Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.139
Filtrer
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125001, 2025 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-39180971

RÉSUMÉ

Utilizing visible and near-infrared (Vis-NIR) spectroscopy in conjunction with chemometrics methods has been widespread for identifying plant diseases. However, a key obstacle involves the extraction of relevant spectral characteristics. This study aimed to enhance sugarcane disease recognition by combining convolutional neural network (CNN) with continuous wavelet transform (CWT) spectrograms for spectral features extraction within the Vis-NIR spectra (380-1400 nm) to improve the accuracy of sugarcane diseases recognition. Using 130 sugarcane leaf samples, the obtained one-dimensional CWT coefficients from Vis-NIR spectra were transformed into two-dimensional spectrograms. Employing CNN, spectrogram features were extracted and incorporated into decision tree, K-nearest neighbour, partial least squares discriminant analysis, and random forest (RF) calibration models. The RF model, integrating spectrogram-derived features, demonstrated the best performance with an average precision of 0.9111, sensitivity of 0.9733, specificity of 0.9791, and accuracy of 0.9487. This study may offer a non-destructive, rapid, and accurate means to detect sugarcane diseases, enabling farmers to receive timely and actionable insights on the crops' health, thus minimizing crop loss and optimizing yields.


Sujet(s)
Apprentissage profond , Maladies des plantes , Saccharum , Spectroscopie proche infrarouge , Analyse en ondelettes , Saccharum/composition chimique , Spectroscopie proche infrarouge/méthodes , Feuilles de plante/composition chimique , Méthode des moindres carrés , Analyse discriminante
2.
Int J Biol Macromol ; : 135358, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39260652

RÉSUMÉ

As environmental pollution intensifies, the interest in bioplastics is growing. The bioplastic polyhydroxyalkanoates (PHAs), which are produced and degraded by microorganisms, have received considerable attention. However, the production cost of PHA is still high, and several ways to increase economy of PHA production have been studied. Therefore, as one way of solution, Halomonas species were screened and evaluated with cheap substrates such as molasses and soybean flour. Among tested strains, Halomonas cerina YK44 was selected and used for polyhydroxybutyrate (PHB) production with molasses and soybean flour together, whose combination was not evaluated well before, in tap water. The medium composition optimization showed maximum PHB production at 4 % sugarcane molasses, 2 % NaCl, 0.05 % soybean flour, and pH 8 in tap water (9.2 g/L DCW, 7.3 g/L PHB, and 79.7 % PHB contents). However, cell growth of halotolerant H. cerina YK44 was disturbed by 0.2 % furfural, which existed in biomass based sugars as inhibitors. Physical and thermal analyses revealed that PHB film started from sugarcane molasses and soybean flour was no different from that initiated from simple sugars (Tm was 175.8 °C and 176.2 °C, PDI was 1.29, and 1.31, respectively).

3.
Microb Cell Fact ; 23(1): 242, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39252026

RÉSUMÉ

BACKGROUND: Sugarcane molasses, rich in sucrose, glucose, and fructose, offers a promising carbon source for industrial fermentation due to its abundance and low cost. However, challenges arise from the simultaneous utilization of multiple sugars and carbon catabolite repression (CCR). Despite its nutritional content, sucrose metabolism in Escherichia coli, except for W strain, remains poorly understood, hindering its use in microbial fermentation. In this study, E. coli W was engineered to enhance sugar consumption rates and overcome CCR. This was achieved through the integration of a synthetically designed csc operon and the optimization of glucose and fructose co-utilization pathways. These advancements facilitate efficient utilization of sugarcane molasses for the production of 3-hydroxypropionic acid (3-HP), contributing to sustainable biochemical production processes. RESULTS: In this study, we addressed challenges associated with sugar metabolism in E. coli W, focusing on enhancing sucrose consumption and improving glucose-fructose co-utilization. Through targeted engineering of the sucrose utilization system, we achieved accelerated sucrose consumption rates by modulating the expression of the csc operon components, cscB, cscK, cscA, and cscR. Our findings revealed that monocistronic expression of the csc genes with the deletion of cscR, led to optimal sucrose utilization without significant growth burden. Furthermore, we successfully alleviated fructose catabolite repression by modulating the binding dynamics of FruR with the fructose PTS regulon, enabling near-equivalent co-utilization of glucose and fructose. To validate the industrial applicability of our engineered strain, we pursued 3-HP production from sugarcane molasses. By integrating heterologous genes and optimizing metabolic pathways, we achieved improvements in 3-HP titers compared to previous studies. Additionally, glyceraldehyde-3-phosphate dehydrogenase (gapA) repression aids in carbon flux redistribution, enhancing molasses conversion to 3-HP. CONCLUSIONS: Despite limitations in sucrose metabolism, the redesigned E. coli W strain, adept at utilizing sugarcane molasses, is a valuable asset for industrial fermentation. Its synthetic csc operon enhances sucrose consumption, while mitigating CCR improves glucose-fructose co-utilization. These enhancements, coupled with repression of gapA, aim to efficiently convert sugarcane molasses into 3-HP, addressing limitations in sucrose and fructose metabolism for industrial applications.


Sujet(s)
Escherichia coli , Fermentation , Fructose , Glucose , Génie métabolique , Mélasses , Saccharum , Saccharose , Saccharum/métabolisme , Escherichia coli/métabolisme , Escherichia coli/génétique , Génie métabolique/méthodes , Glucose/métabolisme , Saccharose/métabolisme , Fructose/métabolisme , Opéron , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Répression catabolique , Acide lactique/analogues et dérivés
4.
Bull Entomol Res ; : 1-8, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39258303

RÉSUMÉ

The symbiosis between microorganisms and host arthropods can cause biological, physiological, and reproductive changes in the host population. The present study aimed to survey facultative symbionts of the genera Wolbachia, Arsenophonus, Cardinium, Rickettsia, and Nosema in Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) and Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) in the laboratory and evaluate the influence of infection on the fitness of these hosts. For this purpose, 16S rDNA primers were used to detect these facultative symbionts in the host species, and the hosts' biological and morphological features were evaluated for changes resulting from the infection caused by these microorganisms. The bacterial symbionts studied herein were not detected in the D. saccharalis samples analysed, but the endosymbiont Wolbachia was detected in C. flavipes and altered the biological and morphological aspects of this parasitoid insect. The results of this study may help to elucidate the role of Wolbachia in maintaining the quality of populations/lineages of C. flavipes.

5.
Sci Technol Adv Mater ; 25(1): 2393568, 2024.
Article de Anglais | MEDLINE | ID: mdl-39238510

RÉSUMÉ

Sugarcane-based products are inherently rich in elements such as silicon, carbon and nitrogen. As such, these become ideal precursors for utilization in a wide array of application fields. One of the appealing areas is to transform them into nanomaterials of high interest that can be employed in several prominent applications. Among nanomaterials, sugarcane products based on silica nanoparticles (SNPs), carbon dots (CDs), metal/metal oxide-based NPs, nanocellulose, cellulose nanofibers (CNFs), and nano biochar are becoming increasingly reported. Through manipulation of the experimental conditions and choosing suitable starting precursors and elements, it is possible to devise these nanomaterials with highly desired properties suited for specific applications. The current review presents the findings from the recent literature wherein an effort has been made to convey new development in the field of sugarcane-based products for the synthesis of the above-mentioned nanomaterials. Various nanomaterials were systematically discussed in terms of their synthesis and application perspectives. Wherever possible, a comparative analysis was carried out to highlight the potential of sugarcane products for the intended purpose as compared to other biomass-based materials. This review is expected to stand out in delivering an up-to-date survey of the literature and provide readers with necessary directions for future research.


This review focuses on sugarcane-derived nanomaterials such as silica, nano cellulose, nanofibers, nanocrystals and metal/nonmetal nanoparticles and their application in various energy and environmental fields.

6.
J Food Sci ; 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39218811

RÉSUMÉ

The study examined the effects of three pretreatments, blanching (5, 10, and 30 min), ultrasound (15, 20, and 30 min), and steam blanching (10, 20, and 30 min) on sugarcane, assessing their impact on sugarcane juice quality parameters and aroma compounds. The control had the highest soluble solid content, while the ultrasound-15 min (US-15 min)-treated sample had the lowest, affecting pH, total acidity, and color values significantly. Color analysis showed lower L* values and less greenish tones in treated samples. The implemented pretreatments effectively reduce the browning index, with the US-20 min treatment showing the most significant reduction compared to the control sample. All pretreatments deactivated polyphenol oxidase. Carbon isotope analysis yielded significant results. Principal component analysis and hierarchical clustering linked 1,1-diphenyl-2-picrylhydrazyl (DPPH) with 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 5-hydroxymethyl furfural (HMF) with total phenolic content. The study also highlights significant variations in aroma compound profiles among pretreated sugarcane juice samples, with blanching for 10 min showing notable increases in specific compounds like 2-heptanone and nonanol. Hierarchical clustering showed similarities between blanching-30 min and US-30 min, contrasting with the control. Blanching-10 min had a positive impact on sugarcane juice quality. In conclusion, the study emphasized how pretreatments affect physicochemical properties and aroma compounds in sugarcane juice. PRACTICAL APPLICATION: The research findings suggest that blanching and ultrasound pretreatments can be used by the food industry to improve sugarcane juice quality by reducing browning, enhancing color, and altering aroma profiles. These pretreatments could extend the shelf life and appeal of sugarcane juice, making it more attractive to consumers while maintaining its nutritional properties.

7.
Mol Plant Pathol ; 25(9): e70001, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39223938

RÉSUMÉ

Xanthomonas albilineans (Xal) is a gram-negative bacterial pathogen responsible for developing sugarcane leaf scald disease, which engenders significant economic losses within the sugarcane industry. In the current study, homologous recombination exchange was carried out to induce mutations within the virB/D4-like type IV secretion system (T4SS) genes of Xal. The results revealed that the virB11-deletion mutant (ΔvirB11) exhibited a loss in swimming and twitching motility. Application of transmission electron microscopy analysis further demonstrated that the ΔvirB11 failed to develop flagella formation and type IV pilus morphology and exhibited reduced swarming behaviour and virulence. However, these alterations had no discernible impact on bacterial growth. Comparative transcriptome analysis between the wild-type Xal JG43 and the deletion-mutant ΔvirB11 revealed 123 differentially expressed genes (DEGs), of which 28 and 10 DEGs were notably associated with flagellar assembly and chemotaxis, respectively. In light of these findings, we postulate that virB11 plays an indispensable role in regulating the processes related to motility and chemotaxis in Xal.


Sujet(s)
Protéines bactériennes , Fimbriae bactériens , Flagelles , Xanthomonas , Xanthomonas/pathogénicité , Xanthomonas/génétique , Virulence/génétique , Fimbriae bactériens/métabolisme , Fimbriae bactériens/ultrastructure , Fimbriae bactériens/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/génétique , Régulation de l'expression des gènes bactériens , Morphogenèse , Maladies des plantes/microbiologie , Saccharum/microbiologie
8.
Plant J ; 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39167539

RÉSUMÉ

12-Oxo-phytodienoic acid reductases (OPRs) perform vital functions in plants. However, few studies have been reported in sugarcane (Saccharum spp.), and it is of great significance to systematically investigates it in sugarcane. Here, 61 ShOPRs, 32 SsOPRs, and 36 SoOPRs were identified from R570 (Saccharum spp. hybrid cultivar R570), AP85-441 (Saccharum spontaneum), and LA-purple (Saccharum officinarum), respectively. These OPRs were phylogenetically classified into four groups, with close genes similar structures. During evolution, OPR gene family was mainly expanded via whole-genome duplications/segmental events and predominantly underwent purifying selection, while sugarcane OPR genes may function differently in response to various stresses. Further, ScOPR2, a tissue-specific OPR, which was localized in cytoplasm and cell membrane and actively response to salicylic acid (SA), methyl jasmonate, and smut pathogen (Sporisorium scitamineum) stresses, was cloned from sugarcane. In addition, both its transient overexpression and stable overexpression enhanced the resistance of transgenic plants to pathogen infection, most probably through activating pathogen-associated molecular pattern/pattern-recognition receptor-triggered immunity, producing reactive oxygen species, and initiating mitogen-activated protein kinase cascade. Subsequently, the transmission of SA and hypersensitive reaction were triggered, which stimulated the transcription of defense-related genes. These findings provide insights into the function of ScOPR2 gene for disease resistance.

9.
Food Res Int ; 192: 114783, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39147532

RÉSUMÉ

Non-centrifugal raw cane sugar (NRCS) is a minimally processed product from sugarcane (Saccharum officinarum L). This product contains phytochemical and nutritional compounds that benefit human health. Despite these advantages, NRCS commercialization is hindered by a lack of knowledge about its composition and, consequently, the absence of quality standards. Studies associating the nutritional composition of sugarcane varieties and their genuine products have not yet been found in the literature, and understanding this relationship can help establish quality standards for this product. Therefore, this study evaluated the mineral nutritional composition of genuine derivative NRCS produced from two sugarcane varieties obtained under different agronomic conditions at two stages of maturation to verify the relationships between raw material and the product. The obtained sugarcanes, juices, and bagasse, as well as the produced sugars, were analyzed for mineral content, such as calcium, magnesium, potassium, phosphorus, sulfur, iron, manganese, copper, and zinc, using inductively coupled plasma optical emission spectrometry. Most mineral constituents of sugarcane are in the juice in direct proportions to those in raw sugarcane. Thus, minimally processed food derivatives have nutritional characteristics equivalent to the raw materials. Consumption of NRCS contributes to meeting daily requirements for essential nutrients such as magnesium, copper, potassium, and manganese. For manganese, 25 g of NRCS, like the one produced in this study, can fulfill 22 to 76 % of an adult male's daily mineral requirements. The variation observed in the four NRCS samples, obtained from the same sugarcane variety under different maturation and agronomic conditions, was 250 %. This variation makes establishing quality parameters for mineral or ash content difficult. Therefore, setting mineral content levels for NRCS is inappropriate, as this parameter naturally depends on the raw material.


Sujet(s)
Minéraux , Valeur nutritive , Saccharum , Saccharum/composition chimique , Minéraux/analyse , Cellulose/analyse , Cellulose/composition chimique , Manipulation des aliments/méthodes
10.
Int J Biol Macromol ; 278(Pt 2): 134836, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39154697

RÉSUMÉ

Calcineurin B-like proteins (CBLs) perceive calcium signals triggered by abiotic stress and interact with CBL-interacting protein kinases (CIPKs) to form a complex signal network. This study identified 21 SsCBL and 89 SsCIPK genes in Saccharum spontaneum, and 90 ScCBL and 367 ScCIPK genes in the sugarcane cultivar ZZ1. Phylogenetic analysis classified CBL genes into three groups and CIPK genes into twenty-five groups, with whole-genome duplication events promoting their expansion in sugarcane. RNA-seq analysis revealed their involvement in abiotic stress responses through ABA, JA, and SA pathways. Four ScCBLs and eight ScCIPKs were cloned from ZZ1. Three CBL-CIPK interactions were detected using a yeast two-hybrid system and Firefly luciferase complementation imaging, showing CBLs as membrane proteins and CIPKs as nuclear proteins. Spatial expression profiles indicate these genes are expressed in various tissues, with the highest expression in roots. Gene expression analyses suggested that CBL-CIPK signaling networks are involved in responses to drought, salt, and reactive oxygen species, possibly through Ca2+-induced hormone pathways. These findings establish three CBL-CIPK signaling networks responding to abiotic stress, providing a molecular basis for improving sugarcane stress resistance.

11.
Biotechnol Bioeng ; 121(9): 2742-2751, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39138870

RÉSUMÉ

In this study, a model was developed to simulate the effect of temperature ( T $T$ ) and initial substrate concentration ( S 0 ${S}_{0}$ ) on the ethanol concentration limit ( P max ${P}_{\max }$ ) using the yeast Saccharomyces cerevisiae. To achieve this, regressions were performed using data provided by other authors for P max ${P}_{\max }$ to establish a model dependent on T $T$ and S 0 ${S}_{0}$ capable of predicting results with statistical significance. After constructing the model, a response surface was generated to determine the conditions where P max ${P}_{\max }$ reaches higher values: temperatures between 28°C and 32°C and an initial substrate concentration around 200 g/L. Thus, the proposed model is consistent with the observations that increasing temperatures decrease the ethanol concentration obtained, and substrate concentrations above 200 g/L lead to a reduction in ethanol concentration even at low temperatures such as 28°C.


Sujet(s)
Éthanol , Modèles biologiques , Saccharomyces cerevisiae , Température , Saccharomyces cerevisiae/métabolisme , Éthanol/métabolisme , Fermentation
12.
Front Plant Sci ; 15: 1400000, 2024.
Article de Anglais | MEDLINE | ID: mdl-39109055

RÉSUMÉ

Sugarcane is a crucial crop for sugar and bioenergy production. Saccharose content and total weight are the two main key commercial traits that compose sugarcane's yield. These traits are under complex genetic control and their response patterns are influenced by the genotype-by-environment (G×E) interaction. An efficient breeding of sugarcane demands an accurate assessment of the genotype stability through multi-environment trials (METs), where genotypes are tested/evaluated across different environments. However, phenotyping all genotype-in-environment combinations is often impractical due to cost and limited availability of propagation-materials. This study introduces the sparse testing designs as a viable alternative, leveraging genomic information to predict unobserved combinations through genomic prediction models. This approach was applied to a dataset comprising 186 genotypes across six environments (6×186=1,116 phenotypes). Our study employed three predictive models, including environment, genotype, and genomic markers as main effects, as well as the G×E to predict saccharose accumulation (SA) and tons of cane per hectare (TCH). Calibration sets sizes varying between 72 (6.5%) to 186 (16.7%) of the total number of phenotypes were composed to predict the remaining 930 (83.3%). Additionally, we explored the optimal number of common genotypes across environments for G×E pattern prediction. Results demonstrate that maximum accuracy for SA ( ρ = 0.611 ) and for TCH ( ρ=0.341 ) was achieved using in training sets few (3) to no common (0) genotype across environments maximizing the number of different genotypes that were tested only once. Significantly, we show that reducing phenotypic records for model calibration has minimal impact on predictive ability, with sets of 12 non-overlapped genotypes per environment (72=12×6) being the most convenient cost-benefit combination.

13.
Plants (Basel) ; 13(15)2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39124203

RÉSUMÉ

The inhibitory potential of allelopathic plants is the subject of increasing research attention for their application in weed management. The sugarcane leaf is an agricultural waste product that has been reported to have allelopathic potential. Therefore, the present study determined the optimal organic solvent system and fractionation procedure to enhance the quantity of this extract and its allelopathic efficiency. Sugarcane leaves were extracted using five ethanol/water solvent ratios (v/v): 00:100, 25:75, 50:50, 75:25, and 100:00. Their allelopathic effects on seed germination and seedling growth were assayed in two major weeds, Echinochloa crus-galli (L.) Beauv. and Amaranthus viridis L. The results showed that the extract concentration, solvent ratio, and their interaction significantly inhibited the growth parameters in A. viridis. Consequently, a crude ethanol/water ratio of 00:100 was used to separate the active fraction via acid-base solvent partitioning. The acidic fraction (AE) exerted the greatest inhibitory effect and completely (100%) inhibited A. viridis at all concentrations, followed by the original crude fraction, neutral fraction, and aqueous fraction. Moreover, all of the fractions had selective effects, inhibiting A. viridis much more than E. crus-galli in the laboratory tests. The chemical analysis using gas chromatography/mass spectrometry indicated that the AE fraction contained 20 different compounds. The five major compounds included alkaloids, organic acids, and phenols. Therefore, the AE fraction was selected for formulation in a concentrated suspension and tested for its herbicidal characteristics. The formulation exhibited early post-emergence activities and had a stronger effect on A. viridis compared to E. crus-galli. The physiological mechanism of the formulation was tested against A. viridis. The thiobarbituric acid reactive substances and H2O2 occurred in the A. viridis leaf, which suggests lipid peroxidation and cell disruption.

14.
Plants (Basel) ; 13(15)2024 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-39124270

RÉSUMÉ

In the context of increasing agricultural challenges posed by soil salinity and drought stress, the main importance of the present study was to evaluate some novel treatments for improving canola productivity and resilience by applying wood distillate (WD) in combination with bagasse ash (SBA). A two-year field experiment using a split plot design was conducted and evaluated several physiological and biochemical parameters under different irrigation regimes conducted at 80% and 50% field capacity. While there were considerable moderation effects of SBA and WD on soil salinity, expressed as exchangeable sodium percentage (ESP), under both well-irrigated and drought conditions, more importantly, the ESP was reduced to 31% under drought stress with combined WD and SBA applications over any single factor. WD and SBA treatments of canola leaves showed reduced Na content with increased K levels, and the plants maintained physiological attributes-chlorophyll content, stomatal conductance, and relative water content-to the level of controls of well-irrigation. Besides, they significantly alleviated oxidative stress by decreasing the hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL) levels and increasing the activities of antioxidant enzymes like superoxide dismutase (SOD) and ascorbate peroxidase (APX). Nonenzymatic antioxidants such as total soluble sugars (TSS), total soluble proteins (TSP), total phenolic content (TPC), and total flavonoid content (TFC) were significantly increased under stress conditions with a special accent on combined treatment, whereas the levels of proline and GB that increased in alignment with drought reduced under the combined application. Various growth parameters of plants like plant height, number of branches, and siliques per plant were significantly improved with WD and SBA under drought stress. Principal component analysis (PCA) and Pearson correlation further confirmed the relationships among these parameters and thus underpinned that WD and SBA can evoke a synergistic effect to enhance growth promotion and stress tolerance in canola. This, therefore, infers that the combined application of WD and SBA can be key, offering very high potential as viable options to better canola productivity under adverse environmental conditions.

15.
Entropy (Basel) ; 26(8)2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39202169

RÉSUMÉ

Bio-energy systems with carbon capture and storage (BECCS) will be essential if countries are to meet the gas emission reduction targets established in the 2015 Paris Agreement. This study seeks to carry out a thermodynamic optimization and analysis of a BECCS technology for a typical Brazilian cogeneration plant. To maximize generated net electrical energy (MWe) and carbon dioxide CO2 capture (Mt/year), this study evaluated six cogeneration systems integrated with a chemical absorption process using MEA. A key performance indicator (gCO2/kWh) was also evaluated. The set of optimal solutions shows that the single regenerator configuration (REG1) resulted in more CO2 capture (51.9% of all CO2 emissions generated by the plant), penalized by 14.9% in the electrical plant's efficiency. On the other hand, the reheated configuration with three regenerators (Reheat3) was less power-penalized (7.41%) but had a lower CO2 capture rate (36.3%). Results showed that if the CO2 capture rates would be higher than 51.9%, the cogeneration system would reach a higher specific emission (gCO2/kWh) than the cogeneration base plant without a carbon capture system, which implies that low capture rates (<51%) in the CCS system guarantee an overall net reduction in greenhouse gas emissions in sugarcane plants for power and ethanol production.

16.
Molecules ; 29(16)2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39203006

RÉSUMÉ

Preservative ingredients in cosmetic formulations undertake a necessary role in the prevention of microbial contamination. In this field, there is an unmet need for natural, sustainable, and effective preservatives. Thus, the main goal of this work was to evaluate a sugarcane straw extract-based ingredient and investigate its potential as a preservative for cosmetic applications. Different ingredients were developed using several cosmetic solvents to improve the solubility of the extracted compounds. The antimicrobial activity was assessed against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The 1,2-hexanediol was the solvent that allowed us to achieve the ingredient (20% dry extract dispersed in 25% 1,2-hexanediol in water) with the best antimicrobial performance, showing a minimum inhibitory concentration of between 5% and 3% (I). The 5% (w/v) concentration of this ingredient complied with the USP51 standards for cosmetic preservatives. Real-time (25 °C, 65% RH) and accelerated stability (40 °C, 75% RH) tests were conducted to determine the ingredient stability, and it was found that one month of storage time at room temperature would be ideal for better ingredient stability and performance in terms of composition, pH, color, and antioxidant activity.


Sujet(s)
Anti-infectieux , Cosmétiques , Tests de sensibilité microbienne , Extraits de plantes , Conservateurs pharmaceutiques , Saccharum , Saccharum/composition chimique , Cosmétiques/composition chimique , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie , Conservateurs pharmaceutiques/composition chimique , Conservateurs pharmaceutiques/pharmacologie , Anti-infectieux/pharmacologie , Anti-infectieux/composition chimique , Staphylococcus aureus/effets des médicaments et des substances chimiques , Antioxydants/pharmacologie , Antioxydants/composition chimique , Escherichia coli/effets des médicaments et des substances chimiques , Candida albicans/effets des médicaments et des substances chimiques , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques
17.
Plants (Basel) ; 13(16)2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39204683

RÉSUMÉ

Sugarcane holds global promise as a biofuel feedstock, necessitating a deep understanding of factors that influence biomass yield. This study unravels the intricate dynamics of plant hormones that govern growth and development in sugarcane. Transcriptome analysis of F2 introgression hybrids, derived from the cross of Saccharum officinarum "LA Purple" and wild Saccharum robustum "MOL5829", was conducted, utilizing the recently sequenced allele-specific genome of "LA Purple" as a reference. A total of 8059 differentially expressed genes were categorized into gene models (21.5%), alleles (68%), paralogs (10%), and tandemly duplicated genes (0.14%). KEGG analysis highlighted enrichment in auxin (IAA), jasmonic acid (JA), and abscisic acid (ABA) pathways, revealing regulatory roles of hormone repressor gene families (Aux/IAA, PP2C, and JAZ). Signaling pathways indicated that downregulation of AUX/IAA and PP2C and upregulation of JAZ repressor genes in high biomass segregants act as key players in influencing downstream growth regulatory genes. Endogenous hormone levels revealed higher concentrations of IAA and ABA in high biomass, which contrasted with lower levels of JA. Weighted co-expression network analysis demonstrated strong connectivity between hormone-related key genes and cell wall structural genes in high biomass genotypes. Expression analysis confirmed the upregulation of genes involved in the synthesis of structural carbohydrates and the downregulation of inflorescence and senescence-related genes in high biomass, which suggested an extended vegetative growth phase. The study underscores the importance of cumulative gene expression, including gene models, dominant alleles, paralogs, and tandemly duplicated genes and activators and repressors of disparate hormone (IAA, JA, and ABA) signaling pathways are the points of hormone crosstalk in contrasting biomass F2 segregants and could be applied for engineering high biomass acquiring varieties.

18.
Plants (Basel) ; 13(16)2024 Aug 18.
Article de Anglais | MEDLINE | ID: mdl-39204734

RÉSUMÉ

Understanding the settling preference, feeding behavior, honeydew production, and biophysical factors, such as trichome density, related to Y. flavovittatus leafhopper infestation in sugarcane cultivation is crucial for effective pest management strategies. This study investigated these aspects across nine sugarcane cultivars. Significant variability was observed among cultivars in terms of settling behavior, with KK3 and LK92-11 showing the highest number of settled leafhopper adults. Similarly, honeydew production varied significantly among cultivars, with KK3 and LK92-11 exhibiting the highest production. Employing the electrical penetration graph (EPG) technique provided insights into distinct probing behaviors across cultivars, highlighting correlations between settling preference, honeydew production, and specific EPG waveforms. Principal component analysis (PCA) categorized cultivars into four groups based on settling preference, honeydew production, feeding behavior, and biophysical factors. Strong correlations were found between settling preference, honeydew production, and various EPG waveforms, while negative correlations were observed with the number of silica cells and rows per unit area, indicating their potential role in deterring leafhopper settlement. We concluded that TPJ04-768 and K84-200 are promising for resistance against leafhoppers and, thereby, can be exploited in sugarcane breeding programs with regard to resistance against insects.

19.
Plants (Basel) ; 13(16)2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39204773

RÉSUMÉ

Sugarcane/soybean intercropping and reduced nitrogen (N) application as an important sustainable agricultural pattern can increase crop primary productivity and improve soil ecological functions, thereby affecting soil organic carbon (SOC) input and turnover. To explore the potential mechanism of sugarcane/soybean intercropping affecting SOC sequestration, a two-factor long-term field experiment was carried out, which included planting pattern (sugarcane monocropping (MS), sugarcane/soybean 1:1 intercropping (SB1), and sugarcane/soybean 1:2 intercropping (SB2)) and nitrogen addition levels (reduced N application (N1: 300 kg·hm-2) and conventional N application (N2: 525 kg·hm-2)). The results showed that the shoot and root C fixation in the sugarcane/soybean intercropping system were significantly higher than those in the sugarcane monocropping system during the whole growth period of sugarcane, and the N application level had no significant effect on the C fixation of plants in the intercropping system. Sugarcane/soybean intercropping also increased the contents of total organic C (TOC), labile organic C fraction [microbial biomass C (MBC) and dissolved organic C (DOC)] in the soil during the growth period of sugarcane, and this effect was more obvious at the N1 level. We further analyzed the relationship between plant C sequestration and SOC fraction content using regression equations and found that both plant shoot and root C sequestration were significantly correlated with TOC, MBC, and DOC content. This suggests that sugarcane/soybean intercropping increases the amount of C input to the soil by improving crop shoot and root C sequestration, which then promotes the content of each SOC fraction. The results of this study indicate that sugarcane/soybean intercropping and reduced N application patterns can synergistically improve plant and soil C fixation, which is of great significance for improving crop yields, increasing soil fertility, and reducing greenhouse gas emissions from agricultural fields.

20.
Braz J Vet Med ; 46: e003824, 2024.
Article de Anglais | MEDLINE | ID: mdl-39188292

RÉSUMÉ

The sugarcane industry generates byproducts that contribute to the proliferation of Stomoxys calcitrans. An analysis was carried out to verify the efficacy of Heterorhabditis bacteriophora HP88 and H. baujardi LPP7 at different vinasse temperatures to control S. calcitrans larvae. Ten fly larvae were deposited in plastic containers containing four mL of 50% vinasse. Each treatment consisted of 300 EPN/larvae of H. bacteriophora added to the containers and heated at temperatures of 25, 28, 31, 34, 37 and 40 °C. The same treatments were performed using H. baujardi. The treatments were carried out in a BOD incubator at 25 ± 1 °C and 70 ± 10% RH, and each treatment was replicated six times. The treated groups, controls and temperatures showed no statistical differences in terms of larval mortality rate (P=0.8573), percentage of dead pupae (P=0.1782) and adult emergence (P=0.4386). Larval mortality rates of 30% and 14.17% were achieved with H. bacteriophora and H. baujardi, respectively, while the control groups presented 3.89% with H. bacteriophora and 8.61% with H. baujardi. From the standpoint of temperatures, significant differences were found only at 37 and 40 °C for H. baujardi. The highest pupal mortality achieved with H. bacteriophora was 34.17% at 31 °C, while that reached with H. baujardi at 37 °C was 40%. The groups containing H. bacteriophora caused lower adult emergence rates at temperatures of 25, 28, 31 and 34 °C, while H. baujardi caused its lowest emergence rates at 37 and 40 °C. It is concluded that infection occurs in the immature stages of S. calcitrans by EPN when added to 50% vinasse solution at different temperatures and that nematodes caused negative effects on the emergence of fly larvae at varying temperatures.


A indústria da cana-de-açúcar gera subprodutos que ajudam na proliferação de Stomoxys calcitrans. Uma análise foi realizada para verificar a eficiência de Heterorhabditis bacteriophora HP88 e H. baujardi LPP7 em diferentes temperaturas de vinhaça no controle de larvas de S. calcitrans. Dez larvas da mosca foram depositadas em recipientes plásticos contendo quatro mL de vinhoto à 50%. Em cada tratamento adicionou-se 300 NEP/larva de H. bacteriophora, aquecidos nas temperaturas de 25, 28, 31, 34, 37 e 40 °C. Os mesmos tratamentos foram realizados utilizando e H. baujardi. Os tratamentos foram realizados e mantidos em câmara climatizada a 25 ± 1 °C e 70 ± 10% UR, foram realizadas seis repetições para cada tratamento. Não houve diferença estatística entre os grupos tratados, controles e temperaturas para taxa de mortalidade de larval (P=0,8573), percentual de pupas mortas (P=0,1782) e emergência de adultos (P=0,4386). Foram observadas taxas de mortalidade larval de 30% e 14,17% para H. bacteriophora e H. baujardi, respectivamente, enquanto os grupos controles apresentaram 3,89% no H. bacteriophora e 8,61% H. baujardi. Na avaliação das temperaturas, foram observadas diferenças significativas apenas nas temperaturas 37 e 40 °C de H. baujardi. A maior mortalidade pupal observada para H. bacteriophora foi de 34,17% quando em 31 °C, já para H. baujardi na temperatura de 37 °C apresentou 40% de mortalidade. Houve menor emergência de adultos nas temperaturas de 25, 28, 31 e 34 °C nos grupos com H. bacteriophora, já H. baujardi causou as menores taxas de emergência quando em 37 e 40 °C. Conclui-se que ocorre infecção nos estágios imaturos de S. calcitrans por NEP quando adicionados à solução de vinhoto a 50% em diferentes temperaturas e que os nematoides causaram efeitos negativos na emergência da mosca em temperaturas variadas.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE