Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 8.993
Filtrer
1.
Environ Sci Technol ; 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38982970

RÉSUMÉ

The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), phosphorus (P), and S biotransformation. However, operational instability arises due to the numerous parameters and intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach to predict S conversion-driven P removal efficiency and optimize DS-EBPR process. Stage one utilized the XGBoost regression model, achieving an R2 value of 0.948 for predicting sulfate reduction (SR) intensity from anaerobic parameters with feature engineering. Stage two involved the CatBoost classification and regression model integrating anoxic parameters with the predicted SR values for predicting P removal, reaching an accuracy of 94% and an R2 value of 0.93, respectively. This study identified key environmental factors, including SR intensity (20-45 mg S/L), influent P concentration (<9.0 mg P/L), mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio (0.55-0.72), influent C/S ratio (0.5-1.0), anoxic reaction time (5-6 h), and MLSS concentration (>6.50 g/L). A user-friendly graphic interface was developed to facilitate easier optimization and control. This approach streamlines the determination of optimal conditions for enhancing P removal in the DS-EBPR process.

2.
Article de Anglais | MEDLINE | ID: mdl-38973076

RÉSUMÉ

Sulfur dots are a new class of recently developed nonmetallic luminescent nanomaterials with various potential applications. Herein, we synthesized sulfur dots using a mild chemical etching method and then modified the structural features of the as-synthesized sulfur dots using a slow and defined solvent-assisted aggregation process. This increases the particle size and overall crystallinity along with the modifications of the surface functional groups, which eventually show a new emission band at longer wavelengths. Detailed photophysical and temperature-dependent luminescence studies confirmed that the new emissive state evolves due to interparticle interactions in the excited state. Furthermore, the occurrence of a new emissive state in a longer-wavelength region helped reduce the energy gap between the lowest excited singlet state and the lowest excited triplet state in modified sulfur dots, resulting in an aqueous stable room-temperature phosphorescence/afterglow emission through efficient intersystem crossing. This typical efficacious afterglow emission directly shows the potential applicability of structurally modified sulfur dots in encryption devices and can also be potentially effective in light emitting diodes (LED) and sensing devices.

3.
mBio ; : e0053424, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38975783

RÉSUMÉ

Ubiquitin-like proteins (Ubls) in eukaryotes and bacteria mediate sulfur transfer for the biosynthesis of sulfur-containing biomolecules and form conjugates with specific protein targets to regulate their functions. Here, we investigated the functions and physiological importance of Ubls in a hyperthermophilic archaeon by constructing a series of deletion mutants. We found that the Ubls (TK1065, TK1093, and TK2118) in Thermococcus kodakarensis are conjugated to their specific target proteins, and all three are involved in varying degrees in the biosynthesis of sulfur-containing biomolecules such as tungsten cofactor (Wco) and tRNA thiouridines. TK2118 (named UblB) is involved in the biosynthesis of Wco in a glyceraldehyde 3-phosphate:ferredoxin oxidoreductase, which is required for glycolytic growth, whereas TK1093 (named UblA) plays a key role in the efficient thiolation of tRNAs, which contributes to cellular thermotolerance. Intriguingly, in the presence of elemental sulfur (S0) in the culture medium, defective synthesis of these sulfur-containing molecules in Ubl mutants was restored, indicating that T. kodakarensis can use S0 as an alternative sulfur source without Ubls. Our analysis indicates that the Ubl-mediated sulfur-transfer system in T. kodakarensis is important for efficient sulfur assimilation, especially under low S0 conditions, which may allow this organism to survive in a low sulfur environment.IMPORTANCESulfur is a crucial element in living organisms, occurring in various sulfur-containing biomolecules including iron-sulfur clusters, vitamins, and RNA thionucleosides, as well as the amino acids cysteine and methionine. In archaea, the biosynthesis routes and sulfur donors of sulfur-containing biomolecules are largely unknown. Here, we explored the functions of Ubls in the deep-blanched hyperthermophilic archaeon, Thermococcus kodakarensis. We demonstrated functional redundancy of these proteins in the biosynthesis of tungsten cofactor and tRNA thiouridines and the significance of these sulfur-carrier functions, especially in low sulfur environments. We propose that acquisition of a Ubl sulfur-transfer system, in addition to an ancient inorganic sulfur assimilation pathway, enabled the primordial archaeon to advance into lower-sulfur environments and expand their habitable zone.

4.
ACS Nano ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38981060

RÉSUMÉ

Catalytic additives able to accelerate the lithium-sulfur redox reaction are a key component of sulfur cathodes in lithium-sulfur batteries (LSBs). Their design focuses on optimizing the charge distribution within the energy spectra, which involves refinement of the distribution and occupancy of the electronic density of states. Herein, beyond charge distribution, we explore the role of the electronic spin configuration on the polysulfide adsorption properties and catalytic activity of the additive. We showcase the importance of this electronic parameter by generating spin polarization through a defect engineering approach based on the introduction of Co vacancies on the surface of CoSe nanosheets. We show vacancies change the electron spin state distribution, increasing the number of unpaired electrons with aligned spins. This local electronic rearrangement enhances the polysulfide adsorption, reducing the activation energy of the Li-S redox reactions. As a result, more uniform nucleation and growth of Li2S and an accelerated liquid-solid conversion in LSB cathodes are obtained. These translate into LSB cathodes exhibiting capacities up to 1089 mA h g-1 at 1 C with 0.017% average capacity loss after 1500 cycles, and up to 5.2 mA h cm-2, with 0.16% decay per cycle after 200 cycles in high sulfur loading cells.

5.
Front Immunol ; 15: 1369326, 2024.
Article de Anglais | MEDLINE | ID: mdl-38953022

RÉSUMÉ

Objectives: Mast cell (MC) degranulation is a key process in allergic reactions and inflammatory responses. Aspartate aminotransferase 1 (AAT1)-derived endogenous sulfur dioxide (SO2) is an important regulator of MC function. However, the mechanism underlying its role in MC degranulation remains unclear. This study aimed to investigate the mechanism by which endogenous SO2 controlled MC degranulation. Methods: HMC-1 and Rat basophilic leukemia cell MC line (RBL-2H3) were used in the cell experiments. SO2 content was detected by in situ fluorescent probe. MC degranulation represented by the release rate of MC ß-hexosaminidase was determined using a colorimetric assay. Sulfenylation of galectin-9 (Gal-9) in MCs and purified protein was detected using a biotin switch assay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the exact sulfenylation sites of Gal-9 by SO2. Animal models of passive cutaneous anaphylaxis (PCA) and hypoxia-driven pulmonary vascular remodeling were used to investigate the effect of SO2 on mast cell activation in vivo. Site-directed mutation of Gal-9 was conducted to confirm the exact site of SO2 and support the significance of SO2/Gal-9 signal axis in the regulation of MC degranulation. Results: Degranulation was increased in AAT1-knockdowned MCs, and SO2 supplementation reversed the increase in MC degranulation. Furthermore, deficiency of endogenous SO2 contributed to IgE-mediated degranulation in vitro. Besides, SO2 inhibited IgE-mediated and hypoxia-driven MC degranulation in vivo. Mechanistically, LC-MS/MS analysis and site-directed mutation results showed that SO2 sulfenylated Gal-9 at cysteine 74. Sulfenylation of the 74th cysteine of Gal-9 protein was required in the SO2-inhibited MC degranulation under both physiological and pathophysiological conditions. Conclusion: These findings elucidated that SO2 inhibited MC degranulation via sulfenylating Gal-9 under both physiological and pathophysiological conditions, which might provide a novel treatment approach for MC activation-related diseases.


Sujet(s)
Dégranulation cellulaire , Cystéine , Galectines , Mastocytes , Dioxyde de soufre , Animaux , Dégranulation cellulaire/effets des médicaments et des substances chimiques , Mastocytes/métabolisme , Mastocytes/immunologie , Mastocytes/effets des médicaments et des substances chimiques , Cystéine/métabolisme , Rats , Dioxyde de soufre/pharmacologie , Dioxyde de soufre/métabolisme , Humains , Galectines/métabolisme , Souris , Mâle , Anaphylaxie cutanée passive , Lignée cellulaire
6.
mBio ; : e0103324, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953360

RÉSUMÉ

Certain members of the family Sulfolobaceae represent the only archaea known to oxidize elemental sulfur, and their evolutionary history provides a framework to understand the development of chemolithotrophic growth by sulfur oxidation. Here, we evaluate the sulfur oxidation phenotype of Sulfolobaceae species and leverage comparative genomic and transcriptomic analysis to identify the key genes linked to sulfur oxidation. Metabolic engineering of the obligate heterotroph Sulfolobus acidocaldarius revealed that the known cytoplasmic components of sulfur oxidation alone are not sufficient to drive prolific sulfur oxidation. Imaging analysis showed that Sulfolobaceae species maintain proximity to the sulfur surface but do not necessarily contact the substrate directly. This indicates that a soluble form of sulfur must be transported to initiate cytoplasmic sulfur oxidation. Conservation patterns and transcriptomic response implicate an extracellular tetrathionate hydrolase and putative thiosulfate transporter in a newly proposed mechanism of sulfur acquisition in the Sulfolobaceae.IMPORTANCESulfur is one of the most abundant elements on earth (2.9% by mass), so it makes sense that the earliest biology found a way to use sulfur to create and sustain life. However, beyond evolutionary significance, sulfur and the molecules it comprises have important technological significance, not only in chemicals such as sulfuric acid and in pyritic ores containing critical metals but also as a waste product from oil and gas production. The thermoacidophilic Sulfolobaceae are unique among the archaea as sulfur oxidizers. The trajectory for how sulfur biooxidation arose and evolved can be traced using experimental and bioinformatic analyses of the available genomic data set. Such analysis can also inform the process by which extracellular sulfur is acquired and transported by thermoacidophilic archaea, a phenomenon that is critical to these microorganisms but has yet to be elucidated.

7.
Anal Sci ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38954177

RÉSUMÉ

This study introduces a suite of robust models aimed to advance the determination of physiochemical properties in heavy oil refinery fractions. By integrating real-time analytical technique inside the refinery analysis, we have developed a single analyzer capable of employing six partial least square regression equations. These designed models enable to provide real-time prediction of critical petroleum properties, such as sulfur content, micro carbon residues (MCR), asphaltene content, heating value, and the concentrations of nickel and vanadium metals. Specifically tailored for heavy oil in refinery feeds with an American petroleum institute (API) gravity range of 3° to 32° and sulfur content of 2.8 to 5.5 wt%, the models streamline the analysis process within refinery operations, bridging the gap between catalytic and non-catalytic processes across refinery units. The accuracy of our physiochemical prediction models has been validated against American Society for Testing and Materials (ASTM) standards, demonstrating their capability to deliver precise real-time property values. This approach not only enhances the efficiency of refinery analysis but also sets a new standard for the monitoring and optimization of heavy oil processing in real-time approach.

8.
Article de Anglais | MEDLINE | ID: mdl-38954756

RÉSUMÉ

Flexible thermoelectric generators can directly convert thermal energy harvested from the human body into electricity. The Ag2Se flexible film, a promising material for wearable thermoelectric generators, normally demonstrates an inferior electrical transport property due to its weakened in-plane mobility. In this study, the in-plane electrical transport properties of flexible Ag2Se films were optimized by alloying with additional sulfur. This optimization is achieved by leveraging the differences in elemental electronegativity and the preferred orientation of the Ag2Se films. The sulfur-alloyed Ag2Se thin film, with a nominal ratio of 3 atom %, can reach a maximum mobility of 1150 cm-2 V-1 s-1 at 300 K. So, the optimized room-temperature power factor increases to 1935 µW m-1 K-2. Furthermore, the Ag2Se film alloyed with 3 atom % sulfur exhibits excellent flexibility even after 1000 bending cycles with a radius of 5 mm, characterized by a relative resistance increment of less than 3%. In addition, the corresponding π-type flexible thermoelectric generator possesses a maximum power density of 51 W m-2 at a temperature difference of 50 K.

9.
J Colloid Interface Sci ; 674: 805-812, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38955011

RÉSUMÉ

Lithium-sulfur (Li-S) batteries represent the most promising next-generation energy storage systems because of their high theoretical specific capacity and energy density. However, the severe shuttle effect and volume expansion of sulfur cathodes have impeded their commercial viability. Hence, accelerating the conversion of lithium polysulfides (LiPSs) is crucial for achieving efficient Li-S batteries. In this study, we employ a straightforward electrostatic self-assembly method to coat ultra-thin MXene nanosheets onto a S@MnO2 core-shell structure, resulting in a highly conductive three-dimensional network. This unique structure not only suppresses the diffusion of LiPSs but also accelerates electron and ion transfer, ensuring a rapid and efficient conversion of LiPSs. The CV curves of symmetrical cells and the Li2S deposition curves demonstrate a significant improvement in the catalytic performance of batteries with S@MnO2@MXene. The capacity of Li-S batteries achieved an impressive 842 mAh/g at the current density of 1C, with a minimal capacity decay of only 0.84 mAh/g per cycle within 500 cycles. Additionally, increasing the sulfur loading mass to 5.88 mg cm-2 resulted in an areal capacity of 6.33 mAh cm-2, demonstrating practical application potential.

10.
J Colloid Interface Sci ; 674: 873-883, 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38955018

RÉSUMÉ

Lithium-sulfur batteries (LSBs) hold promise as the next-generation lithium-ion batteries (LIBs) due to their ultra-high theoretical capacity and remarkable cost-efficiency. However, these batteries suffer from the serious shuttle effect, challenging their practical application. To address this challenge, we have developed a unique interlayer (HCON@CNWF) composed of hollow cerium oxide nanorods (CeO2) anchored to carbonized non-woven viscose fabric (CNWF), utilizing a straightforward template method. The prepared interlayer features a three-dimensional (3D) conductive network that serves as a protective barrier and enhances electron/ion transport. Additionally, the CeO2 component effectively chemisorbs and catalytically transforms lithium polysulfides (LiPSs), offering robust chemisorption and activation sites. Moreover, the unique porous structure of the HCON@CNWF not only physically adsorbs LiPSs but also provides ample space for sulfur's volume expansion, thus mitigating the shuttle effect and safeguarding the electrode against damage. These advantages collectively contribute to the battery's outstanding electrochemical performance, notably in retaining a reversible capacity of 80.82 % (792 ± 5.60 mAh g-1) of the initial value after 200 charge/discharge cycles at 0.5C. In addition, the battery with HCON@CNWF interlayer has excellent electrochemical performance at high sulfur loading (4 mg cm-2) and low liquid/sulfur ratio (7.5 µL mg-1). This study, thus, offers a novel approach to designing advanced interlayers that can enhance the performance of LSBs.

11.
Chemistry ; : e202402028, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958451

RÉSUMÉ

Sulfur based deoxyfluorination reagents are usually derived from the corrosive gas SF4. Herein, we report the synthesis and properties of an easily accessible phosphonium salt [(tmg)3PF]+SF5- (1) which was obtained from the reaction of sulfur hexafluoride (SF6) with tris(tetramethylguanidinyl)phosphine. The performance of this crystalline SF5- salt as a reagent in deoxyfluorination reactions was investigated together with a second SF5- salt [(R1)3PF]+SF5- (2) containing bulky substituents (R1 = 1,3-di-tert-butylimidazolidin-2-ylidenamino). Both reagents proved to be effective for the deoxyfluorination of various functional groups including alcohols, anhydrides, and amides.

12.
Chemistry ; : e202401446, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958604

RÉSUMÉ

Life on Earth uses DNA as the central template for self-replication, genetic encoding, and information transfer. However, there are no physical laws precluding life's existence elsewhere in space, and alternative life forms may not need DNA. In the search for exobiology, knowing what to look for as a biosignature remains a challenge-especially if it is not from the obvious list of biologic building blocks. Clues from chemicals recently discovered on Mars and in the Taurus Molecular Cloud 1 (TMC-1), show that intriguing organic compounds exist beyond Earth, which could provide a starting point for unconventional exobiotic designs. Here we present a new self-replicating system with structural similarities to recently discovered compounds on Mars and TMC-1. Rather than using DNA's hydrogen-bonding motif for reliable base-paring, our design employs sulfur-nitrogen interactions to selectively template unique benzothiadiazole units in sequence. We synthesized and studied two versions of this system, one reversible and the other irreversible, and found experimental evidence of self-replication in d-chloroform solvent. These results are part of a larger pursuit in our lab for developing a basis for a potential exobiological system using starting blocks closely related to these cosmic compounds.

13.
Chem Asian J ; : e202400199, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38946437

RÉSUMÉ

Iron-nitrogen functionalized graphene has emerged as a promising cathode host for rechargeable lithium-sulfur batteries (RLSBs) due to its affordability and enhanced battery performance. To optimize its catalytical efficiency, we propose a novel approach involving coordination engineering. Our investigation spans a plethora of catalysts with varied coordination environments, focusing on elements B, C, N and O. We revealed that Fe-C4 and Fe-B2C2-h are particularly effective for promoting Li2S oxidation, whereas Fe-N4 excels in catalyzing the sulfur reduction reaction (SRR). Importantly, our study identified specific descriptors - namely, the Integrated Crystal Orbital Hamilton Population (ICOHP) and the bond length between Fe and S in Li2S adsorbed state - as the most effective predictive descriptors for Li2S oxidation barriers. Meanwhile, Li2S adsorption energy emerges as a reliable descriptor for assessing the SRR barrier. These identified descriptors are expected to be instrumental in rapidly identifying promising cathode hosts across various metal-centered systems with diverse coordination environments. Our findings not only offer valuable insights into the role of coordination environment, but also present an effective path for rapidly identifying high performance catalysts for RLSBs, enabling the acceleration of advanced RLSBs development.

14.
Front Microbiol ; 15: 1407760, 2024.
Article de Anglais | MEDLINE | ID: mdl-38946896

RÉSUMÉ

Introduction: Salinization damages soil system health and influences microbial communities structure and function. The response of microbial functions involved in the nutrient cycle to soil salinization is a valuable scientific question. However, our knowledge of the microbial metabolism functions in salinized soil and their response to salinity in arid desert environments is inadequate. Methods: Here, we applied metagenomics technology to investigate the response of microbial carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling and the key genes to salinity, and discuss the effects of edaphic variables on microbial functions. Results: We found that carbon fixation dominated the carbon cycle. Nitrogen fixation, denitrification, assimilatory nitrate reduction (ANRA), and nitrogen degradation were commonly identified as the most abundant processes in the nitrogen cycle. Organic phosphorus dissolution and phosphorus absorption/transport were the most enriched P metabolic functions, while sulfur metabolism was dominated by assimilatory sulfate reduction (ASR), organic sulfur transformation, and linkages between inorganic and organic sulfur transformation. Increasing salinity inhibited carbon degradation, nitrogen fixation, nitrogen degradation, anammox, ANRA, phosphorus absorption and transport, and the majority of processes in sulfur metabolism. However, some of the metabolic pathway and key genes showed a positive response to salinization, such as carbon fixation (facA, pccA, korAB), denitrification (narG, nirK, norBC, nosZ), ANRA (nasA, nirA), and organic phosphorus dissolution processes (pstABCS, phnCD, ugpAB). High salinity reduced the network complexity in the soil communities. Even so, the saline microbial community presented highly cooperative interactions. The soil water content had significantly correlations with C metabolic genes. The SOC, N, and P contents were significantly correlated with C, N, P, and S network complexity and functional genes. AP, NH4+, and NO3- directly promote carbon fixation, denitrification, nitrogen degradation, organic P solubilization and mineralization, P uptake and transport, ASR, and organic sulfur transformation processes. Conclusion: Soil salinity in arid region inhibited multiple metabolic functions, but prompted the function of carbon fixation, denitrification, ANRA, and organic phosphorus dissolution. Soil salinity was the most important factor driving microbial functions, and nutrient availability also played important roles in regulating nutrient cycling.

15.
mLife ; 3(2): 231-239, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38948149

RÉSUMÉ

Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation.

16.
Sci Total Environ ; 946: 174422, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38964400

RÉSUMÉ

Nitrogen oxides and sulfur oxides, as the dominant toxic gases in the atmosphere, can induce severe human health problems under the composite pollutant conditions. Currently the effect of nitrogen or sulfur oxides in atmospheric environment to the degradation and cytotoxicity of triphenyl phosphate (TPhP) on atmospheric particle surfaces still remain poorly understood. Hence, laboratory simulation methods were used in this study to investigate the effect and related mechanism. First, particle samples were prepared with the TPhP coated on MnSO4, CuSO4, FeSO4 and Fe2(SO4)3 surface. The results showed that, when nitrogen or sulfur oxides were present, more significant TPhP degradation on all samples can be observed under both light and dark conditions. The results proved nitrogen oxides and sulfur oxides were the vital influence factors to the degradation of TPhP, which mainly promoted the OH generation in the polluted atmosphere. The mechanism study indicated that diphenyl hydrogen phosphate (DPhP) and OH-DPhP were two main stable degradation products. These degradation products originated from the phenoxy bond cleavage and hydroxylation of TPhP caused by hydroxyl radicals. In addition, no TPhP related organosulfates (OSs) or organic nitrates (ON) formation were observed. Regarding the cytotoxicity, all the particles can induce more significant cellular injury and apoptosis of A549 cells, which may be relevant to the adsorbed nitrogen oxides or sulfur oxides on particles surfaces. The superfluous reactive oxygen species (ROS) generation was the possible reason of cytotoxicity. This research can supply a comprehensive understanding of the promoting effect of nitrogen and sulfur oxides to TPhP degradation and the composite cytotoxicity of atmospheric particles.

17.
Appl Radiat Isot ; 211: 111416, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38968702

RÉSUMÉ

The 32P radioisotope, with a half-life of 14.3 days and an energy level of 1.71 MeV, has diverse applications in medicine and research. Consequently, producing a carrier-free 32P radioisotope characterized by high radiochemical and radionuclide purity is imperative. Two primary methods for generating 32P radioisotopes exist: irradiating phosphorus through the nuclear reaction (n,γ) or irradiating sulfur through the nuclear reaction (n,p). Using sulfur as a target material provides several advantages. Besides the fact that the chemical element produced after irradiation (32P) differs from the irradiated element (32S), it also produces a32P radioisotope with a higher specific activity than using 31P as the target. The production of the radioisotope 32P from sulfur employs the dry distillation method, capitalizing on sulfur's easily sublimated nature. The volatility of sulfur when heated makes it easy to separate the resulting sulfur and radioisotope 32P without the need for additional reagents. This research aims to establish a practical method for producing the 32P radioisotope using the dry distillation technique. The dry distillation method utilizes a quartz ampoule containing a mixture of 32P and 35S radionuclides, a distillation tube wrapped with heating tape, and a condenser to collect the distilled sulfur. Sulfur, serving as the target material, undergoes irradiation in the reactor at the Central Irradiation Position (CIP) through the 32S(n,p)32P nuclear reaction with a fast neutron flux of 5.380 × 1013 n/cm2.sec. Separation is achieved through distillation at a temperature of 440 °C. The residual separation products are then dissolved in a 0.1 N HCl solution. The purification process involves using an AG50 WX8 cation exchange resin column, which is pre-conditioned with 0.1 N HCl. The resulting eluate contains the 32P radioisotope. The radiochemical purity of the 32P radioisotope is analyzed using thin-layer chromatography (TLC). In this analysis, a PEI Cellulose plate serves as the stationary phase, and a KH2PO4 solution acts as the mobile phase. This vacuum-free distillation method successfully separates the 32P radioisotope from sulfur, achieving a separation efficiency of 55.1 ± 9.9% (n = 7). The average activity produced after the purification process is 5.690E+10 Bq. Purifying the 32P radioisotope results in a radiochemical purity of 99.97% at Rf 0.7110, as orthophosphate, the radionuclide purity exceeds 99%.

18.
Environ Pollut ; : 124507, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38968984

RÉSUMÉ

Nitrate and Cr(VI) are the typical and prevalent co-contaminants in the groundwater, how to synchronously and effectively diminish them has received growing attention. The most problem that currently limits the nitrate and Cr(VI) reduction technology for groundwater remediation is with emphasis on exploring the optimal electron donors. This study investigated the feasibility of utilizing the synergistical effect of inorganic electron donors (pyrite, sulfur) and inherently limited organics to promote synchronous nitrate and Cr(VI) removal, which meets the requirement of naturally low-carbon and eco-friendly technologies. The NO3--N and Cr(VI) removal efficiencies in the pyrite and sulfur involved mixotrophic biofilter (PS-BF: approximately 90.8±0.6% and 99.1±2.1%) were substantially higher than that in a volcanic rock supported biofilter (V-BF: about 49.6%±2.8% and 50.0%±9.3%), which was consistent with the spatial variations of their concentrations. Abiotic and biotic batch tests directly confirmed the decisive role of pyrite and sulfur for NO3--N and Cr(VI) removal via chemical and microbial pathways. A server decline in sulfate production correlated with decreasing COD consumption revealed that there was sulfur disproportionation induced by limited organics. Metagenomic analysis suggested that chemoautotrophic microbes like Sulfuritalea and Thiobacillus were key players responsible for sulfur oxidation, nitrate and Cr(VI) reduction. The metabolic pathway analysis suggested that genes encoding functional enzymes related to complete denitrification, S oxidation, and dissimilatory sulfate reduction were upregulated, however, genes encoding Cr(VI) reduction enzymes (e.g. chrA, chrR, nemA, and azoR) were downregulated in PS-BF, which further explained the synergistical effect of multiple electron donors. These findings provide insights into their potential cooperative interaction of multiple electron donors on greatly promoting nitrate and Cr(VI) removal and have implications for the remediation technology of nitrate and Cr(VI) co-contaminated groundwater.

19.
Food Chem ; 458: 140204, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38964092

RÉSUMÉ

The bacterial derived osmolyte ectoine has been shown to stabilize cell structure and function, a property that may help to extend the shelf life of broccoli. The impact of ectoine on broccoli stored for 4 d at 20 °C and 90% relative humidity was investigated. Results indicated that 0.20% ectoine treatment maintained the quality of broccoli, by reducing rate of respiration and ethylene generation, while increasing the levels of total phenolics, flavonoids, TSS, soluble protein, and vitamin C, relative to control. Headspace-gas chromatography-mass spectrometry, transcriptomic and metabolomic analyses revealed that ectoine stabilized aroma components in broccoli by maintaining level of volatile compounds and altered the expression of genes and metabolites associated with sulfur metabolism, as well as fatty acid and amino acid biosynthesis pathways. These findings provide a greater insight into how ectoine preserves the flavor and nutritional quality of broccoli, thus, extending its shelf life.

20.
Subcell Biochem ; 104: 383-408, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963493

RÉSUMÉ

Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.


Sujet(s)
Flavines , Transport d'électrons , Flavines/métabolisme , Flavines/composition chimique , Oxidoreductases/métabolisme , Oxidoreductases/composition chimique , Conformation des protéines , Modèles moléculaires , Oxydoréduction
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...