Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Clin Med ; 12(2)2023 Jan 07.
Article de Anglais | MEDLINE | ID: mdl-36675427

RÉSUMÉ

Adolescent idiopathic scoliosis (AIS) is the most common pediatric spinal deformity. Early detection of deformity and timely intervention, such as brace treatment, can help inhibit progressive changes. A three-dimensional (3D) depth-sensor imaging system with a convolutional neural network was previously developed to predict the Cobb angle. The purpose of the present study was to (1) evaluate the performance of the deep learning algorithm (DLA) in predicting the Cobb angle and (2) assess the predictive ability depending on the presence or absence of clothing in a prospective analysis. We included 100 subjects with suspected AIS. The correlation coefficient between the actual and predicted Cobb angles was 0.87, and the mean absolute error and root mean square error were 4.7° and 6.0°, respectively, for Adam's forward bending without underwear. There were no significant differences in the correlation coefficients between the groups with and without underwear in the forward-bending posture. The performance of the DLA with a 3D depth sensor was validated using an independent external validation dataset. Because the psychological burden of children and adolescents on naked body imaging is an unignorable problem, scoliosis examination with underwear is a valuable alternative in clinics or schools.

2.
Spine J ; 21(6): 980-987, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-33540125

RÉSUMÉ

BACKGROUND CONTEXT: Timely intervention in growing individuals, such as brace treatment, relies on early detection of adolescent idiopathic scoliosis (AIS). To this end, several screening methods have been implemented. However, these methods have limitations in predicting the Cobb angle. PURPOSE: This study aimed to evaluate the performance of a three-dimensional depth sensor imaging system with a deep learning algorithm, in predicting the Cobb angle in AIS. STUDY DESIGN: Retrospective analysis of prospectively collected, consecutive, nonrandomized series of patients at five scoliosis centers in Japan. PATIENT SAMPLE: One hundred and-sixty human subjects suspected to have AIS were included. OUTCOME MEASURES: Patient demographics, radiographic measurements, and predicted Cobb angle derived from the deep learning algorithm were the outcome measures for this study. METHODS: One hundred and sixty data files were shuffled into five datasets with 32 data files at random (dataset 1, 2, 3, 4, and 5) and five-fold cross validation was performed. The relationships between the actual and predicted Cobb angles were calculated using Pearson's correlation coefficient analyses. The prediction performances of the network models were evaluated using mean absolute error and root mean square error between the actual and predicted Cobb angles. The shuffling into five datasets and five-fold cross validation was conducted ten times. There were no study-specific biases related to conflicts of interest. RESULTS: The correlation between the actual and the mean predicted Cobb angles was 0.91. The mean absolute error and root mean square error were 4.0° and 5.4°, respectively. The accuracy of the mean predicted Cobb angle was 94% for identifying a Cobb angle of ≥10° and 89% for that of ≥20°. CONCLUSIONS: The three-dimensional depth sensor imaging system with its newly innovated convolutional neural network for regression is objective and has significant ability to predict the Cobb angle in children and adolescents. This system is expected to be used for screening scoliosis in clinics or physical examination at schools.


Sujet(s)
Apprentissage profond , Scoliose , Adolescent , Algorithmes , Enfant , Humains , Japon , 29935 , Études rétrospectives , Scoliose/imagerie diagnostique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE