regions, PDFF effects on gray matter could also be attributed to cardiometabolic covariates. However, PDFF was consistently associated with lower cortical thickness in middle and superior temporal areas and higher cortical thickness in pericalcarine and right frontal pole areas. PDFF-related alterations for the SLD and the MASLD group correlated with those observed in MDD (Pearson r = 0.45-0.54, p < 0.01). CONCLUSION: These findings suggest the presence of shared biological mechanisms linking MDD to SLD and MASLD. They might explain the well-known elevated risk of depression in these groups and support early lifestyle interventions and treatment of metabolic risk factors for the successful management of the interconnected diseases depression and SLD/MASLD.

8.
J Liver Cancer ; 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39099070

RÉSUMÉ

Chronic hepatitis B (CHB) infection is responsible for 40% of the global burden of hepatocellular carcinoma (HCC) with a high case fatality rate. The risk of HCC differs among CHB subjects owing to differences in host and viral factors. Modifiable risk factors include viral load, use of antiviral therapy, co-infection with other hepatotropic viruses, concomitant metabolic dysfunction-associated steatotic liver disease or diabetes mellitus, environmental exposure, and medication use. Detecting HCC at early stage improves survival, and current practice recommends HCC surveillance among individuals with cirrhosis, family history of HCC, or above an age cut-off. Ultrasonography with or without serum alpha feto-protein every 6 months is widely accepted strategy for HCC surveillance. Novel tumor-specific markers, when combined with AFP, improve diagnostic accuracy than AFP alone to detect HCC at an early stage. To predict the risk of HCC, a number of clinical risk scores have been developed but none of them are clinically implemented nor endorsed by clinical practice guidelines. Biomarkers that reflect viral transcriptional activity and degree of liver fibrosis can potentially stratify the risk of HCC, especially among subjects who are already on antiviral therapy. Ongoing exploration of these novel biomarkers is required to confirm their performance characteristics, replicability and practicability.

9.
Pharmacol Ther ; : 108699, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39111411

RÉSUMÉ

The incidence of obesity is rapidly increasing worldwide. Obesity-associated insulin resistance has long been established as a significant risk factor for obesity-related disorders such as type 2 diabetes and atherosclerosis. Insulin plays a key role in systemic glucose metabolism, with the liver, skeletal muscle, and adipose tissue as the major acting tissues. Insulin receptors and the downstream insulin signaling-related molecules are expressed in various tissues, including vascular endothelial cells, vascular smooth muscle cells, and monocytes/macrophages. In obesity, decreased insulin action is considered a driver for associated disorders. However, whether insulin action has a positive or negative effect on obesity-related disorders depends on the tissue in which it acts. While an enhancement of insulin signaling in the liver increases hepatic fat accumulation and exacerbates dyslipidemia, enhancement of insulin signaling in adipose tissue protects against obesity-related dysfunction of various organs by increasing the capacity for fat accumulation in the adipose tissue and inhibiting ectopic fat accumulation. Thus, this "healthy adipose tissue expansion" by enhancing insulin sensitivity in adipose tissue, but not in the liver, may be an effective therapeutic strategy for obesity-related disorders. To effectively address obesity-related metabolic disorders, the mechanisms of insulin resistance in various tissues of obese patients must be understood and drugs that enhance insulin action must be developed. In this article, we review the potential of interventions that enhance insulin signaling as a therapeutic strategy for obesity-related disorders, focusing on the molecular mechanisms of insulin action in each tissue.

10.
Cells ; 13(15)2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39120278

RÉSUMÉ

Sex differences may play a role in the etiopathogenesis and severity of metabolic dysfunction-associated steatotic liver disease (MASLD), a disorder characterized by excessive fat accumulation associated with increased inflammation and oxidative stress. We previously observed the development of steatosis specifically in female rats fed a high-fat diet enriched with liquid fructose (HFHFr) for 12 weeks. The aim of this study was to better characterize the observed sex differences by focusing on the antioxidant and cytoprotective pathways related to the KEAP1/NRF2 axis. The KEAP1/NRF2 signaling pathway, autophagy process (LC3B and LAMP2), and endoplasmic reticulum stress response (XBP1) were analyzed in liver homogenates in male and female rats that were fed a 12-week HFHFr diet. In females, the HFHFr diet resulted in the initial activation of the KEAP1/NRF2 pathway, which was not followed by the modulation of downstream molecular targets; this was possibly due to the increase in KEAP1 levels preventing the nuclear translocation of NRF2 despite its cytosolic increase. Interestingly, while in both sexes the HFHFr diet resulted in an increase in the levels of LC3BII/LC3BI, a marker of autophagosome formation, only males showed a significant upregulation of LAMP2 and XBP1s; this did not occur in females, suggesting impaired autophagic flux in this sex. Overall, our results suggest that males are characterized by a greater ability to cope with an HFHFr metabolic stimulus mainly through an autophagic-mediated proteostatic process while in females, this is impaired. This might depend at least in part upon the fine modulation of the cytoprotective and antioxidant KEAP1/NRF2 pathway resulting in sex differences in the occurrence and severity of MASLD. These results should be considered to design effective therapeutics for MASLD.


Sujet(s)
Alimentation riche en graisse , Fructose , Protéine-1 de type kelch associée à ECH , Facteur-2 apparenté à NF-E2 , Caractères sexuels , Transduction du signal , Animaux , Facteur-2 apparenté à NF-E2/métabolisme , Femelle , Mâle , Alimentation riche en graisse/effets indésirables , Transduction du signal/effets des médicaments et des substances chimiques , Rats , Protéine-1 de type kelch associée à ECH/métabolisme , Autophagie/effets des médicaments et des substances chimiques , Protéine-1 liant la boite X/métabolisme , Protéine-1 liant la boite X/génétique , Modèles animaux de maladie humaine , Stéatose hépatique/métabolisme , Stéatose hépatique/anatomopathologie , Foie/métabolisme , Foie/anatomopathologie , Foie/effets des médicaments et des substances chimiques , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Rat Wistar , Stress oxydatif/effets des médicaments et des substances chimiques , Protéines associées aux microtubules
11.
Hepatol Int ; 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39115632

RÉSUMÉ

Metabolic dysfunction-associated fatty liver disease (MAFLD) and viral hepatitis due to chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection are common liver diseases worldwide. Excessive alcohol consumption and alcoholic liver disease (ALD) are also emerging health problems. Therefore, in clinical practice, we may encounter subjects with dual etiology of liver diseases such as coexisting MAFLD/HBV, MAFLD/HCV, and MAFLD/ALD. In this review, we summarize the epidemiology, clinical features, and mutual interactions of MAFLD with coexisting HBV, HCV, or ALD. The impact of MAFLD on the progression of liver diseases and treatment outcomes in patients with chronic viral hepatitis and the clinical questions to be addressed regarding dual MAFLD and ALD are also discussed.

12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159545, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39089643

RÉSUMÉ

The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.

13.
Sci Total Environ ; 949: 175243, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39098420

RÉSUMÉ

Bioaccumulation of d-Limonene in environment due to the aggrandised usage of their natural sources like citrus food wastes and industrial day to day life products has raised concern to their biotoxicity to environment biotic health. Moreover, their after-usage discharge to aquatic system has enhanced the distress of posing threat and needs attention. This study entails mechanistic and molecular evaluation of in-vivo biotoxicity of d-Limonene in zebrafish embryo models. Experimental analysis excavated the controlled concentration-dependent morphological, physiological and cellular in-vivo impact of d-Limonene in zebrafish embryos through significant changes in oxidative stress, steatosis and apoptosis regulated via 6-fold and 5-fold mRNA expression change in p53 and Sod1 genes. Computational evaluation deduced the cellular mechanism of d-limonene biotoxicity as irregularities in oxidative stress, apoptosis and steatosis due of their intrinsic interaction with metabolic proteins like Zhe1a (-4.8 Kcal/mol), Sod1(-5.3 Kcal/mol), p53, caspase3 and apoa1 leading to influential change in structural and functional integrity of the metabolic proteins. The study unravelled the measured in-vivo biotoxicity of d-Limonene at cellular and molecular level to advocate the controlled usage of d-Limonene related natural and industrial product for a sustainable environmental health.

14.
J Agric Food Chem ; 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39088205

RÉSUMÉ

Glucose and lipid metabolism dysregulation in skeletal muscle contributes to the development of metabolic disorders. The efficacy of fucoxanthin in alleviating lipid metabolic disorders in skeletal muscle remains poorly understood. In this study, we systematically investigated the impact of fucoxanthin on mitigating lipid deposition and insulin resistance in skeletal muscle employing palmitic acid-induced lipid deposition in C2C12 cells and ob/ob mice. Fucoxanthin significantly alleviated PA-induced skeletal muscle lipid deposition and insulin resistance. In addition, fucoxanthin prominently upregulated the expression of lipid metabolism-related genes (Pparα and Cpt-1), promoting fatty acid ß-oxidation metabolism. Additionally, fucoxanthin significantly increased the expression of Pgc-1α and Tfam, elevated the mtDNA/nDNA ratio, and reduced ROS levels. Further, we identified pyruvate kinase muscle isozyme 1 (PKM1) as a high-affinity protein for fucoxanthin by drug affinity-responsive target stability and LC-MS and confirmed their robust interaction by CETSA, microscale thermophoresis, and circular dichroism. Supplementation with pyruvate, the product of PKM1, significantly attenuated the beneficial effects of fucoxanthin on lipid deposition and insulin resistance. Mechanistically, fucoxanthin reduced glucose glycolysis rate and enhanced mitochondrial biosynthesis and fatty acid ß-oxidation through inhibiting PKM1 activity, thereby alleviating lipid metabolic stress. These findings present a novel clinical strategy for treating metabolic diseases using fucoxanthin.

15.
J Endocrinol Invest ; 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39017916

RÉSUMÉ

PURPOSE: Childhood obesity, a pressing global health issue, significantly increases the risk of metabolic complications, including metabolic dysfunction associated with steatotic liver disease (MASLD). Accurate non-invasive tests for early detection and screening of steatosis are crucial. In this study, we explored the serum proteome, identifying proteins as potential biomarkers for inclusion in non-invasive steatosis diagnosis tests. METHODS: Fifty-nine obese adolescents underwent ultrasonography to assess steatosis. Serum samples were collected and analyzed by targeted proteomics with the Proximity Extension Assay technology. Clinical and biochemical parameters were evaluated, and correlations among them, the individuated markers, and steatosis were performed. Receiver operating characteristic (ROC) curves were used to determine the steatosis diagnostic performance of the identified candidates, the fatty liver index (FLI), and their combination in a logistic regression model. RESULTS: Significant differences were observed between subjects with and without steatosis in various clinical and biochemical parameters. Gender-related differences in the serum proteome were also noted. Five circulating proteins, including Cathepsin O (CTSO), Cadherin 2 (CDH2), and Prolyl endopeptidase (FAP), were identified as biomarkers for steatosis. CDH2, CTSO, Leukocyte Immunoglobulin Like Receptor A5 (LILRA5), BMI, waist circumference, HOMA-IR, and FLI, among others, significantly correlated with the steatosis degree. CDH2, FAP, and LDL combined in a logit model achieved a diagnostic performance with an AUC of 0.91 (95% CI 0.75-0.97, 100% sensitivity, 84% specificity). CONCLUSIONS: CDH2 and FAP combined with other clinical parameters, represent useful tools for accurate diagnosis of fatty liver, emphasizing the importance of integrating novel markers into diagnostic algorithms for MASLD.

16.
JHEP Rep ; 6(7): 101092, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39022386

RÉSUMÉ

Background & Aims: It has been postulated that carriers of PNPLA3 I148M (CG [Ile/Met] or GG [Met/Met]) develop metabolic dysfunction-associated steatotic liver disease (MASLD) in the absence of insulin resistance or metabolic syndrome. However, the relationship between insulin resistance and MASLD according to the PNPLA3 allele has not been carefully assessed. Methods: A total of 204 participants were recruited and underwent PNPLA3 genotyping, an oral glucose tolerance test, liver proton magnetic resonance spectroscopy and percutaneous liver biopsy if diagnosed with MASLD. A subgroup of patients (n = 55) had an euglycemic hyperinsulinemic clamp with glucose tracer infusion. Results: As expected, patients with the CG/GG genotype had worse intrahepatic triglyceride content and worse liver histology. However, regardless of PNPLA3 genotype, patients with a diagnosis of MASLD had severe whole-body insulin resistance (Matsuda index, an estimation of insulin resistance in glucose metabolic pathways) and fasting and postprandial adipose tissue insulin resistance (Adipo-IR index and free fatty acid suppression during the oral glucose tolerance test, respectively, as measures of insulin resistance in lipolytic metabolic pathways) compared to patients without MASLD. Moreover, for the same amount of liver fat accumulation, insulin resistance was similar in patients with genotypes CC vs. CG/GG. In multiple regression analyses, A1c and Adipo-IR were associated with the presence of MASLD and advanced liver fibrosis, independently of PNPLA3 genotype. Conclusions: PNPLA3 variant carriers with MASLD are equally insulin resistant as non-carriers with MASLD at the level of the liver, muscle, and adipose tissue. This calls for reframing "PNPLA3 MASLD" as an insulin-resistant condition associated with increased hepatic susceptibility to metabolic insults, such as obesity or diabetes, wherein early identification and aggressive intervention are warranted to reverse metabolic dysfunction and prevent disease progression. Impact and implications: It has been proposed that the PNPLA3 G allele is associated with the presence of metabolic dysfunction-associated steatotic liver disease (MASLD) in the absence of insulin resistance. However, our results suggest that regardless of PNPLA3 alleles, the presence of insulin resistance is necessary for the development of MASLD. This calls for reframing patients with "PNPLA3 MASLD" not as insulin sensitive, but on the contrary, as an insulin-resistant population with increased hepatic susceptibility to metabolic insults, such as obesity or diabetes.

17.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167343, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38986822

RÉSUMÉ

AIM: To investigate the impact of exosomes released by Porphyromonas gingivalis-Lipopolysaccharide activated THP-1 macrophages and human periodontal ligament fibroblasts on hepatocyte fat metabolism. RESULTS: The liver of rats with experimental periodontitis showed obvious steatosis and inflammation compared with control rats. The culture supernatant of macrophages and human periodontal ligament fibroblasts (hPDLFs), when stimulated with Pg-LPS, induced lipogenesis in HepG2 cells. Furthermore, the lipid-promoting effect was effectively inhibited by the addition of the exosome inhibitor GW4869. Subsequently, we isolated exosomes from cells associated with periodontitis. Exosomes released by Pg-LPS-stimulated macrophages and hPDLFs are taken up by hepatocytes, causing mRNA expression related to fat synthesis, promoting triglyceride synthesis, and aggravating NAFLD progression. Finally, two sets of exosomes were injected into mice through the tail vein. In vivo experiments have also demonstrated that periodontitis-associated exosomes promote the development of hepatic injury and steatosis, upregulate SCD-1 expression and inhibit the AMPK signaling pathway. CONCLUSIONS: In conclusion, we found that exosomes associated with periodontitis promote hepatocyte adipogenesis by increasing the expression of SCD-1 and suppressing the AMPK pathway, which indicates that close monitoring of the progression of stomatopathy associated extra-oral disorders is important and establishes a theoretical foundation for the prevention and management of fatty liver disease linked to periodontitis.

18.
Food Sci Nutr ; 12(7): 5052-5064, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39055214

RÉSUMÉ

Dyslipidemia and hepatic steatosis are the characteristics of the initial stage of nonalcohol fatty liver disease (NAFLD), which can be reversed by lifestyle intervention, including dietary supplementation. However, such commercial dietary supplements with solid scientific evidence and in particular clear mechanistic elucidation are scarce. Here, the health benefits of MHP, a commercial mulberry and Hippophae-based solid beverage, were evaluated in NAFLD rat model and the underlying molecular mechanisms were investigated. Histopathologic examination of liver and white adipose tissue found that MHP supplementation reduced hepatic lipid accumulation and adipocyte hypertrophy. Serum biochemical results confirmed that MHP effectively ameliorated dyslipidemia and decreased circulation-free fatty acid level. RNA-Seq-based transcriptomic analysis showed that MHP-regulated genes are involved in the inhibition of lipolysis of adipose tissue and thus may contribute to the reduction of hepatic ectopic lipid deposition. Furthermore, MHP upregulated ACSL1-CPT1a-CPT2 pathway, a canonical pathway that regulated mitochondrial fatty acid metabolism, and promoted liver and adipose tissue fatty acid ß-oxidation. These results suggest that adipose tissue-liver crosstalk may play a key role in maintaining glucose and lipid metabolic hemostasis. In addition, MHP can also ameliorate chronic inflammation through regulating the secretion of adipokines. Our study demonstrates that MHP is able to improve dyslipidemia and hepatic steatosis through crosstalk between adipose tissue and liver and also presents transcriptomic evidence to support the underlying mechanisms of action, providing solid evidence for its health claims.

19.
Article de Anglais | MEDLINE | ID: mdl-39037911

RÉSUMÉ

Liver diseases have a global prevalence of 25%, accounting for 4% of all deaths worldwide, and are associated with a 36% increased risk of fatal and nonfatal cardiovascular events. Metabolic dysfunction-associated steatotic liver disease constitutes the liver expression of metabolic syndrome and represents the primary type of liver disease. Microscopical analysis of biopsies, which allows the evaluation of a small portion of tissue with inferences made to the entire organ, is considered the gold standard for determining the presence of liver diseases. However, potential sampling errors in liver biopsies are conceivable because the obtained tissue represents only a tiny fraction of the entire liver mass and may not accurately reflect the true pathological state. Studies have demonstrated the existence of sampling errors in liver biopsies, particularly concerning the severity of inflammation, degree of fibrosis, and the presence of cirrhosis. Also, clinical studies have shown that histopathological abnormalities are better detected in humans when liver samples are collected from both the right and the left lobes. However, a gap exists in clinical investigation to clarify the role of differences between these lobes in improving the diagnostic and prognostic for liver diseases. Building upon the heterogeneous nature of pathological alterations observed in liver lobes, this perspective review provided recommendations to enhance the precision of diagnosis and prognostic accuracy of liver diseases.

20.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3600-3607, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-39041132

RÉSUMÉ

Based on the Toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)/nuclear factor kappaB(NF-κB) signaling pathway, this study observed the regulatory effect of ginsenoside Rb_1(Rb_1) on liver lipid metabolism in db/db obese mice and explored its potential mechanism. Thirty 6-week-old male db/db mice were randomly divided into a model group, a metformin group, and Rb_1 groups with low, medium, and high doses, with six mice in each group. Additionally, six age-matched male db/m mice were assigned to the normal group. The intervention lasted for five weeks. Body weight, fasting blood glucose, and food intake were mea-sured weekly. At the end of the experiment, serum lipid levels and liver function were detected. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in liver tissue. Real-time quantitative PCR and immunohistochemistry on paraffin sections were used to detect the mRNA and protein expression of TLR4, MyD88, and NF-κB p65. RESULTS:: showed that compared with the normal group, the model group exhibited significant increases in body weight, liver weight, liver index, epididymal fat mass, epididymal fat index, total cholesterol, low-density lipoprotein cholesterol, liver function parameters, and fasting blood glucose levels. Liver lipid accumulation significantly increased, along with elevated mRNA and protein expression of TLR4, MyD88, and NF-κB p65 in the liver. After Rb_1 treatment, the above-mentioned parameters in the intervention groups showed significant reversals. In conclusion, Rb_1 can improve obesity and obesity-related hepatic steatosis in mice while regulating abnormal lipid and glucose meta-bolism. Mechanistically, Rb_1 may improve liver steatosis in db/db obese mice by modulating the TLR4/MyD88/NF-κB signaling pathway.


Sujet(s)
Stéatose hépatique , Ginsénosides , Facteur de différenciation myéloïde-88 , Facteur de transcription NF-kappa B , Transduction du signal , Récepteur de type Toll-4 , Animaux , Ginsénosides/pharmacologie , Ginsénosides/administration et posologie , Récepteur de type Toll-4/génétique , Récepteur de type Toll-4/métabolisme , Facteur de différenciation myéloïde-88/génétique , Facteur de différenciation myéloïde-88/métabolisme , Souris , Mâle , Facteur de transcription NF-kappa B/génétique , Facteur de transcription NF-kappa B/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Stéatose hépatique/traitement médicamenteux , Stéatose hépatique/métabolisme , Stéatose hépatique/génétique , Obésité/traitement médicamenteux , Obésité/métabolisme , Obésité/génétique , Souris obèse , Foie/métabolisme , Foie/effets des médicaments et des substances chimiques , Humains , Médicaments issus de plantes chinoises/administration et posologie , Médicaments issus de plantes chinoises/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE