Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 66
Filtrer
1.
Sensors (Basel) ; 24(15)2024 Aug 04.
Article de Anglais | MEDLINE | ID: mdl-39124094

RÉSUMÉ

Graphene-based surface plasmon resonance (SPR) biosensors have emerged as a promising technology for the highly sensitive and accurate detection of biomolecules. This study presents a comprehensive theoretical analysis of graphene-based SPR biosensors, focusing on configurations with single and bimetallic metallic layers. In this study, we investigated the impact of various metallic substrates, including gold and silver, and the number of graphene layers on key performance metrics: sensitivity of detection, detection accuracy, and quality factor. Our findings reveal that configurations with graphene first supported on gold exhibit superior performance, with sensitivity of detection enhancements up to 30% for ten graphene layers. In contrast, silver-supported configurations, while demonstrating high sensitivity, face challenges in maintaining detection accuracy. Additionally, reducing the thickness of metallic layers by 30% optimizes light coupling and enhances sensor performance. These insights highlight the significant potential of graphene-based SPR biosensors in achieving high sensitivity of detection and reliability, paving the way for their application in diverse biosensing technologies. Our findings pretend to motivate future research focusing on optimizing metallic layer thickness, improving the stability of silver-supported configurations, and experimentally validating the theoretical findings to further advance the development of high-performance SPR biosensors.


Sujet(s)
Techniques de biocapteur , Or , Graphite , Argent , Résonance plasmonique de surface , Graphite/composition chimique , Résonance plasmonique de surface/méthodes , Argent/composition chimique , Techniques de biocapteur/méthodes , Techniques de biocapteur/instrumentation , Or/composition chimique
2.
Nanotechnology ; 35(46)2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39116890

RÉSUMÉ

The translation of silver-based nanotechnology 'from bench to bedside' requires a deep understanding of the molecular aspects of its biological action, which remains controversial at low concentrations and non-spherical morphologies. Here, we present a hemocompatibility approach based on the effect of the distinctive electronic charge distribution in silver nanoparticles (nanosilver) on blood components. According to spectroscopic, volumetric, microscopic, dynamic light scattering measurements, pro-coagulant activity tests, and cellular inspection, we determine that at extremely low nanosilver concentrations (0.125-2.5µg ml-1), there is a relevant interaction effect on the serum albumin and red blood cells (RBCs). This explanation has its origin in the surface charge distribution of nanosilver particles and their electron-mediated energy transfer mechanism. Prism-shaped nanoparticles, with anisotropic charge distributions, act at the surface level, generating a compaction of the native protein molecule. In contrast, the spherical nanosilver particle, by exhibiting isotropic surface charge, generates a polar environment comparable to the solvent. Both morphologies induce aggregation at NPs/bovine serum albumin ≈ 0.044 molar ratio values without altering the coagulation cascade tests; however, the spherical-shaped nanosilver exerts a negative impact on RBCs. Overall, our results suggest that the electron distributions of nanosilver particles, even at extremely low concentrations, are a critical factor influencing the molecular structure of blood proteins' and RBCs' membranes. Isotropic forms of nanosilver should be considered with caution, as they are not always the least harmful.


Sujet(s)
Érythrocytes , Nanoparticules métalliques , Sérumalbumine bovine , Argent , Argent/composition chimique , Nanoparticules métalliques/composition chimique , Érythrocytes/métabolisme , Érythrocytes/composition chimique , Humains , Sérumalbumine bovine/composition chimique , Sérumalbumine bovine/métabolisme , Propriétés de surface , Animaux , Bovins , Coagulation sanguine/effets des médicaments et des substances chimiques , Protéines du sang/métabolisme , Protéines du sang/composition chimique , Test de matériaux
3.
Sensors (Basel) ; 24(14)2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39066066

RÉSUMÉ

This work explores the transformative role of graphene in enhancing the performance of surface plasmon resonance (SPR)-based biosensors. The motivation for this review stems from the growing interest in the unique properties of graphene, such as high surface area, excellent electrical conductivity, and versatile functionalization capabilities, which offer significant potential to improve the sensitivity, specificity, and stability of SPR biosensors. This review systematically analyzes studies published between 2010 and 2023, covering key metrics of biosensor performance. The findings reveal that the integration of graphene consistently enhances sensitivity. Specificity, although less frequently reported numerically, showed promising results, with high specificity achieved at sub-nanomolar concentrations. Stability enhancements are also significant, attributed to the protective properties of graphene and improved biomolecule adsorption. Future research should focus on mechanistic insights, optimization of integration techniques, practical application testing, scalable fabrication methods, and comprehensive comparative studies. Our findings provide a foundation for future research, aiming to further optimize and harness the unique physical properties of graphene to meet the demands of sensitive, specific, stable, and rapid biosensing in various practical applications.


Sujet(s)
Techniques de biocapteur , Graphite , Résonance plasmonique de surface , Résonance plasmonique de surface/méthodes , Graphite/composition chimique , Techniques de biocapteur/méthodes , Humains
4.
Plants (Basel) ; 13(7)2024 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-38611509

RÉSUMÉ

A rapid, eco-friendly, and simple method for the synthesis of long-lasting (2 years) silver nanoparticles (AgNPs) is reported using aqueous leaf and petal extracts of Tagetes erecta L. The particles were characterized using UV-Visible spectrophotometry and the analytical and crystallographic techniques of transmission electron microscopy (TEM). The longevity of the AgNPs was studied using UV-Vis and high-resolution TEM. The antibacterial activity of the particles against Erwinia amylovora was evaluated using the Kirby-Bauer disk diffusion method. The results were analyzed using ANOVA and Tukey's test (p ≤ 0.05). Both the leaf and petal extracts produced AgNPs, but the leaf extract (1 mL) was long-lasting and quasi-spherical (17.64 ± 8.87 nm), with an absorbance of UV-Vis λmax 433 and a crystalline structure (fcc, 111). Phenols, flavonoids, tannins, and terpenoids which are associated with -OH, C=O, and C=C were identified in the extracts and could act as reducing and stabilizing agents. The best antibacterial activity was obtained with a nanoparticle concentration of 50 mg AgNPs L-1. The main contribution of the present research is to present a sustainable method for producing nanoparticles which are stable for 2 years and with antibacterial activity against E. amylovora, one of most threatening pathogens to pear and apple productions.

5.
Talanta ; 271: 125648, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38219324

RÉSUMÉ

The high toxicity and occurrence of ochratoxin A (OTA) in grains and foods has been a growing concern due to the impacts on health and the economy in many countries. In this sense, simplified devices with high sensitivity and specificity for local monitoring are enthusiastically pursued. In this work, we report for the first time the detection of ochratoxin A in coffee samples using a spoon-shaped waveguide immunosensor. The biosensor was built with the surface of the spoon-shaped waveguide covered by a 60 nm layer of gold to enable the SPR phenomenon. The measurements indicated a linear relationship between the change in the SPR phenomenon values and the OTA concentration in the range from 0.2 ppt to 5 ppt. When analyzed in coffee samples, the biosensor was highly selective and did not suffer matrix interference. The developed biosensor represents a promising analytical device for coffee quality analyses, as it is portable, simple, and suitable for onsite detection of target analytes.


Sujet(s)
Techniques de biocapteur , Ochratoxines , Café , Dosage immunologique , Ochratoxines/analyse
6.
Chemosphere ; 336: 139156, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37290514

RÉSUMÉ

A Surface Plasmon Resonance (SPR) biosensor based on an inhibition immunoassay was developed for the detection of diclofenac (DCF) in aqueous solution. Due to the small size of DCF, an hapten-protein conjugate was produced by coupling DCF to bovine serum albumin (BSA). DCF-BSA conjugate formation was confirmed via MALDI-TOF mass spectrometry. The resulting conjugate was immobilized onto the surface of a sensor fabricated via e-beam deposition of a 2 nm chromium adhesion layer followed by a 50 nm gold layer onto precleaned BK7 glass slides. Immobilization onto the nano thin gold surface was accomplished by covalent amide linkage through a self-assembled monolayer. Samples were composed of a mixture of antibody at a fixed concentration and DCF at different known concentrations in deionized water, causing the inhibition of anti-DCF on the sensor. The DCF-BSA was obtained with a ratio of 3 DCF molecules per BSA. A calibration curve was performed using concentrations between 2 and 32 µg L-1. The curve was fitted using the Boltzmann equation, reaching a limit of detection (LOD) of 3.15 µg L-1 and limit of quantification (LOQ) of 10.52 µg L-1, the inter-day precision was calculated and an RSD value of 1.96% was obtained; and analysis time of 10 min. The developed biosensor is a preliminary approach to the detection of DCF in environmental water samples, and the first SPR biosensor developed for DCF detection using a hapten-protein conjugate.


