Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 5.268
Filtrer
1.
Chem Senses ; 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38985657

RÉSUMÉ

Experience plays a pivotal role in determining our food preferences. Consuming food generates odor-taste associations that shape our perceptual judgements of chemosensory stimuli such as their intensity, familiarity, and pleasantness. The process of making consummatory choices relies on a network of brain regions to integrate and process chemosensory information. The mediodorsal thalamus is a higher order thalamic nucleus involved in many experience-dependent chemosensory behaviors, including olfactory attention, odor discrimination, and the hedonic perception of flavors. Recent research has shown that neurons in the mediodorsal thalamus represent the sensory and affective properties of experienced odors, tastes, and odor-taste mixtures. However, its role in guiding consummatory choices remains unclear. To investigate the influence of the mediodorsal thalamus in the consummatory choice for experienced odors, tastes, and odor-taste mixtures, we pharmacologically inactivated the mediodorsal thalamus during 2-bottle brief-access tasks. We found that inactivation altered the preference for specific odor-taste mixtures, significantly reduced consumption of the preferred taste, and increased within-trial sampling of both chemosensory stimulus options. Our results show that the mediodorsal thalamus plays a crucial role in consummatory decisions related to chemosensory preference and attention.

2.
Food Chem ; 458: 140233, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38964093

RÉSUMÉ

To analyze the effect of various drying treatments (microwave drying (MD), hot air drying (HAD), vacuum drying (VD), and vacuum freeze drying (VFD)) on taste compounds in Penaeus vannamei, relevant indicators such as free amino acids, 5'-nucleotides, and organic acids were performed. Multidimensional infrared spectroscopy (MM-IR) results found that there were notable variations in taste properties of P. vannamei. There were 18 autocorrelation peaks in 3400-900 cm-1 were screened using second-derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR). Variations in functional groups were the major contributors to taste profiles. The TAV of glutamic acid (Glu), guanine (GMP), and inosinemonphosphate (IMP) were greater than one and had notable impacts on taste profiles. VD had the highest equivalent umami value, followed by VFD, HAD, and MD. This study may provide a theoretical guide for the production of dried P. vannamei products on an industrial scale.

3.
J Agric Food Chem ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953317

RÉSUMÉ

In the study of protein-rich byproducts, enzymatic hydrolysis stands as a prominent technique, generating bioactive peptides. Combining exo- and endopeptidases could enhance both biological and sensory properties. Ultrasound pretreatment is one of the most promising techniques for the optimization of enzymatic hydrolysis. This research aimed to create tasteful and biologically active pork liver hydrolyzates by using sequential hydrolysis with two types of enzymes and two types of ultrasound pretreatments. Sequential hydrolyzates exhibited a higher degree of hydrolysis than single ones. Protana Prime hydrolyzates yielded the largest amount of taste-related amino acids, enhancing sweet, bittersweet, and umami amino acids according to the Taste Activity Value (TAV). These hydrolyzates also displayed significantly higher antioxidant activity. Among sequential hydrolyzates, Flavourzyme and Protana Prime hydrolyzates pretreated with ultrasound showed the highest ferrous ion chelating activity. Overall, employing both Alcalase and Protana Prime on porcine livers pretreated with ultrasound proved to be highly effective in obtaining potentially tasteful and biologically active hydrolyzates.

4.
Food Chem ; 458: 140254, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38954958

RÉSUMÉ

The high catechin content in summer-to-autumn tea leaves often results in strong, unpleasant tastes, leading to significant resource waste and economic losses due to lignification of unpicked leaves. This study aims to improve the taste quality of summer-to-autumn green teas by combining fine manipulation techniques with hyperspectral observation. Fine manipulation notably enhanced infusion taste quality, particularly in astringency and its aftertaste (aftertasteA). Using Partial Least Squares Discriminant Analysis (PLSDA) on hyperspectral data, 100% prediction accuracy was achieved for dry tea appearance in the near-infrared spectrum. Astringency and aftertasteA correlated with hyperspectral data, allowing precise estimation with over 90% accuracy in both visible and near-infrared spectrums. Epicatechin gallate (ECG) emerged as a key taste compound, enabling non-invasive taste prediction. Practical applications in processing and quality control are demonstrated by the derived equations (Astringency = -0.88 × ECG + 45.401, AftertasteA = -0.353 × ECG + 18.609), highlighting ECG's role in shaping green tea taste profiles.

5.
J Agric Food Chem ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38957928

RÉSUMÉ

This study investigated the mechanism underlying the flavor improvement observed during fermentation of a pea protein-based beverage using Lactobacillus johnsonii NCC533. A combination of sensomics and sensoproteomics approach revealed that the fermentation process enriched or generated well-known basic taste ingredients, such as amino acids, nucleotides, organic acids, and dipeptides, besides six new taste-active peptide sequences that enhance kokumi and umami notes. The six new umami and kokumi enhancing peptides, with human recognition thresholds ranging from 0.046 to 0.555 mM, are produced through the degradation of Pisum sativum's storage protein. Our findings suggest that compounds derived from fermentation enhance umami and kokumi sensations and reduce bitterness, thus improving the overall flavor perception of pea proteins. In addition, the analysis of intraspecific variations in the proteolytic activity of L. johnsonii and the genome-peptidome correlation analysis performed in this study point at cell-wall-bound proteinases such as PrtP and PrtM as the key genes necessary to initiate the flavor improving proteolytic cascade. This study provides valuable insights into the molecular mechanisms underlying the flavor improvement of pea protein during fermentation and identifies potential future research directions. The results highlight the importance of combining fermentation and senso(proteo)mics techniques in developing tastier and more palatable plant-based protein products.

6.
Food Sci Anim Resour ; 44(4): 832-848, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38974728

RÉSUMÉ

This study was carried out to assess the quality properties, components associated with taste and aroma of beef as a function of breed. For this purpose, steers from four Korean native cattle breeds: Hanwoo (n=10), Chikso (n=10), black Hanwoo (n=12, BHW) and Jeju black cattle (n=12, JBC) were used. The steers all were raised under identical conditions and finished at a similar age of around 30-months old. Following 24 h of slaughter, all longissimus lumborum muscles were collected and used for analysis of meat quality, fatty acids, and flavor-related components (metabolic compounds, free amino acids, and aroma volatiles). The Hanwoo presented a significantly higher intramuscular fat content (IMF, 22.85%) than the BHW (11.78%), Chikso (9.25%), and JBC (9.14%; p<0.05). The meat of Hanwoo breed showed lighter and redder color, and lower shear force value (p<0.05). The JBC presented a "healthier" fatty acid profiles as it had a higher total unsaturated fatty acids content (p<0.05). With regard to flavor-related components, Hanwoo also had higher total contents of free amino acids and metabolites associated with umami and sweet tastes, and fat-derived volatile compounds (aldehydes, alcohols, and ketones) associated with fatty aroma. It may be concluded that there was a considerable difference in the meat quality properties among breeds. The variations of IMF content and flavor-related components may be the main factors contributing to the typical flavors of beef among the four Korean native cattle breeds.

7.
Front Cell Infect Microbiol ; 14: 1394721, 2024.
Article de Anglais | MEDLINE | ID: mdl-38975331

RÉSUMÉ

Since 2019, Coronavirus Disease 2019(COVID-19) has affected millions of people worldwide. Except for acute respiratory distress syndrome, dysgeusis is also a common symptom of COVID-19 that burdens patients for weeks or permanently. However, the mechanisms underlying taste dysfunctions remain unclear. Here, we performed complete autopsies of five patients who died of COVID-19. Integrated tongue samples, including numerous taste buds, salivary glands, vessels, and nerves were collected to map the pathology, distribution, cell tropism, and receptor distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the tongue. Our results revealed that all patients had moderate lymphocyte infiltration around the salivary glands and in the lamina propria adjacent to the mucosa, and pyknosis in the epithelia of taste buds and salivary glands. This may be because the serous acini, salivary gland ducts, and taste buds are the primary sites of SARS-CoV-2 infection. Multicolor immunofluorescence showed that SARS-CoV-2 readily infects Keratin (KRT)7+ taste receptor cells in taste buds, secretory cells in serous acini, and inner epithelial cells in the ducts. The major receptors, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2), were both abundantly expressed in these cells. Viral antigens and receptor were both rarely detected in vessels and nerves. This indicates that SARS-CoV-2 infection triggers pathological injury in the tongue, and that dysgeusis may be directly related to viral infection and cellular damage.


Sujet(s)
Angiotensin-converting enzyme 2 , Autopsie , COVID-19 , SARS-CoV-2 , Serine endopeptidases , Langue , Tropisme viral , Humains , COVID-19/anatomopathologie , COVID-19/virologie , SARS-CoV-2/pathogénicité , Langue/virologie , Langue/anatomopathologie , Mâle , Angiotensin-converting enzyme 2/métabolisme , Femelle , Adulte d'âge moyen , Serine endopeptidases/métabolisme , Glandes salivaires/virologie , Glandes salivaires/anatomopathologie , Sujet âgé , Calicules gustatifs/virologie , Calicules gustatifs/anatomopathologie , Récepteurs viraux/métabolisme
8.
Phytochemistry ; : 114204, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38971498

RÉSUMÉ

From the root barks of a Central African tree Millettia dubia De Wild. (Fabaceae), ten previously undescribed oleanane-type glycosides were isolated by various chromatographic protocols. Their structures were elucidated by spectroscopic methods, mainly 2D NMR experiments and mass spectrometry, as mono- and bidesmosidic glycosides of mesembryanthemoidigenic acid, hederagenin and oleanolic acid. The stimulation of the sweet taste receptor TAS1R2/TAS1R3 by these glycosides was evaluated, and structure/activity relationships were proposed. Two of them showed an agonist effect on TAS1R2/TAS1R3.

9.
Clin Nutr ESPEN ; 63: 311-321, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38964656

RÉSUMÉ

BACKGROUND AND AIMS: To investigate associations between Single Nucleotide Polymorphisms (SNPs) in the TAS1R and TAS2R taste receptors and diet quality, intake of alcohol, added sugar, and fat, using linear regression and machine learning techniques in a highly admixed population. METHODS: In the ISA-Capital health survey, 901 individuals were interviewed and had socioeconomic, demographic, health characteristics, along with dietary information obtained through two 24-h recalls. Data on 12 components related to food groups, nutrients, and calories was combined into a diet quality score (BHEI-R). BHEI-R, SoFAAs (calories from added sugar, saturated fat, and alcohol) and Alcohol use were tested for associations with 255 TAS2R SNPs and 73 TAS1R SNPs for 637 individuals with regression analysis and Random Forest. Significant SNPs were combined into Genetic taste scores (GTSs). RESULTS: Among 23 SNPs significantly associated either by stepwise linear/logistic regression or random forest with any possible biological functionality, the missense variants rs149217752 in TAS2R40, for SoFAAs, and rs2233997 in TAS2R4, were associated with both BHEI-R (under 4% increase in Mean Squared Error) and SoFAAs. GTSs increased the variance explanation of quantitative phenotypes and there was a moderately high AUC for alcohol use. CONCLUSIONS: The study provides insights into the genetic basis of human taste perception through the identification of missense variants in the TAS2R gene family. These findings may contribute to future strategies in precision nutrition aimed at improving food quality by reducing added sugar, saturated fat, and alcohol intake.

10.
J Agric Food Chem ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38981019

RÉSUMÉ

Steviol glycosides (SGs) are a natural sweetener widely used in the food and beverage industry, but the low solubility and stability of SG aqueous solutions greatly limit their application performance, especially in liquid formulations. In this work, we explore the solubility behavior of rebaudioside A (Reb A) in water, a major component of SGs, with the aim of clarifying the underlying mechanisms of the solubility and stability constraints of SGs, as well as the impact on their multifunctional properties. We demonstrate for the first time that Reb A exhibits hierarchical self-assembly in solutions, forming spherical micelles first when the concentration exceeds its critical micelle concentration (5.071 mg/mL), which then further assemble into large rod-like aggregates. The formation of such large Reb A aggregates is mainly dominated by hydrogen bonding and short-range Coulomb interaction energy, thus leading to the low solubility and precipitation of Reb A solutions. Surprisingly, aggregated Reb A structures display significantly improved organoleptic properties, revealing that self-aggregation can be developed as a simple, efficient, and green strategy for improving the taste profile of SGs. Additionally, the self-aggregation of Reb A at high concentrations impairs active encapsulation and also affects its interfacial and emulsifying properties.

11.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38950560

RÉSUMÉ

In cereals, the protein body and protein matrix are usually two morphological protein structures. However, processing treatments can affect protein structures, change protein bodies into the matrix, or induce a change in the matrix structure; therefore, the processing-induced matrix was listed as the third morphological structure of the protein. Previous research on the effect of proteins was mainly based on protein content and composition, but these studies arrived at different conclusions. Studying the effect of protein morphological structures on sensorial property and starch digestion can provide a theoretical basis for selecting cultivars with high sensorial property and help produce low-glycemic index foods for people with diabetes, controlling their postprandial blood sugar. This study aimed to review the distribution and structure of protein bodies, protein matrices, and processing-induced matrices, as well as their influence on cereal sensorial property and starch digestion. Therefore, we determined the protein morphological structures in different cereal cultivars and summarized its impact. Protein bodies mainly have steric stabilization effects on starch gelatinization, whereas the protein matrix serves as a physical barrier surrounding the starch to inhibit water absorption and α-amylase. Processing can change protein morphological structures, enabling protein bodies to act as a physical matrix barrier.

12.
J Agric Food Chem ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951504

RÉSUMÉ

A microfluidic tongue-on-a-chip platform has been evaluated relative to the known sensory properties of various sweeteners. Analogous metrics of typical sensory features reported by human panels such as sweet taste thresholds, onset, and lingering, as well as bitter off-flavor and blocking interactions were deduced from the taste receptor activation curves and then compared. To this end, a flow cell containing a receptor cell array bearing the sweet and six bitter taste receptors was transiently exposed to pure and mixed sweetener samples. The sample concentration gradient across time was separately characterized by the injection of fluorescein dye. Subsequently, cellular calcium responses to different doses of advantame, aspartame, saccharine, and sucrose were overlaid with the concentration gradient. Parameters describing the response kinetics compared to the gradient were quantified. Advantame at 15 µM recorded a significantly faster sweetness onset of 5 ± 2 s and a longer lingering time of 39 s relative to sucrose at 100 mM with an onset of 13 ± 2 s and a lingering time of 6 s. Saccharine was shown to activate the bitter receptors TAS2R8, TAS2R31, and TAS2R43, confirming its known off-flavor, whereas addition of cyclamate reduced or blocked this saccharine bitter response. The potential of using this tongue-on-a-chip to bridge the gap with in vitro assays and taste panels is discussed.

13.
Endocrinol Diabetes Nutr (Engl Ed) ; 71(6): 236-245, 2024.
Article de Anglais | MEDLINE | ID: mdl-38986627

RÉSUMÉ

INTRODUCTION: Coffee consumption has demonstrated an effect on the regulation of appetite, causing less hunger and/or greater satiety; however, its effects are not well known in woman with overweight or obesity. Therefore, this study aimed to evaluate the effect of coffee consumption on hunger, satiety, sensory specific desire (SSD), and dietary intake in women with overweight or obesity. METHODOLOGY: A randomized crossover clinical trial was realized in 3 sessions: in the first session a clinical history, anthropometric measurements and body composition analysis were performed; in sessions 2 and 3 the participants randomly consumed 240mL of coffee with 6mg/caffeine/kg of weight or 240mL of water along with a standardized breakfast. At fasting and every 30min after breakfast for the next 3h, appetite sensations and SSD were recorded using visual analog scales. Blood samples were taken at fasting, 30 and 180min after breakfast. Dietary intake was recorded in the rest of the intervention days. RESULTS: In the coffee intervention there was an increased desire for sweet foods, higher fructose intake during the rest of the day, and higher triglyceride levels than with the water intervention. No differences were detected in ghrelin or cholecystokinin. CONCLUSIONS: Coffee consumption may lead to higher triglycerides and higher intake of simple sugars, mainly fructose, through changes in the SSD. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/NCT05774119.


Sujet(s)
Appétit , Café , Études croisées , Obésité , Surpoids , Humains , Femelle , Adulte , Projets pilotes , Appétit/effets des médicaments et des substances chimiques , Faim/effets des médicaments et des substances chimiques , Satiété/effets des médicaments et des substances chimiques , Triglycéride/sang , Adulte d'âge moyen , Ghréline/sang
14.
Sci Rep ; 14(1): 15983, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987427

RÉSUMÉ

Cornelian cherry fruits contain a wide range of phenolic acids, flavonoids, and other secondary metabolites. Selected flavonoids may inhibit the perceiving of bitterness, however, the full mechanism with all TAS2R bitter taste receptors is not known. The aim of the study was to determine the inhibitory effect of Cornus mas phenolics against the bitterness receptors TAS2R13 and TAS2R3 through functional in vitro assays and coupling studies. The overall effect was validated by analysing the inhibition of the receptors activity in cells treated with tested cornelian cherry extracts. The strength of interaction with both TAS2R receptors varied between studied compounds with different binding affinity. Most compounds bonded with the TAS2R3 receptor through a long-distant hydrophobic interaction with Trp89A and π-π orbital overlapping-between phenolic and tryptophane aromatic rings. For TAS2R13 observed were various mechanisms of interaction with the compounds. Nonetheless, naringin and quercetin had most similar binding affinity to chloroquine and denatonium-the model agonists for the receptor.


Sujet(s)
Flavonoïdes , Hydroxybenzoates , Simulation de docking moléculaire , Récepteurs couplés aux protéines G , Récepteurs couplés aux protéines G/métabolisme , Humains , Flavonoïdes/composition chimique , Flavonoïdes/pharmacologie , Flavonoïdes/métabolisme , Hydroxybenzoates/pharmacologie , Hydroxybenzoates/composition chimique , Hydroxybenzoates/métabolisme , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie , Liaison aux protéines , Quercétine/pharmacologie , Quercétine/composition chimique , Quercétine/métabolisme , Flavanones/pharmacologie , Flavanones/composition chimique , Flavanones/métabolisme , Cellules HEK293
15.
Article de Anglais | MEDLINE | ID: mdl-38822762

RÉSUMÉ

Since the introduction of vaccines for severe acute respiratory syndrome coronavirus 2 in the United States, there has been significant vaccine hesitancy, in part due to fear of adverse effects. We sought to investigate the rates of smell and taste changes after COVID-19 vaccination compared to other common vaccines. Our study cohort included individuals identified by Current Procedural Terminology code in the TriNetX database receiving the COVID-19 first series, COVID-19 booster, influenza, tetanus, diphtheria, pertussis (TDAP), or pneumococcal vaccines between December 15, 2020, and August 15, 2023. After 1:1 propensity score matching, postvaccination incidence of disturbance of smell and taste was significantly less likely after COVID-19 first series vaccine compared to influenza (odds ratios, OR: 0.27 [95% confidence interval, CI: 0.20-0.36]), TDAP (OR: 0.35 [95% CI: 0.26-0.47]), and pneumococcal vaccines (OR: 0.17 [95% CI: 0.09-0.32]). Similarly, incidence of disturbance of smell and taste was significantly less likely after COVID-19 booster vaccine compared to the influenza (OR: 0.60 [95% CI: 0.48-0.76]), TDAP (OR: 0.63 [95% CI: 0.47-0.85]), and pneumococcal vaccines (OR: 0.44 [95% CI: 0.28-0.68]). This study builds upon the literature demonstrating the safety of COVID-19 vaccination.

16.
Article de Anglais | MEDLINE | ID: mdl-38822849

RÉSUMÉ

RATIONALE: Muscarinic receptor activity in the basolateral amygdala (BLA) is known to be involved in plasticity mechanisms that underlie emotional learning. The BLA is involved in the Attenuation of Neophobia, an incidental taste learning task in which a novel taste becomes familiar and recognized as safe. OBJECTIVE: Here we assessed the role of muscarinic receptor activity in the BLA in incidental taste learning. METHODS: Young adult male Wistar rats were bilaterally implanted with cannulas aimed at BLA. After recovery, rats were randomly assigned to either vehicle or muscarinic antagonist group, for each experiment. We tested the effect of specific and non-specific muscarinic antagonists administered either 1) 20 min before novel taste presentation; 2) immediately after novel taste presentation; 3) immediately after retrieval (the second taste presentation on Day 5 -S2-) or immediately after the fifth taste presentation on Day 8 (S5). RESULTS: Non-specific muscarinic receptor antagonist scopolamine infused prior to novel taste, while not affecting novel taste preference, abolished AN, i.e., the increased preference observed in control animals on the second presentation. When administered after taste consumption, intra-BLA scopolamine not only prevented AN but caused a steep decrease in the taste preference on the second presentation. This scopolamine-induced taste avoidance was not dependent on taste novelty, nor did it generalize to another novel taste. Targeting putative postsynaptic muscarinic receptors with specific M1 or M3 antagonists appeared to produce a partial taste avoidance, while M2 antagonism had no effect. CONCLUSION: These data suggest that if a salient gustatory experience is followed by muscarinic receptors antagonism in the BLA, it will be strongly and persistently avoided in the future. The study also shows that scopolamine is not just an amnesic drug, and its cognitive effects may be highly dependent on the task and the structure involved.

17.
Appetite ; 200: 107561, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38905855

RÉSUMÉ

Genetic variation in the bitter taste receptor gene taste receptor type 2, member 38 (TAS2R38) is associated with an individual's bitter taste sensitivity, food preference and consumption, which may also influence overall diet quality. This study aims to determine whether the TAS2R38 bitter taste receptor genetic variation is associated with overall diet quality using the Korean Healthy Eating Index (KHEI). A total of 41,839 individuals from the Korean Genome and Epidemiology Study were analyzed for their TAS2R38 diplotypes (rs713598, rs1726866, and rs10246939), general characteristics, and KHEI scores by obesity status. Results revealed that in the non-obese group, individuals with the AVI/AVI diplotype had a significantly higher score of 'ratio of white meat to red meat' than individuals with the PAV/* diplotype (3.89 ± 3.23 vs. 3.79 ± 3.18, adjusted p = 0.029). However, obese individuals with the PAV/* diplotype showed a significantly higher level of the mean score of 'moderation' (19.32 ± 5.82 vs. 18.92 ± 5.80, adjusted p = 0.026) and total KHEI score (61.07 ± 12.19 vs. 60.52 ± 12.29, adjusted p = 0.008) than those with the AVI/AVI diplotype. Finally, an interactive effect between bitterness genetic variation and obesity level was observed in those scores of 'ratio of white meat to red meat' (adjusted p = 0.007), 'moderation' (adjusted p = 0.013), and total KEHI (adjusted p = 0.007). In conclusion, TAS2R38 genetic variation is associated with overall diet quality in Koreans, which is more evident in the obese group.


Sujet(s)
Préférences alimentaires , Obésité , Récepteurs couplés aux protéines G , Goût , Humains , Récepteurs couplés aux protéines G/génétique , Femelle , République de Corée , Mâle , Obésité/génétique , Goût/génétique , Adulte d'âge moyen , Adulte , Variation génétique , Régime alimentaire sain , Polymorphisme de nucléotide simple , Asiatiques/génétique , Régime alimentaire , Peuples d'Asie de l'Est
18.
Chem Senses ; 492024 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-38824402

RÉSUMÉ

Prebiotic oligosaccharides are naturally occurring nondigestible carbohydrates with demonstrated health benefits. They are also a chemically diverse class of nutrients, offering an opportunity to investigate the impact of molecular structure on oligosaccharide taste perception. Accordingly, a relevant question is whether these compounds are detected by the human gustatory system, and if so, whether they elicit sweet or "starchy" taste. Here, in 3 psychophysical experiments, we investigated the taste perception of 3 commercially popular prebiotics [fructooligosaccharides (FOS), galactooligosaccharides (GOS), xylooligosaccharides (XOS)] in highly pure form. Each of these classes of prebiotics differs in the type of glycosyl residue, and position and type of bond between those residues. In experiments I and II, participants were asked to discriminate a total of 9 stimuli [FOS, GOS, XOS; degree of polymerization (DP) of 2, 3, 4] prepared at 75 mM in the presence and absence of lactisole, a sweet receptor antagonist. We found that all 9 compounds were detectable (P < 0.05). We also found that GOS and XOS DP 4 were discriminable even with lactisole, suggesting that their detection was not via the canonical sweet receptor. Accordingly, in experiment III, the taste of GOS and XOS DP 4 were directly compared with that of MOS (maltooligosaccharides) DP 4-6, which has been reported to elicit "starchy" taste. We found that GOS and MOS were perceived similarly although narrowly discriminable, while XOS was easily discriminable from both GOS and MOS. The current findings suggest that the molecular structure of oligosaccharides impacts their taste perception in humans.


Sujet(s)
Oligosaccharides , Prébiotiques , Perception du goût , Goût , Oligosaccharides/composition chimique , Oligosaccharides/pharmacologie , Humains , Prébiotiques/analyse , Mâle , Femelle , Adulte , Goût/effets des médicaments et des substances chimiques , Goût/physiologie , Jeune adulte , Perception du goût/effets des médicaments et des substances chimiques , Perception du goût/physiologie , Structure moléculaire
19.
Food Res Int ; 190: 114593, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38945609

RÉSUMÉ

Long-term excessive intake of sodium negatively impacts human health. Effective strategies to reduce sodium content in foods include the use of salty and salt taste-enhancing peptides, which can reduce sodium intake without compromising the flavor or salt taste. Salty and salt taste-enhancing peptides naturally exist in various foods and predominantly manifest as short-chain peptides consisting of < 10 amino acids. These peptides are primarily produced through chemical or enzymatic hydrolysis methods, purified, and identified using ultrafiltration + gel filtration chromatography + liquid chromatography-tandem mass spectrometry. This study reviews the latest developments in these purification and identification technologies, and discusses methods to evaluate their effectiveness in saltiness perception. Additionally, the study explores four biological channels potentially involved in saltiness perception (epithelial sodium channel, transient receptor potential vanilloid 1, calcium-sensing receptor (CaSR), and transmembrane channel-like 4 (TMC4)), with the latter three primarily functioning under high sodium levels. Among the channels, salty taste-enhancing peptides, such as γ-glutamyl peptides, may co-activate the CaSR channel with calcium ions to participate in saltiness perception. Salty taste-enhancing peptides with negatively charged amino acid side chains or terminal groups may replace chloride ions and activate the TMC4 channel, contributing to saltiness perception. Finally, the study discusses the feasibility of using these peptides from the perspectives of food material constraints, processing adaptability, multifunctional application, and cross-modal interaction while emphasizing the importance of utilizing computational technology. This review provides a reference for advancing the development and application of salty and salt-enhancing peptides as sodium substitutes in low-sodium food formulations.


Sujet(s)
Peptides , Chlorure de sodium alimentaire , Perception du goût , Goût , Humains
20.
Food Res Int ; 190: 114634, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38945623

RÉSUMÉ

Drying is an important stage used to improve the quality of white tea (WT). However, the effect of the drying temperature on the key taste compounds in WT remains unclear. In this study, targeted metabolomics, molecular docking, and a simulated reaction were used to investigate the transformation mechanism of flavonoid glycosides (FGs) in WT during drying at 60, 80, and 100 °C and its impact on taste. There were 45 differential FGs in WT at three drying temperatures. Compared with the withering samples for 48 h, the total FGs contents at three drying temperatures showed a decreasing trend, with quercetin-3-O-galactoside and kaempferol-3-O-glucoside showing the most degradation. These results were confirmed via a simulated drying reaction of FGs standards. Drying at 80 and 100 °C contributed to the formation of flavonoid-C-glycosides, but only trace amounts of these compounds were observed. In addition, nine key taste FGs were selected using dose-over-threshold values. These FGs regulated the taste of WT, mainly by binding to taste receptors via hydrogen bond, hydrophobic and electrostatic interactions. Finally, the taste acceptability of WT dried at 60 °C was found to be the highest, as this method could properly reduce the contents of FGs, weaken the bitterness and astringency, and retain the sweet and umami taste. This study revealed for the first time the transformation mechanism of sensory-active FGs affected by drying temperature, which provides a novel perspective for the analysis of the formation mechanism of the unique flavor of WT and the optimization of this process.


Sujet(s)
Flavonoïdes , Hétérosides , Métabolomique , Simulation de docking moléculaire , Thé , Flavonoïdes/composition chimique , Flavonoïdes/analyse , Hétérosides/composition chimique , Thé/composition chimique , Métabolomique/méthodes , Dessiccation/méthodes , Goût , Température , Humains , Manipulation des aliments/méthodes , Camellia sinensis/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...