Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 20.052
Filtrer
1.
J Extracell Vesicles ; 13(7): e12464, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38961538

RÉSUMÉ

MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.


Sujet(s)
Effet bystander , Dependovirus , Vésicules extracellulaires , Thérapie génétique , ARN messager , Humains , Thérapie génétique/méthodes , Dependovirus/génétique , ARN messager/métabolisme , ARN messager/génétique , Vésicules extracellulaires/métabolisme , Mucopolysaccharidose de type III/thérapie , Mucopolysaccharidose de type III/métabolisme , Mucopolysaccharidose de type III/génétique , Vecteurs génétiques , Acetyltransferases/métabolisme , Acetyltransferases/génétique
3.
Article de Anglais | MEDLINE | ID: mdl-38969776

RÉSUMÉ

PURPOSE: Although 5% povidone-iodine (PVP-I) is frequently used as an ocular antiseptic agent, there is a lack of consensus regarding the effects of PVP-I concentration, storage after opening, and compounded preparation on PVP-I antisepsis. We performed a series of in-vitro experiments to determine the impact of these factors on PVP-I's inhibition of common causes of post-procedural eye infection. METHODS: Inhibition of microorganism growth was measured in-vitro as a function of active PVP-I exposure time. In control experiments, PVP-I was inactivated before microorganism exposure. Tested PVP-I solutions varied in concentration (0.6%, 5%, or 10%), length of storage after opening (0, 7, or 30 days), and preparation (commercial vs.compounded from stock PI solution). Tested pathogens included S. epidermidis, S. viridans, P. aeruginosa, methicillin-resistant S. aureus, methicillin-sensitive S. aureus, and C. albicans. RESULTS: PVP-I solutions inhibited all bacterial growth by 3 min and fungal growth by 15 s. Compared to 5% PVP-I, the 0.6% PVP-I was less effective in inhibiting S. viridans growth (200 ± 0 colonies vs. 7 ± 8 at 30 s, P = 0.0004; 183 ± 21 vs. 0 ± 0 at 1 min, P = 0.018), but more effective in inhibiting P. aeruginosa (30 ± 20 vs. 200 ± 0 at 15 s, P = 0.019). Compared to commercial and newly-opened PVP-I solutions, compounded preparations and solutions stored for 7 or 30 days after bottle opening either preserved or improved antiseptic efficacy against tested microorganisms. CONCLUSIONS: Concentration of PVP-I solution affects antiseptic efficacy within 1 min of exposure, but all solutions performed equivalently at 3 min. In contrast to results of prior studies investigating dilute PVP-I, the 0.6% PVP-I did not demonstrate a uniformly equivalent or superior anti-septic effect. Compounded preparation and storage length after bottle opening did not decrease PVP-I antiseptic activity.

4.
Plant Foods Hum Nutr ; 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38969792

RÉSUMÉ

Avocado fruit is a rich source of phytonutrients such as vitamins, minerals, carotenoids, carbohydrates, polyphenols and unsaturated fatty acids. However, due to its climacteric nature, fruits are highly susceptible to storage temperature, resulting in poor shelf life and reduced quality. In the present study avocado fruits (Accession CHES-HA-I/I) were stored at different low temperatures (5, 9 and 12 °C with 90-95% relative humidity, RH) to identify optimum low temperature for cold storage. In a further experiment, avocado fruits were treated with 1-methylcyclopropene (1-MCP, 500 ppb) and chitosan (0.5%) to extend the shelf life with better fruit quality. The results showed that storage temperatures had significant effect on physiological, biochemical and antioxidant activities of fruits. Lower physiological loss in weight (PLW), reduced respiration and ethylene production, and higher carbohydrates, protein and fat content were recorded in fruits stored at 9 °C as compared to 12 °C. Similarly, maximum antioxidant properties in terms of free radical scavenging activity (FRSA) and ferric reducing ability of plasma (FRAP) was found in avocado fruits stored at 9 °C. It was also noticed that chilling injury was developed in fruits stored under 5 °C. In addition, exogenous application of 1-MCP significantly reduced respiration and ethylene production rate at 9 °C and extended the shelf life up to 42 days with better fruit quality and more antioxidant activities. However, chitosan treated and control fruits had shelf life up to 28 and 21 days respectively, with minimum nutritional content. From this study it is concluded that a storage temperature of 9 °C and 1-MCP treatment significantly enhanced the shelf life of avocado fruits with better fruit quality as compared to other storage temperatures (5 and 12 °C) and postharvest treatment (chitosan).

5.
Microsyst Nanoeng ; 10: 93, 2024.
Article de Anglais | MEDLINE | ID: mdl-38962473

RÉSUMÉ

The energy devices for generation, conversion, and storage of electricity are widely used across diverse aspects of human life and various industry. Three-dimensional (3D) printing has emerged as a promising technology for the fabrication of energy devices due to its unique capability of manufacturing complex shapes across different length scales. 3D-printed energy devices can have intricate 3D structures for significant performance enhancement, which are otherwise impossible to achieve through conventional manufacturing methods. Furthermore, recent progress has witnessed that 3D-printed energy devices with micro-lattice structures surpass their bulk counterparts in terms of mechanical properties as well as electrical performances. While existing literature focuses mostly on specific aspects of individual printed energy devices, a brief overview collectively covering the wide landscape of energy applications is lacking. This review provides a concise summary of recent advancements of 3D-printed energy devices. We classify these devices into three functional categories; generation, conversion, and storage of energy, offering insight on the recent progress within each category. Furthermore, current challenges and future prospects associated with 3D-printed energy devices are discussed, emphasizing their potential to advance sustainable energy solutions.

6.
J Plant Physiol ; 301: 154300, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38964046

RÉSUMÉ

FLO2 is involved in grain development and storage substance synthesis in rice, and therefore can regulate grain size and quality. In this study, we identified 4 new flo2 allelic mutants with nonsense and frameshift mutation in the exon of 6, 10, 11 and 21 and 5 new flo2 allelic mutants with alternative splicing and frameshift mutation at the splicing site of intron 13, 14, 16 and 17. Compared with wild-type rice, the outer endosperm of flo2 mutants was transparent, and the inner endosperm was floury. Different mutation sites and types of FLO2 significantly decreased kernel width, thickness and weight to some extent. The contents of storage protein, starch, amylose and amylopectin showed significant decrease at different levels among 9 flo2 mutants. The expressions of most storage protein synthesis genes and starch synthesis-related genes were significantly down-regulated, and exhibited different ranges of variation among different flo2 mutants. This study could add helpful information for the roles of flo2 alleles in rice quality regulation and provide abundant germplasm resources for rice quality breeding.

7.
Mol Genet Metab ; 142(4): 108521, 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38964050

RÉSUMÉ

OBJECTIVE: Metachromatic leukodystrophy (MLD) is a rare neurodegenerative disorder. Emerging therapies are most effective in the presymptomatic phase, and thus defining this window is critical. We hypothesize that early development delay may precede developmental plateau. With the advent of presymptomatic screening platforms and transformative therapies, it is essential to define the onset of neurologic disease. METHODS: The specific ages of gain and loss of developmental milestones were captured from the medical records of individuals affected by MLD. Milestone acquisition was characterized as: on target (obtained before the age limit of 90th percentile plus 2 standard deviations compared to a normative dataset), delayed (obtained after 90th percentile plus 2 standard deviations), or plateau (skills never gained). Regression was defined as the age at which skills were lost. LI-MLD was defined by age at onset before 2.5 years. RESULTS: Across an international cohort, 351 subjects were included (n = 194 LI-MLD subcohort). The median age at presentation of the LI-MLD cohort was 1.4 years (25th-75th %ile: 1.0-1.5). Within the LI-MLD cohort, 75/194 (39%) had developmental delay (or plateau) prior to MLD clinical presentation. Among the LI-MLD cohort with a minimum of 1.5 years of follow-up (n = 187), 73 (39.0%) subjects never attained independent ambulation. Within LI-MLD + delay subcohort, the median time between first missed milestone target to MLD decline was 0.60 years (maximum distance from delay to onset: 1.9 years). INTERPRETATION: Early developmental delay precedes regression in a subset of children affected by LI-MLD, defining the onset of neurologic dysfunction earlier than previously appreciated. The use of realworld data prior to diagnosis revealed an early deviation from typical development. Close monitoring for early developmental delay in presymptomatic individuals may help in earlier diagnosis with important consequences for treatment decisions.

8.
J Colloid Interface Sci ; 675: 1-13, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38964120

RÉSUMÉ

Birnessite-type MnO2 (δ-MnO2) exhibits great potential as a cathode material for aqueous zinc-ion batteries (AZIBs). However, the structural instability and sluggish reaction kinetics restrict its further application. Herein, a unique protons intercalation strategy was utilized to simultaneously modify the interlayer environment and transition metal layers of δ-MnO2. The intercalated protons directly form strong O  H bonds with the adjacent oxygens, while the increased H2O molecules also establish a hydrogen bond network (O  H···O) between H2O molecules or bond with adjacent oxygens. Based on the Grotthuss mechanism, these bondings ultimately enhance the stability of layered structures and facilitate the rapid diffusion of protons. Moreover, the introduction of protons induces numerous oxygen vacancies, reduces steric hindrance, and accelerates ion transport kinetics. Consequently, the protons intercalated δ-MnO2 (H-MnO2-x) demonstrates exceptional specific capacity of 401.7 mAh/g at 0.1 A/g and a fast-charging performance over 1000 cycles. Density functional theory analysis confirms the improved electronic conductivity and reduced diffusion energy barrier. Most importantly, electrochemical quartz crystal microbalance tests combining with ex-situ characterizations verify the inhibitory effect of the interlayer proton environment on basic zinc sulfate formation. Protons intercalation behavior provides a promising avenue for the development of MnO2 as well as other cathodes in AZIBs.

9.
Bioresour Technol ; : 131064, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38964513

RÉSUMÉ

Sulfide oxidizing bacteria are used in industrial biodesulfurization processes to convert sulfide to sulfur. These bacteria can spatially separate sulfide removal from terminal electron transfer, thereby acting as sulfide shuttles. The mechanisms underlying sulfide shuttling are not yet clear. In this work, newly obtained sulfide removal data were used to develop a new model for anaerobic sulfide removal and this model was shown to be an improvement over two previously published models. The new model describes a fast chemical step and a consecutive slow enzymatic step. The improved model includes the effect of pH, with higher total sulfide removal at increasing pH, as well as partial sulfide removal at higher sulfide concentrations. The two-stage model is supported by recent developments in anaerobic sulfide removal research and contributes to a better understanding of the underlying mechanisms. The model is a step toward accurately modelling anaerobic sulfide removal in industrial systems.

11.
Meat Sci ; 216: 109585, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38959640

RÉSUMÉ

In this study, the effect of sodium alginate and quaternized chitosan bis-polysaccharide-based shell transport curcumin nano-emulsions (Cur@QCS/SA) on the microbiological, physicochemical properties, quality characteristics of Harbin red sausage during storage is investigated. According to the microbiological results, the shelf life of Harbin red sausage is extended from 3 d to 6 d by adding 0.15% Cur@QCS/SA, and Bacillus is the most predominant bacterial before 6 d. Additionally, the physicochemical properties change significantly, the pH, weight loss (WL), water holding capacity (WHC), water activity (aw), L*, and a* of red sausage decrease gradually with the extension of storage time, as well as b*, lipid oxidation, proteolysis increase significantly (P < 0.05). Secondly, it is found that 0.15% treatment group can better maintain the quality characteristics of Harbin red sausage according to texture profile analysis (TPA), electronic nose (E-nose), and electronic tongue (E-tongue) (P < 0.05). This study provides a new way for nano-emulsions in food applications and a new option for the preservation of Harbin red sausage as well as other low-temperature meat products.

12.
Food Chem ; 458: 140283, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38959796

RÉSUMÉ

Apoptosis was associated with decreased sensory quality attributes of fish during postmortem storage. Based on cytochrome c (cyt-c) release plays a crucial role in apoptosis, the study aims to investigate the factors regulating cyt-c release and whether cyt-c acts as an endogenous pro-oxidant to trigger lipid oxidation. Within 12 h postmortem, dramatic changes in the intramuscular environment (glycogen from 1.57 mg/g to 0.65 mg/g; ATP reduced by 92.91%; pH value reaching the lowest (pH = 7.14)) and the mitochondrial environment (accumulation of mitochondrial ROS and Ca2+ levels) are induced mitochondrial swelling and opening of the MPTP (increased 34.35% and 31.91%), leading to the release of cyt-c from the mitochondria into the cytoplasm and the activation of caspase-3. This leads to lipid oxidation and degradation of myofibrillar proteins, accelerating quality deterioration in color and texture. The results suggest that cyt-c is involved in lipid oxidation during postmortem through the apoptotic mitochondrial pathway.

13.
Transfus Apher Sci ; 63(4): 103964, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38959809

RÉSUMÉ

BACKGROUND: Platelet plays a vital role in both physiological and pathological processes. However, the limited storage time of platelet in vitro poses an immense challenge for its applications because of the increased risk of bacterial contamination and platelet storage lesions. Agitation can inhibit lesions by facilitating continuous oxygenation of platelets and permitting excess carbon dioxide to be removed during storage. However, it is still not known whether agitating BCs gives a positive effect on platelet quality. OBJECTIVES: To evaluate the quality difference between platelet concentrates (PCs) from buffy coats (BCs) held rest and agitation. METHODS: Samples were withdrawn for cell count, blood gas analysis, free hemoglobin level, hypotonic shock response, maximum aggregation rate, activation marker expression (CD62P and CD42b) and coagulation function. RESULTS: We found the PCs prepared from the agitating BCs had fewer residual WBCs, exhibited a better gas exchange ability, slower metabolism (higher pH, higher content glucose, and lower lactic acid levels), better hypotonic shock response, and lower levels of CD62P. The TEG-PC assays showed no difference in coagulation function. CONCLUSION: Our findings showed that BC can be agitated overnight before a soft spin.

14.
J Microbiol Methods ; : 106985, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38960328

RÉSUMÉ

The assessment of ELISA plates coated with phenolic glycolipid-I/PGL-I revealed excellent stability during eight years of storage at room temperature, promoting consistent IgM antibody detection in multibacillary leprosy patients. These stable, standardized plates can significantly contribute to efficient leprosy serology research and support its widespread distribution and use in endemic countries.

15.
Hum Reprod ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38960877

RÉSUMÉ

STUDY QUESTION: Does vitrification cryopreservation of embryos for more than 5 years affect the pregnancy outcomes after frozen embryo transfer (FET)? SUMMARY ANSWER: Vitrification cryopreservation of good-quality blastocysts for more than 5 years is associated with a decrease in the implantation rate (IR) and live birth rate (LBR). WHAT IS KNOWN ALREADY: Previous studies have predominantly focused on embryos cryopreserved for relatively short durations (less than 5 years), yet the impact of extended cryopreservation duration on pregnancy outcomes remains a controversial issue. There is a relative scarcity of data regarding the efficacy and safety of storing embryos for 5 years or longer. STUDY DESIGN, SIZE, DURATION: This retrospective study involved 36 665 eligible vitrified-thawed embryo transfer cycles from 1 January 2016 to 31 December 2022, at a single fertility center in China. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients were divided into three groups according to embryo storage time: Group 1 consisted of 31 565 cycles, with storage time of 0-2 years; Group 2 consisted of 4458 cycles, with a storage time of 2-5 years; and Group 3 included 642 cycles, with storage time exceeding 5 years. The main outcome measures were IR and LBR. Secondary outcome variables included rates of biochemical pregnancy, multiple pregnancy, ectopic pregnancy, and miscarriage, as well as neonatal outcomes. Reproductive outcomes were analyzed as binary variables. Multivariate logistic regression analysis was used to explore the effect of preservation time on pregnancy outcomes after correcting for confounding factors. In addition, we also assessed neonatal outcomes, such as large for gestational age (LGA) and small for gestational age (SGA). MAIN RESULTS AND THE ROLE OF CHANCE: IRs in the three groups (0-2, 2-5, and >5 years) were 37.37%, 39.03%, and 35.78%, respectively (P = 0.017), and LBRs in the three groups were 37.29%, 39.09%, and 34.91%, respectively (P = 0.028). After adjustment for potential confounding factors, compared with the 0-2 years storage group, prolonged embryo vitrification preservation time (2-5 years or >5 years) did not affect secondary outcomes such as rates of biochemical pregnancy, multiple pregnancy, ectopic pregnancy, and miscarriage (P > 0.05). But cryopreservation of embryos for more than 5 years reduced the IR (adjusted odds ratio (aOR) 0.82, 95% CI 0.69-0.97, P = 0.020) and LBR (aOR 0.76, 95% CI 0.64-0.91, P = 0.002). Multivariate stratified analysis also showed that prolonging the cryopreservation time of blastocysts (>5 years) reduced the IR (aOR 0.78, 95% CI 0.62-0.98, P = 0.033) and LBR (aOR 0.68, 95% CI 0.53-0.87, P = 0.002). However, no effect on cleavage embryos was observed (P > 0.05). We further conducted stratified analyses based on the number and quality of frozen blastocysts transferred, and the results showed that the FET results after transfers of good-quality blastocysts in the >5 years storage group were negatively affected. However, the storage time of non-good-quality blastocysts was not significantly associated with pregnancy outcomes. Regarding the neonatal outcomes (of singletons), embryo vitrification preservation time had no effect on preterm birth rates, fetal birth weight, or neonatal sex ratios. However, as the storage time increased, rates of SGA (5.60%, 4.10%, and 1.18%) decreased, while rates of LGA (5.22%, 6.75%, and 9.47%) increased (P < 0.05). After adjusting for confounding factors, the increase in LGA and the decrease in SGA were significantly correlated with the duration of storage time. LIMITATIONS, REASONS FOR CAUTION: This was a retrospective study using data from a single fertility center, even though the data had been adjusted, our findings still need to be validated in further studies. WIDER IMPLICATIONS OF THE FINDINGS: With the full implementation of the two-child policy in China, there may be more patients whose embryos have been frozen for a longer time in the future. Patients should be aware that the IR and LBR of blastocysts are negatively affected when the cryopreservation time is longer than 5 years. Couples may therefore consider shortening the time until FET treatment. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Nature Science Foundation of China (No. 82101672), Science and Technology Projects in Guangzhou (No. 2024A03J0180), General Guidance Program for Western Medicine of Guangzhou Municipal Health Commission (No. 20231A011096), and the Medical Key Discipline of Guangzhou (2021-2023). None of the authors have any conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.

16.
Article de Anglais | MEDLINE | ID: mdl-38960923

RÉSUMÉ

As one of the important devices for large-scale electrochemical energy storage, sodium-ion batteries have received much attention due to the abundant resources of raw materials. However, whether it is a base station power source, an energy storage power station, or a start-stop power supply, long energy cycle life (more than 5000 cycles), high stability, and safety performance are application prerequisites. Regrettably, currently, few sodium-ion batteries can meet this requirement, mainly due to shortcomings in positive electrode performance. We report a sufficiently stable sodium-ion battery cathode material, Na2Fe0.95P2O7, that retains 97.5% capacity after 5000 charge/discharge cycles. The use of nonstoichiometry in the lattice enables simultaneous modification of the crystal and electronic structure, promoting Na2Fe0.95P2O7 to be extremely stable while still being able to achieve a capacity of 92 mAh g-1 and stable cycling at high temperatures up to 60 °C. Our results confirm the positive effect of nonstoichiometric ratios on the performance of Na2Fe0.95P2O7 and provide a reliable idea to promote the practical application of sodium-ion batteries.

17.
Article de Anglais | MEDLINE | ID: mdl-38961021

RÉSUMÉ

The urgent need to address global carbon emissions and promote sustainable energy solutions has led to a growing interest in carbon dioxide (CO2) conversion technologies. Among these, the transformation of CO2 into methanol (MeOH) has gained prominence as an effective mitigation strategy. This review paper provides a comprehensive exploration of recent advances and applications in the direct utilization of CO2 for the synthesis of MeOH, encompassing various aspects from catalysts to market analysis, environmental impact, and future prospects. We begin by introducing the current state of CO2 mitigation strategies, highlighting the significance of carbon recycling through MeOH production. The paper delves into the chemistry and technology behind the conversion of CO2 into MeOH, encompassing key themes such as feedstock selection, material and energy supply, and the various conversion processes, including chemical, electrochemical, photochemical, and photoelectrochemical pathways. An in-depth analysis of heterogeneous and homogeneous catalysts for MeOH synthesis is provided, shedding light on the advantages and drawbacks of each. Furthermore, we explore diverse routes for CO2 hydrogenation into MeOH, emphasizing the technological advances and production processes associated with this sustainable transformation. As MeOH holds a pivotal role in a wide range of chemical applications and emerges as a promising transportation fuel, the paper explores its various chemical uses, transportation, storage, and distribution, as well as the evolving MeOH market. The environmental and energy implications of CO2 conversion to MeOH are discussed, including a thermodynamic analysis of the process and cost and energy evaluations for large-scale catalytic hydrogenation.

18.
ACS Appl Mater Interfaces ; 16(26): 33285-33293, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961568

RÉSUMÉ

The foreseeable global cobalt (Co) crisis has driven the demand for cathode materials with less Co dependence, where high-nickel layered oxides are a promising solution due to their high energy density and low cost. However, these materials suffer from poor cycling stability and rapid voltage decay due to lattice displacement and nanostrain accumulation. Here, we introduced an exothermic TiN dopant via a scalable coating method to stabilize LiNi0.917Co0.056Mn0.026O2 (NCM92) materials. The exothermic reaction of TiN conversion generates extra heat during the calcination process on the cathode surface, promotes the lithiation process, and tunes the morphology of the cathode material, resulting in compact and conformal smaller particle sizes to provide better particle integration and lithium diffusion coefficient. Moreover, the Ti dopant substitutes the Ni3+ site to generate stronger Ti-O bonding, leading to higher structural stability and extended cycle life. The Ti-doped NCM (NCM92_TiN) shows a remarkable cycling stability of maintaining 80% capacity retention for 400 cycles, while bare NCM92 can only reach 88 cycles. Furthermore, the NCM92_TiN cathodes demonstrate an enhanced rate capability and achieve a discharge capacity of over 168 mAh g-1 at 5C.

19.
Small Methods ; : e2400258, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38962863

RÉSUMÉ

Nanoengineering polar oxide films have attracted great attention in energy storage due to their high energy density. However, most of them are deposited on thick and rigid substrates, which is not conducive to the integration of capacitors and applications in flexible electronics. Here, an alternative strategy using van der Waals epitaxial oxide dielectrics on ultra-thin flexible mica substrates is developed and increased the disorder within the system through high laser flux. The introduction of defects can efficiently weaken or destroy the long-range ferroelectric ordering, ultimately leading to the emergence of a large numbers of weak-coupling regions. Such polarization configuration ensures fast polarization response and significantly improves energy storage characteristics. A flexible BiFeO3-BaTiO3 (BF-BT) capacitor exhibits a total energy density of 43.5 J cm-3 and an efficiency of 66.7% and maintains good energy storage performance over a wide temperature range (20-200 °C) and under large bending deformation (bending radii ≈ 2 mm). This study provides a feasible approach to improve the energy storage characteristics of dielectric oxide films and paves the way for their practical application in high-energy density capacitors.

20.
New Phytol ; 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38962989

RÉSUMÉ

Grain filling in maize (Zea mays) is intricately linked to cell development, involving the regulation of genes responsible for the biosynthesis of storage reserves (starch, proteins, and lipids) and phytohormones. However, the regulatory network coordinating these biological functions remains unclear. In this study, we identified 1744 high-confidence target genes co-regulated by the transcription factors (TFs) ZmNAC128 and ZmNAC130 (ZmNAC128/130) through chromatin immunoprecipitation sequencing coupled with RNA-seq analysis in the zmnac128/130 loss-of-function mutants. We further constructed a hierarchical regulatory network using DNA affinity purification sequencing analysis of downstream TFs regulated by ZmNAC128/130. In addition to target genes involved in the biosynthesis of starch and zeins, we discovered novel target genes of ZmNAC128/130 involved in the biosynthesis of lipids and indole-3-acetic acid (IAA). Consistently, the number of oil bodies, as well as the contents of triacylglycerol, and IAA were significantly reduced in zmnac128/130. The hierarchical regulatory network centered by ZmNAC128/130 revealed a significant overlap between the direct target genes of ZmNAC128/130 and their downstream TFs, particularly in regulating the biosynthesis of storage reserves and IAA. Our results indicated that the biosynthesis of storage reserves and IAA is coordinated by a multi-TFs hierarchical regulatory network in maize endosperm.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...