Sujet(s)
Techniques de biocapteur , Résonance plasmonique de surface , Résonance plasmonique de surface/méthodes , Techniques de biocapteur/méthodes , Diclofenac , Eau , Dosage immunologique/méthodes , Haptènes , Sérumalbumine bovine , Or/composition chimique
7.
Biosensors (Basel) ; 13(4)2023 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-37185514

RÉSUMÉ

The global need for accurate and efficient cancer cell detection in biomedicine and clinical diagnosis has driven extensive research and technological development in the field. Precision, high-throughput, non-invasive separation, detection, and classification of individual cells are critical requirements for successful technology. Lab-on-a-chip devices offer enormous potential for solving biological and medical problems and have become a priority research area for microanalysis and manipulating cells. This paper reviews recent developments in the detection of cancer cells using the microfluidics-based lab-on-a-chip method, focusing on describing and explaining techniques that use optical phenomena and a plethora of probes for sensing, amplification, and immobilization. The paper describes how optics are applied in each experimental method, highlighting their advantages and disadvantages. The discussion includes a summary of current challenges and prospects for cancer diagnosis.


Sujet(s)
Techniques de biocapteur , Tumeurs , Laboratoires sur puces , Optique et photonique , Phénomènes optiques , Analyse spectrale Raman , Techniques de biocapteur/méthodes , Tumeurs/diagnostic
8.
Biosensors (Basel) ; 13(5)2023 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-37232873

RÉSUMÉ

In this study, we developed a biosensor based on the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles (AuNPs) to detect the widely used herbicide glyphosate in food samples. To do so, either cysteamine or a specific antibody for glyphosate were conjugated to the surface of the nanoparticles. AuNPs were synthesized using the sodium citrate reduction method and had their concentration determined via inductively plasma coupled mass spectrometry. Their optical properties were analyzed using UV-vis spectroscopy, X-ray diffraction, and transmission electron microscopy. Functionalized AuNPs were further characterized via Fourier-transform infrared spectroscopy, Raman scattering, Zeta potential, and dynamic light scattering. Both conjugates succeeded in detecting the presence of glyphosate in the colloid, although nanoparticles functionalized with cysteamine tended to aggregate at high concentrations of the herbicide. On the other hand, AuNPs functionalized with anti-glyphosate functioned at a broad concentration range and successfully identified the presence of the herbicide in non-organic coffee samples and when it was added to an organic coffee sample. This study demonstrates the potential of AuNP-based biosensors to detect glyphosate in food samples. The low-cost and specificity of these biosensors make them a viable alternative to current methods for detecting glyphosate in foodstuffs.


Sujet(s)
Nanoparticules métalliques , Résonance plasmonique de surface , Résonance plasmonique de surface/méthodes , Or/composition chimique , Café , Mercaptamine , Nanoparticules métalliques/composition chimique
9.
ACS Appl Mater Interfaces ; 14(49): 54527-54538, 2022 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-36454041

RÉSUMÉ

Low-cost, instrument-free colorimetric tests were developed to detect SARS-CoV-2 using plasmonic biosensors with Au nanoparticles functionalized with polyclonal antibodies (f-AuNPs). Intense color changes were noted with the naked eye owing to plasmon coupling when f-AuNPs form clusters on the virus, with high sensitivity and a detection limit of 0.28 PFU mL-1 (PFU stands for plaque-forming units) in human saliva. Plasmon coupling was corroborated with computer simulations using the finite-difference time-domain (FDTD) method. The strategies based on preparing plasmonic biosensors with f-AuNPs are robust to permit SARS-CoV-2 detection via dynamic light scattering and UV-vis spectroscopy without interference from other viruses, such as influenza and dengue viruses. The diagnosis was made with a smartphone app after processing the images collected from the smartphone camera, measuring the concentration of SARS-CoV-2. Both image processing and machine learning algorithms were found to provide COVID-19 diagnosis with 100% accuracy for saliva samples. In subsidiary experiments, we observed that the biosensor could be used to detect the virus in river waters without pretreatment. With fast responses and requiring small sample amounts (only 20 µL), these colorimetric tests can be deployed in any location within the point-of-care diagnosis paradigm for epidemiological control.


Sujet(s)
Techniques de biocapteur , COVID-19 , Nanoparticules métalliques , Humains , Colorimétrie/méthodes , Or/composition chimique , SARS-CoV-2 , Nanoparticules métalliques/composition chimique , Résonance plasmonique de surface/méthodes , Ordiphone , Dépistage de la COVID-19 , COVID-19/diagnostic , Techniques de biocapteur/méthodes
10.
Biosensors (Basel) ; 12(11)2022 Nov 18.
Article de Anglais | MEDLINE | ID: mdl-36421159

RÉSUMÉ

This paper presents the development of an optical fiber sensor system for multiparametric assessment of temperature and turbidity in liquid samples. The sensors are based on the combination between fiber Bragg gratings (FBGs), intensity variation and surface plasmon resonance (SPR) sensors. In this case, the intensity variation sensors are capable of detecting turbidity with a resolution of about 0.5 NTU in a limited range between 0.02 NTU and 100 NTU. As the turbidity increases, a saturation trend in the sensor is observed. In contrast, the SPR-based sensor is capable of detecting refractive index (RI) variation. However, RI measurements in the turbidity calibrated samples indicate a significant variation on the RI only when the turbidity is higher than 100 NTU. Thus, the SPR-based sensor is used as a complementary approach for the dynamic range increase of the turbidity assessment, where a linearity and sensitivity of 98.6% and 313.5 nm/RIU, respectively, are obtained. Finally, the FBG sensor is used in the temperature assessment, an assessment which is not only used for water quality assessment, but also in temperature cross-sensitivity mitigation of the SPR sensor. Furthermore, this approach also leads to the possibility of indirect assessment of turbidity through the differences in the heat transfer rates due to the turbidity increase.


Sujet(s)
Fibres optiques , Résonance plasmonique de surface , Température , Réfractométrie
11.
Front Immunol ; 13: 948419, 2022.
Article de Anglais | MEDLINE | ID: mdl-36148232

RÉSUMÉ

The autoimmune regulator (AIRE) protein functions as a tetramer, interacting with partner proteins to form the "AIRE complex," which relieves RNA Pol II stalling in the chromatin of medullary thymic epithelial cells (mTECs). AIRE is the primary mTEC transcriptional controller, promoting the expression of a large set of peripheral tissue antigen genes implicated in the negative selection of self-reactive thymocytes. Under normal conditions, the SIRT1 protein temporarily interacts with AIRE and deacetylates K residues of the AIRE SAND domain. Once the AIRE SAND domain is deacetylated, the binding with SIRT1 is undone, allowing the AIRE complex to proceed downstream with the RNA Pol II to the elongation phase of transcription. Considering that the in silico and in vitro binding of the AIRE SAND domain with SIRT1 provides a powerful model system for studying the dominant SAND G228W mutation mechanism, which causes the autoimmune polyglandular syndrome-1, we integrated computational molecular modeling, docking, dynamics between the whole SAND domain with SIRT1, and surface plasmon resonance using a peptide harboring the 211 to 230 residues of the SAND domain, to compare the structure and energetics of binding/release between AIRE G228 (wild-type) and W228 (mutant) SAND domain to SIRT1. We observed that the G228W mutation in the SAND domain negatively influences the AIRE-SIRT1 interaction. The disturbed interaction might cause a disruption in the binding of the AIRE SAND domain with the SIRT1 catalytic site, impairing the AIRE complex to proceed downstream with RNA Pol II.


Sujet(s)
RNA polymerase II , Sirtuine-1 , Chromatine , Régulation de l'expression des gènes , Mutation , Peptides , Sirtuine-1/génétique
12.
Nanomaterials (Basel) ; 12(15)2022 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-35893531

RÉSUMÉ

The use of graphene in surface plasmon resonance sensors, covering a metallic (plasmonic) film, has a number of demonstrated advantages, such as protecting the film against corrosion/oxidation and facilitating the introduction of functional groups for selective sensing. Recently, a number of works have claimed that few-layer graphene can also increase the sensitivity of the sensor. However, graphene was treated as an isotropic thin film, with an out-of-plane refractive index that is identical to the in-plane index. Here, we critically examine the role of single and few layers of graphene in the sensitivity enhancement of surface plasmon resonance sensors. Graphene is introduced over the metallic film via three different descriptions: as an atomic-thick two-dimensional sheet, as a thin effective isotropic material (same conductivity in the three coordinate directions), and as an non-isotropic layer (different conductivity in the perpendicular direction to the two-dimensional plane). We find that only the isotropic layer model, which is known to be incorrect for the optical modeling of graphene, provides sizable sensitivity increases, while the other, more accurate, models lead to a negligible contribution to the sensitivity.

13.
Sensors (Basel) ; 22(9)2022 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-35590913

RÉSUMÉ

In this work a plasmonic sensor with a D-Shaped microstructured optical fiber (MOF) is proposed to detect a wide range of analyte refractive index (RI ;na) by doping the pure silica (SiO2) core with distinct concentrations of Germanium Dioxide (GeO2), causing the presentation of high spectral sensitivity. In this case, the fiber is shaped by polishing a coating of SiO2, on the region that will be doped with GeO2, in the polished area, a thin gold (Au) layer, which constitutes the plasmonic material, is introduced, followed by the analyte, in a way which the gold layer is deposited between the SiO2. and the analyte. The numerical results obtained in the study shows that the sensor can determine efficiently a range of 0.13 refractive index units (RIU), with a limit operation where na varies from 1.32 to 1.45. Within this application, the sensor has reached an average wavelength sensitivity (WS) of up to 11,650.63 nm/RIU. With this level of sensitivity, the D-Shaped format and wide range of na detection, the proposed fiber has great potential for sensing applications in several areas.


Sujet(s)
Germanium , Fibres optiques , Résonance plasmonique de surface , Or , Silice , Résonance plasmonique de surface/instrumentation
14.
Molecules ; 27(8)2022 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-35458692

RÉSUMÉ

In this work, we present an electrochemical study of the boron cage monomercaptoundecahydro-closo-dodecaborate [B12H11SH]2- in solution and in a self-assembled monolayer over a polycrystalline gold electrode. Cyclic voltammetry of the anion [B12H11SH]2- in solution showed a shift in the peak potentials related to the redox processes of gold hydroxides, which evidences the interaction between the boron cage and the gold surface. For an Au electrode modified with the anion [B12H11SH]2-, cyclic voltammetry response of the probe Fe(CN)63-/Fe(CN)64- showed a ΔEp value typical for a surface modification. Electrochemical impedance spectroscopy presented Rtc and Cdl values related to the formation of a self-assembled monolayer (SAM). A comparison of electrochemical responses of a modified electrode with thioglycolic acid (TGA) reveals that the boron cage [B12H11SH]2- diminishes the actives sites over the Au surface due to the steric effects. Differential capacitance measurements for bare gold electrode and those modified with [B12H11SH]2- and (TGA), indicate that bulky thiols enhance charge accumulation at the electrode-solution interface. In addition to electrochemical experiments, DFT calculations and surface plasmon resonance measurements (SPR) were carried out to obtain quantum chemical descriptors and to evaluate the molecular length and the dielectric constant of the Boron cage. From SPR experiments, the adsorption kinetics of [B12H11SH]2- were studied. The data fit for a Langmuir kinetic equation, typical for the formation of a monolayer.


Sujet(s)
Bore , Or , Composés du bore , Électrodes , Or/composition chimique , Résonance plasmonique de surface
15.
Food Chem ; 384: 132485, 2022 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-35219985

RÉSUMÉ

The thermodynamics and kinetics of arachin-Congo red (ARA-CR) and conarachin-Congo red (CON-CR) interactions were studied using surface plasmon resonance. KCl led to a reduction of up to 55% in the values of the associated kinetic constants, but it had less influence on the dissociation rates (less than 12%). The change in ionic strength had little effect on the thermodynamic stability of the complexes, but it did reduce their affinities ( [Formula: see text] from 3.52 to 2.44 × 103 M-1 and [Formula: see text] from 15.1 to 12.5 × 103 M-1). The shielding of the electrical double layer favored ARA-CR hydrophilic interactions ( [Formula: see text] decreased from -30.60 to -42.98 kJ mol-1). On the other hand, hydrophobic interactions came to dominate during the formation of [CON-CR]0 ( [Formula: see text] increased from -11.21 to 28.34 kJ mol-1 and [Formula: see text] increased from 12.64 to 51.73 kJ.mol-1). The data presented here improve our understanding of plant-based protein nanocarriers of small bioactive molecules.


Sujet(s)
Rouge Congo , Sondes moléculaires , Rouge Congo/composition chimique , Cinétique , Protéines végétales , Thermodynamique
16.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article de Anglais | MEDLINE | ID: mdl-36614033

RÉSUMÉ

Regardless of the promising use of nanoparticles (NPs) in biomedical applications, several toxic effects have increased the concerns about the safety of these nanomaterials. Although the pathways for NPs toxicity are diverse and dependent upon many parameters such as the nature of the nanoparticle and the biochemical environment, numerous studies have provided evidence that direct contact between NPs and biomolecules or cell membranes leads to cell inactivation or damage and may be a primary mechanism for cytotoxicity. In such a context, this work focused on developing a fast and accurate method to characterize the interaction between NPs, proteins and lipidic membranes by surface plasmon resonance imaging (SPRi) technique. The interaction of gold NPs with mimetic membranes was evaluated by monitoring the variation of reflectivity after several consecutive gold NPs injections on the lipidic membranes prepared on the SPRi biochip. The interaction on the membranes with varied lipidic composition was compared regarding the total surface concentration density of gold NPs adsorbed on them. Then, the interaction of gold and silver NPs with blood proteins was analyzed regarding their kinetic profile of the association/dissociation and dissociation constants (koff). The surface concentration density on the membrane composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and cholesterol (POPC/cholesterol) was 2.5 times higher than the value found after the injections of gold NPs on POPC only or with dimethyldioctadecylammonium (POPC/DDAB). Regarding the proteins, gold NPs showed preferential binding to fibrinogen resulting in a value of the variation of reflectivity that was 8 times higher than the value found for the other proteins. Differently, silver NPs showed similar interaction on all the tested proteins but with a variation of reflectivity on immunoglobulin G (IgG) 2 times higher than the value found for the other tested proteins.


Sujet(s)
Nanoparticules métalliques , Nanoparticules , Résonance plasmonique de surface/méthodes , Argent/composition chimique , Protéines/composition chimique , Nanoparticules/composition chimique , Or/composition chimique , Nanoparticules métalliques/composition chimique
17.
Braz. J. Pharm. Sci. (Online) ; 58: e19519, 2022. tab, graf
Article de Anglais | LILACS | ID: biblio-1383984

RÉSUMÉ

Abstract Silver nanoparticles (AgNPs) are among the most known nanomaterials being used for several purposes, including medical applications. In this study, Calendula officinalis L. flower extract and silver nitrate were used for green synthesis of silver nanoparticles under red, green and blue light-emitting diodes. AgNPs were characterized by Ultraviolet-Visible Spectrophotometry, Field Emission Scanning Electron Microscopy, Dynamic Light Scattering, Electrophoretic Mobility, Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Isotropic and anisotropic silver nanoparticles were obtained, presenting hydrodinamic diameters ranging 90 - 180 nm, polydispersity (PdI > 0.2) and moderate stability (zeta potential values around - 20 mV)


Sujet(s)
Argent , Nitrate d'argent/agonistes , Calendula/effets indésirables , Fleurs/génétique , Nanoparticules/analyse , Spectrophotométrie/méthodes , Diffraction des rayons X/méthodes , Microscopie électronique à balayage/méthodes , Spectroscopie infrarouge à transformée de Fourier , Lumière
18.
Nanotechnology ; 32(50)2021 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-34547742

RÉSUMÉ

Gold nanoparticles have been widely investigated for biomedical applications due to their optical properties. These particles present the interesting feature of absorbing light when stimulated with laser radiation to generate heating. Among the possible morphologies for synthetic gold nanoparticles, gold nanorods have properties of great interest for applications in the photohyperthermia processes. Due to their morphology, gold nanorods can absorb light at longer wavelengths comprising specific regions of the electromagnetic spectrum, such as the region of the biological window, in which laser radiation has less interaction with tissues. However, these nanoparticles present limitations in biomedical applications, such as low colloidal and thermal stabilities that can be overcome by coating the gold nanorods with silica MCM-41. The silicate covering can provide greater stability for gold nanorods and allow multifunctionality in treating different diseases through photohyperthermia. This work developed a specific chemical route through seed and growth solutions to synthesize gold nanorods with controlled particle size, rod morphology, and silica covering for photohyperthermia applications. The synthesized samples were characterized through a multi-technique approach that successfully demonstrated the presence of gold nanorods inside the silica coating, presenting high stability and desirable textural and morphological characteristics for bioapplications. Furthermore, silica-coated gold nanorods exhibit high biocompatibility and great performance in generating therapeutic heating by absorbing laser radiation in the biological window range, making the system developed in this work a promising agent in photohyperthermia.

19.
Int J Biol Macromol ; 187: 325-331, 2021 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-34280448

RÉSUMÉ

Understanding nonionic surfactant-protein interactions is fundamental from both technological and scientific points of view. However, there is a complete absence of kinetic data for such interactions. We employed surface plasmon resonance (SPR) to determine the kinetic and thermodynamic parameters of bovine lactoferrin-Brij58 interactions at various temperatures under physiological conditions (pH 7.4). The adsorption process was accelerated with increasing temperature, while the desorption rate decreased, resulting in a more thermodynamically stable complex. The kinetic energetic parameters obtained for the formation of the activated complex, [bLF-Brij58]‡, indicated that the potential energy barrier for [bLF-Brij58]‡ formation arises primarily from the reduction in system entropy. [bLF-Brij58]○ formation was entropically driven, indicating that hydrophobic interactions play a fundamental role in bLF interactions with Brij58.


Sujet(s)
Cétomacrogol/métabolisme , Lactoferrine/métabolisme , Tensioactifs/métabolisme , Température , Adsorption , Cétomacrogol/composition chimique , Entropie , Concentration en ions d'hydrogène , Interactions hydrophobes et hydrophiles , Cinétique , Lactoferrine/composition chimique , Liaison aux protéines , Résonance plasmonique de surface , Tensioactifs/composition chimique
20.
Toxicon ; 199: 139-144, 2021 Aug.
Article de Anglais | MEDLINE | ID: mdl-34153309

RÉSUMÉ

The regulation of tolerable levels of ochratoxin A in food for human and animal consumption has been defined in some countries. To meet these levels, simpler, more efficient, and faster analytical methods are being developed to facilitate the identification of this dangerous contaminant in food. Here, we combined gold nanoparticles (AuNPs) with anti-ochratoxin A (OTA) IgG to detect elementary levels of OTA based on Localized Surface Plasmon Resonance. AuNPs were prepared with trisodium citrate and characterized by UV-visible spectroscopy, X-ray, dynamic light scattering, and transmission electron microscopy. The conjugation of AuNPs to IgG anti-OTA was confirmed by bathochromic shift (UV-vis) and RAMAN spectroscopy. The sensitivity of the nanosensor was investigated by measuring LSPR band λmax shifts. Our results suggest this assay is highly sensitive, with a lower detection limit of about 0.001 pg mL-1. The LSPR nanosensor reduced detection limits by roughly 10 times compared to other methods. We demonstrated that the approach investigated here is a rapid and sensitive method for OTA detection.


Sujet(s)
Nanoparticules métalliques , Ochratoxines , Animaux , Or , Humains , Ochratoxines/analyse , Résonance plasmonique de surface
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE