Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 44
Filtrer
1.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38652744

RÉSUMÉ

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Sujet(s)
Poids , Consommation alimentaire , Éléments activateurs (génétique) , Hypothalamus , Pro-opiomélanocortine , Danio zébré , Animaux , Pro-opiomélanocortine/métabolisme , Pro-opiomélanocortine/génétique , Souris , Hypothalamus/métabolisme , Consommation alimentaire/génétique , Consommation alimentaire/physiologie , Danio zébré/génétique , Danio zébré/métabolisme , Femelle , Mâle , Souris transgéniques , Humains , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Mammifères/métabolisme , Mammifères/génétique
2.
Clin Immunol ; 257: 109831, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37931868

RÉSUMÉ

IFNß (recombinant interferon Beta) has been widely used for the treatment of Multiple sclerosis for the last four decades. Despite the human origin of the IFNß sequence, IFNß is immunogenic, and unwanted immune responses in IFNß-treated patients may compromise its efficacy and safety in the clinic. In this study, we applied the DeFT (De-immunization of Functional Therapeutics) approach to producing functional, de-immunized versions of IFNß-1a. Two de-immunized versions of IFNß-1a were produced in CHO cells and designated as IFNß-1a(VAR1) and IFNß-1a(VAR2). First, the secondary and tertiary protein structures were analyzed by circular dichroism spectroscopy. Then, the variants were also tested for functionality. While IFNß-1a(VAR2) showed similar in vitro antiviral activity to the original protein, IFNß-1a(VAR1) exhibited 40% more biological potency. Finally, in vivo assays using HLA-DR transgenic mice revealed that the de-immunized variants showed a markedly reduced immunogenicity when compared to the originator.


Sujet(s)
Sclérose en plaques , Animaux , Souris , Cricetinae , Humains , Sclérose en plaques/traitement médicamenteux , Interféron bêta , Interféron bêta-1a/usage thérapeutique , Cricetulus , Récidive tumorale locale , Adjuvants immunologiques
3.
Vaccines (Basel) ; 11(11)2023 Nov 20.
Article de Anglais | MEDLINE | ID: mdl-38006064

RÉSUMÉ

Mucosal vaccination appears to be suitable to protect against SARS-CoV-2 infection. In this study, we tested an intranasal mucosal vaccine candidate for COVID-19 that consisted of a cationic liposome containing a trimeric SARS-CoV-2 spike protein and CpG-ODNs, a Toll-like receptor 9 agonist, as an adjuvant. In vitro and in vivo experiments indicated the absence of toxicity following the intranasal administration of this vaccine formulation. First, we found that subcutaneous or intranasal vaccination protected hACE-2 transgenic mice from infection with the wild-type (Wuhan) SARS-CoV-2 strain, as shown by weight loss and mortality indicators. However, when compared with subcutaneous administration, the intranasal route was more effective in the pulmonary clearance of the virus and induced higher neutralizing antibodies and anti-S IgA titers. In addition, the intranasal vaccination afforded protection against gamma, delta, and omicron virus variants of concern. Furthermore, the intranasal vaccine formulation was superior to intramuscular vaccination with a recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 spike glycoprotein (Oxford/AstraZeneca) in terms of virus lung clearance and production of neutralizing antibodies in serum and bronchial alveolar lavage (BAL). Finally, the intranasal liposomal formulation boosted heterologous immunity induced by previous intramuscular vaccination with the Oxford/AstraZeneca vaccine, which was more robust than homologous immunity.

4.
Viruses ; 15(7)2023 06 30.
Article de Anglais | MEDLINE | ID: mdl-37515173

RÉSUMÉ

Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.


Sujet(s)
COVID-19 , SARS-CoV-2 , Souris , Animaux , Production d'anticorps , COVID-19/prévention et contrôle , Anticorps antiviraux , Immunisation , Test ELISA , Anticorps neutralisants
5.
Front Cell Dev Biol ; 11: 1138571, 2023.
Article de Anglais | MEDLINE | ID: mdl-36936692

RÉSUMÉ

Antigen cross-presentation is a vital mechanism of dendritic cells and other antigen presenting cells to orchestrate the priming of cytotoxic responses towards killing of infected or cancer cells. In this process, exogenous antigens are internalized by dendritic cells, processed, loaded onto MHC class I molecules and presented to CD8+ T cells to activate them. Sec22b is an ER-Golgi Intermediate Compartment resident SNARE protein that, in partnership with sintaxin4, coordinates the recruitment of the transporter associated with antigen processing protein and the peptide loading complex to phagosomes, where antigenic peptides that have been proteolyzed in the cytosol are loaded in MHC class I molecules and transported to the cell membrane. The silencing of Sec22b in dendritic cells primary cultures and conditionally in dendritic cells of C57BL/6 mice, critically impairs antigen cross-presentation, but neither affects other antigen presentation routes nor cytokine production and secretion. Mice with Sec22b conditionally silenced in dendritic cells (Sec22b-/-) show deficient priming of CD8+ T lymphocytes, fail to control tumor growth, and are resistant to anti-checkpoint immunotherapy. In this work, we show that Sec22b-/- mice elicit a deficient specific CD8+ T cell response when challenged with sublethal doses of Trypanosoma cruzi trypomastigotes that is associated with increased blood parasitemia and diminished survival.

6.
Gen Comp Endocrinol ; 336: 114247, 2023 05 15.
Article de Anglais | MEDLINE | ID: mdl-36858273

RÉSUMÉ

The hypothalamic-pituitary-gonadal axis plays a fundamental role in the endocrine regulation of the reproductive function in mammals. Any change in the function of the participating hormones or their receptors can lead to alterations in sexual differentiation, the onset of puberty, infertility, cancer development, and other dysfunctions. In this study, we analyzed the influence of persistently elevated levels of the human chorionic gonadotropin hormone (hCG), a powerful agonist of pituitary luteinizing hormone (LH), on the reproductive axis of female mice. As a consequence of chronic hCG hypersecretion through a global expression of the hCGbeta-subunit in transgenic (TG) female mice, a series of events perturbed the prepubertal to juvenile transition. The imbalance in gonadotropin action was first manifested by precocious puberty and alterations in gonadal hormone production, with the consequent ovarian function disruption and infertility in adulthood. The expansion of cumulus cells in vivo and in vitro, ovulatory capacity, and gene expression of ovulation-related marker genes after hormone stimulation were normal in 3-week-old TG females. However, the expression of genes related to steroidogenesis and luteinization such as Lhcgr, Prlr, and the steroidogenic enzymes Cyp11a1, Cyp17a1, and Cyp19a1 were significantly elevated in the TG females. This study demonstrates that the excessive secretion of hCG in concert with high prolactin, induced premature luteinization, and enhanced ovarian steroidogenesis, as was shown by the up-regulation of luteal cell markers and progesterone synthesis in the TG mice. Furthermore, progressively impaired reproductive function of the TG females occurred from the peripubertal stage to adulthood, thus culminating in infertility.


Sujet(s)
Gonadotrophine chorionique , Infertilité , Humains , Souris , Femelle , Animaux , Gonadotrophine chorionique/pharmacologie , Sous-unité bêta de la gonadotrophine chorionique humaine/génétique , Sous-unité bêta de la gonadotrophine chorionique humaine/métabolisme , Souris transgéniques , Lutéinisation , Mammifères/métabolisme
7.
Front Cell Dev Biol ; 10: 926776, 2022.
Article de Anglais | MEDLINE | ID: mdl-35859905

RÉSUMÉ

It is well established that temporal lobe epilepsy (TLE) is often related to oxidative stress and neuroinflammation. Both processes subserve alterations observed in epileptogenesis and ultimately involve distinct classes of cells, including astrocytes, microglia, and specific neural subtypes. For this reason, molecules associated with oxidative stress response and neuroinflammation have been proposed as potential targets for therapeutic strategies. However, these molecules can participate in distinct intracellular pathways depending on the cell type. To illustrate this, we reviewed the potential role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and myeloid differentiation primary response 88 (MyD88) in astrocytes, microglia, and neurons in epileptogenesis. Furthermore, we presented approaches to study genes in different cells, employing single-cell RNA-sequencing (scRNAseq) transcriptomic analyses, transgenic technologies and viral serotypes carrying vectors with specific promoters. We discussed the importance of identifying particular roles of molecules depending on the cell type, endowing more effective therapeutic strategies to treat TLE.

8.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article de Anglais | MEDLINE | ID: mdl-34639161

RÉSUMÉ

(1) Background: Calcium-binding protein S100B is involved in neuroregeneration but has also been associated with neurodegeneration. These contrasting effects may result from concentration or duration of exposure. We investigated the effect of long-term increased S100B levels on amyloid-ß processing in one-year-old transgenic (tg) mice with 12 copies of the murine S100B gene with specific consideration of sex and specific brain regions. (2) Methods: S100B and amyloid-ß 42 (Aß42) were quantified in serum, cerebrospinal fluid (CSF), adipose tissue, and different brain regions by ELISA in wild-type (wt) and S100Btg mice (each n = 7 per group). Thioflavin T (ThT) and Aß immunostaining were performed for visualization of Aß deposition. (3) Results: S100B in serum, CSF, and brain was significantly increased in S100Btg mice of both sexes. Aß42 was significantly increased in the hippocampus of male S100Btg mice (p = 0.0075), and the frontal cortex of female S100Btg mice (p = 0.0262). ThT and Aß immunostaining demonstrated Aß deposition in different brain regions in S100Btg mice of both sexes and female wt. (4) Conclusion: Our data validate this experimental model for studying the role of S100B in neurodegeneration and indicate that Aß processing is sex-dependent and brain region-specific, which deserves further investigation of signaling pathways and behavioral responses.


Sujet(s)
Tissu adipeux/métabolisme , Maladie d'Alzheimer/anatomopathologie , Peptides bêta-amyloïdes/métabolisme , Encéphale/métabolisme , Hippocampe/métabolisme , Maturation post-traductionnelle des protéines , Sous-unité bêta de la protéine liant le calcium S100/métabolisme , Maladie d'Alzheimer/métabolisme , Animaux , Femelle , Mâle , Souris , Souris transgéniques , Sous-unité bêta de la protéine liant le calcium S100/génétique , Facteurs sexuels
9.
Mol Cell Endocrinol ; 538: 111465, 2021 12 01.
Article de Anglais | MEDLINE | ID: mdl-34597725

RÉSUMÉ

Growth Hormone (GH) plays crucial roles in mammary gland development and growth, and its upregulation has been associated with breast cancer promotion and/or progression. To ascertain how high GH levels could promote mammary tissue oncogenic transformation, morphological characteristics and the expression of receptors involved in mammary growth, development and cancer, and of mitogenic mediators were analyzed in the mammary gland of virgin adult transgenic mice that overexpress GH. Whole mounting and histologic analysis evidenced that transgenic mice exhibit increased epithelial ductal elongation and enlarged ducts along with deficient branching and reduced number of alveolar structures compared to wild type mice. The number of differentiated alveolar structures was diminished in transgenic mice while the amount of terminal end buds (TEBs) did not differ between both groups of mice. GH, insulin-like growth factor 1 (IGF1) and GH receptor mRNA levels were augmented in GH-overexpressing mice breast tissue, as well as IGF1 receptor protein content. However, GH receptor protein levels were decreased in transgenic mice. Fundamental receptors for breast growth and development like progesterone receptor and epidermal growth factor receptor were also increased in mammary tissue from transgenic animals. In turn, the levels of the proliferation marker Ki67, cFOS and Cyclin D1 were increased in GH-overexpressing mice, while cJUN expression was decreased and cMYC did not vary. In conclusion, prolonged exposure to high GH levels induces morphological and molecular alterations in the mammary gland that affects its normal development. While these effects would not be tumorigenic per se, they might predispose to oncogenic transformation.


Sujet(s)
Protéines de transport/génétique , Hormone de croissance/génétique , Facteur de croissance IGF-I/génétique , Glandes mammaires animales/malformations , Animaux , Animal génétiquement modifié , Marqueurs biologiques/métabolisme , Femelle , Hormone de croissance/métabolisme , Glandes mammaires animales/métabolisme , Souris , Protéines proto-oncogènes c-jun/métabolisme , Protéines proto-oncogènes c-myc/métabolisme
10.
Behav Brain Res ; 408: 113230, 2021 06 25.
Article de Anglais | MEDLINE | ID: mdl-33684424

RÉSUMÉ

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal CAG repeat expansion in the huntingtin gene coding for a protein with an elongated polyglutamine sequence. HD patients present choreiform movements, which are caused by the loss of neurons in the striatum and cerebral cortex. Previous reports indicate that the absence of the aryl hydrocarbon receptor (AhR) protects mice from excitotoxic insults and increases the transcription of neurotrophic factors. Based on these data, we evaluated the effects of the lack of the AhR on a mice model of HD, generating a double transgenic mouse, expressing human mutated huntingtin (R6/1 mice) and knockout for the AhR. Our results show that the body weight of 30-week-old double transgenic mice is similar to that of R6/1 mice; however, feet clasping, an indicative of neuronal damage in the R6/1 animals, was not observed. In addition, motor coordination and ambulatory behavior in double transgenic mice did not deteriorate over time as occur in the R6/1 mice. Moreover, the anxiety behavior of double transgenic mice was similar to wild type mice. Interestingly, astrogliosis is also reduced in the double transgenic mice. The present data demonstrate that the complete loss of the AhR reduces the motor and behavioral deterioration observed in R6/1 mice, suggesting that the pharmacological modulation of the AhR could be a therapeutic target in HD.


Sujet(s)
Comportement animal/physiologie , Gliose/physiopathologie , Protéine huntingtine/génétique , Maladie de Huntington/métabolisme , Maladie de Huntington/physiopathologie , Activité motrice/physiologie , Récepteurs à hydrocarbure aromatique/physiologie , Animaux , Modèles animaux de maladie humaine , Maladie de Huntington/génétique , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Souris transgéniques , Phénotype
11.
J Alzheimers Dis ; 82(s1): S5-S18, 2021.
Article de Anglais | MEDLINE | ID: mdl-33749647

RÉSUMÉ

BACKGROUND: Alzheimer's disease (AD) is the most prevalent form of dementia worldwide. This neurodegenerative syndrome affects cognition, memory, behavior, and the visual system, particularly the retina. OBJECTIVE: This work aims to determine whether the 5xFAD mouse, a transgenic model of AD, displays changes in the function of retinal ganglion cells (RGCs) and if those alterations are correlated with changes in the expression of glutamate and gamma-aminobutyric acid (GABA) neurotransmitters. METHODS: In young (2-3-month-old) and adult (6-7-month-old) 5xFAD and WT mice, we have studied the physiological response, firing rate, and burst of RGCs to various types of visual stimuli using a multielectrode array system. RESULTS: The firing rate and burst response in 5xFAD RGCs showed hyperactivity at the early stage of AD in young mice, whereas hypoactivity was seen at the later stage of AD in adults. The physiological alterations observed in 5xFAD correlate well with an increase in the expression of glutamate in the ganglion cell layer in young and adults. GABA staining increased in the inner nuclear and plexiform layer, which was more pronounced in the adult than the young 5xFAD retina, altering the excitation/inhibition balance, which could explain the observed early hyperactivity and later hypoactivity in RGC physiology. CONCLUSION: These findings indicate functional changes may be caused by neurochemical alterations of the retina starting at an early stage of the AD disease.


Sujet(s)
Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Modèles animaux de maladie humaine , Agents neuromédiateurs/génétique , Agents neuromédiateurs/métabolisme , Cellules ganglionnaires rétiniennes/métabolisme , Facteurs âges , Maladie d'Alzheimer/physiopathologie , Animaux , Femelle , Acide glutamique/métabolisme , Mâle , Souris , Souris transgéniques , Stimulation lumineuse/méthodes , Acide gamma-amino-butyrique/métabolisme
12.
Front Cell Neurosci ; 14: 594561, 2020.
Article de Anglais | MEDLINE | ID: mdl-33363456

RÉSUMÉ

TDP-43 is a major component of cytoplasmic inclusions observed in neurodegenerative diseases like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). To further understand the role of TDP-43 in mRNA/protein metabolism and proteostasis, we used a combined approach with cellular and animal models overexpressing a cytoplasmic form of human TDP-43 (TDP-43-ΔNLS), recapitulating ALS/FTD features. We applied in HEK293 cells a method for labeling de novo translation, surface sensing of translation (SUnSET), based on puromycin (PURO) incorporation. While control cells displayed robust puromycilation, TDP-43-ΔNLS transfected cells exhibited reduced ongoing protein synthesis. Next, by using a transgenic mouse overexpressing cytoplasmic TDP-43 in the forebrain (TDP-43-ΔNLS mice) we assessed whether cytoplasmic TDP-43 regulates global translation in vivo. Polysome profiling of brain cortices from transgenic mice showed a shift toward non-polysomal fractions as compared to wild-type littermates, indicating a decrease in global translation. Lastly, cellular level translational assessment by SUNSET was performed in TDP-43-ΔNLS mice brain slices. Control mice slices incubated with PURO exhibited robust cytoplasmic PURO signal in layer 5 neurons from motor cortex, and normal nuclear TDP-43 staining. Neurons in TDP-43-ΔNLS mice slices incubated with PURO exhibited high cytoplasmic expression of TDP-43 and reduced puromycilation respect to control mice. These in vitro and in vivo results indicate that cytoplasmic TDP-43 decreases global translation and potentially cause functional/cytotoxic effects as observed in ALS/FTD. Our study provide in vivo evidence (by two independent and complementary methods) for a role of mislocalized TDP-43 in the regulation of global mRNA translation, with implications for TDP-43 proteinopathies.

13.
Front Genet ; 10: 369, 2019.
Article de Anglais | MEDLINE | ID: mdl-31068973

RÉSUMÉ

Dysregulation of TAR DNA-binding protein 43 (TDP-43) is a hallmark feature of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases. TDP-43 is a ubiquitously expressed RNA-binding protein with many physiological functions, playing a role in multiple aspects of RNA metabolism. We developed transgenic mice conditionally overexpressing human wild-type TDP-43 protein (hTDP-43-WT) in forebrain neurons, a model that recapitulates several key features of FTD. After post-weaning transgene (TG) induction during 1 month, these mice display an early behavioral phenotype, including impaired cognitive and social function with no substantial motor abnormalities. In order to expand the analysis of this model, we took advantage of the temporal and regional control of TG expression possible in these mice. We behaviorally evaluated mice at two different times: after 2 weeks of post-weaning TG induction (0.5 month group) and after subsequent TG suppression for 2 weeks following that time point [1 month (sup) group]. We found no cognitive abnormalities after 0.5 month of hTDP-43 expression, evaluated with a spatial working memory task (Y-maze test). Suppression of TG expression with doxycycline (Dox) at this time point prevented the development of cognitive deficits previously observed at 1 month post-induction, as revealed by the performance of the 1 month (sup) group. On the other hand, sociability deficits (assessed through the social interaction test) appeared very rapidly after Dox removal (0.5 month) and TG suppression was not sufficient to reverse this phenotype, indicating differential vulnerability to hTDP-43 expression and suppression. Animals evaluated at the early time point (0.5 month) post-induction do not display a motor phenotype, in agreement with the results obtained after 1 month of TG expression. Moreover, all motor tests (open field, accelerated rotarod, limb clasping, hanging wire grip) showed identical responses in both control and bigenic animals in the suppressed group, demonstrating that this protocol and treatment do not cause non-specific effects in motor behavior, which could potentially mask the phenotypes in other domains. Our results show that TDP-43-WT mice have a phenotype that qualifies them as a useful model of FTD and provide valuable information for susceptibility windows in therapeutic strategies for TDP-43 proteinopathies.

14.
Front Immunol ; 10: 203, 2019.
Article de Anglais | MEDLINE | ID: mdl-30837986

RÉSUMÉ

Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.


Sujet(s)
Polyarthrite rhumatoïde/étiologie , Polyarthrite rhumatoïde/thérapie , Thérapie cellulaire et tissulaire , Modèles animaux de maladie humaine , Animaux , Polyarthrite rhumatoïde/métabolisme , Polyarthrite rhumatoïde/anatomopathologie , Thérapie cellulaire et tissulaire/méthodes , Prise en charge de la maladie , Prédisposition aux maladies , Humains , Immunothérapie , Souris , Souris transgéniques , 53784
15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(6): e8424, 2019. tab, graf
Article de Anglais | LILACS | ID: biblio-1001535

RÉSUMÉ

Although rare, CALM/AF10 is a chromosomal rearrangement found in immature T-cell acute lymphoblastic leukemia (T-ALL), acute myeloid leukemia, and mixed phenotype acute leukemia of T/myeloid lineages with poor prognosis. Moreover, this translocation is detected in 50% of T-ALL patients with gamma/delta T cell receptor rearrangement, frequently associated with low expression of transcription factor CCAAT/enhancer-binding protein alpha (CEBPA). However, the relevance of CEBPA low expression for CALM/AF10 leukemogenesis has not yet been evaluated. We generated double mutant mice, which express the Lck-CALM/AF10 fusion gene and are haploinsufficient for the Cebpa gene. To characterize the hematopoiesis, we quantified hematopoietic stem cells, myeloid progenitor cells, megakaryocyte-erythrocyte progenitor cells, common myeloid progenitor cells, and granulocyte-macrophage progenitor cells. No significant difference was detected in any of the progenitor subsets. Finally, we tested if Cebpa haploinsufficiency would lead to the expansion of Mac-1+/B220+/c-Kit+ cells proposed as the CALM/AF10 leukemic progenitor. Less than 1% of bone marrow cells expressed Mac-1, B220, and c-Kit with no significant difference between groups. Our results showed that the reduction of Cebpa gene expression in Lck-CALM/AF10 mice did not affect their hematopoiesis or induce leukemia. Our data corroborated previous studies suggesting that the CALM/AF10 leukemia-initiating cells are early progenitors with lymphoid/myeloid differentiating potential.


Sujet(s)
Animaux , Lapins , Leucémie aigüe myéloïde/génétique , Protéine alpha liant les séquences stimulatrices de type CCAAT/génétique , Haploinsuffisance/génétique , Hématopoïèse/génétique , Phénotype , Facteurs de transcription/génétique , Translocation génétique/génétique , Souris transgéniques , Maladie aigüe , Cytométrie en flux , Génotype
16.
Front Aging Neurosci ; 10: 288, 2018.
Article de Anglais | MEDLINE | ID: mdl-30319394

RÉSUMÉ

Alzheimer's disease (AD) is associated with a progressive dementia, and there is good evidence that it is more pronounced in individuals that have fewer stimuli during their lives. Environmental stimulation promotes morphological and functional changes in the brain, leading to amplification of cognitive functions, and has been described in humans and animals. In this study, we evaluated the effects of enriched environment (EE) stimulation on spatial memory and senile plaque formation in transgenic mice PDGFB-APPSwInd (TG) that overexpress the human amyloid precursor protein, normally resulting in an increased density of senile plaques. We compared this group of EE stimulated transgenic mice (TG-EE) with an EE stimulated control group of age-matched C57Bl/6 wild type animals (WT-EE). Both groups were exposed to EE stimulation between the ages of 8 and 12 months. As controls of the experiment, there were a group of TG mice not exposed to EE (TG-Ctrl) and a group of WT mice not exposed to EE (WT-Ctrl). The TG-EE group presented improved spatial memory when compared to the TG-Ctrl animals. In addition, the TG-EE group showed a 69.2% reduction in the total density of senile plaques in the hippocampus when compared to the TG-Ctrl group. In this group, the concentration of senile plaques was greater in the dorsal part of the hippocampus, which is linked to spatial localization, and the reduction of this density after the submission to EE was as high as 85.1%. EE stimulation had no effect on the density of amyloid-ß (Aß) oligomers. However, amyloid scavenger receptor class B member 1 (SR-B1) density was significantly decreased in the TG-Ctrl mice, but not in the TG-EE mice, suggesting that cognitive stimulation had an effect on the formation of a cognitive reserve that could prevent the accumulation of senile plaques. It is suggested that the stimulation of old mice by EE for 4 months led to the formation of brain resilience that protected the brain from the deposition of senile plaques, one of the hallmarks of AD, leading to improvement in spatial memory.

17.
BMC Cancer ; 18(1): 682, 2018 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-29940887

RÉSUMÉ

BACKGROUND: Progesterone receptor (PR) is expressed from a single gene as two isoforms, PRA and PRB. In normal breast human tissue, PRA and PRB are expressed in equimolar ratios, but isoform ratio is altered during malignant progression, usually leading to high PRA:PRB ratios. We took advantage of a transgenic mouse model where PRA isoform is predominant (PRA transgenics) and identified the key transcriptional events and associated pathways underlying the preneoplastic phenotype in mammary glands of PRA transgenics as compared with normal wild-type littermates. METHODS: The transcriptomic profiles of PRA transgenics and wild-type mammary glands were generated using microarray technology. We identified differentially expressed genes and analyzed clustering, gene ontology (GO), gene set enrichment analysis (GSEA), and pathway profiles. We also performed comparisons with publicly available gene expression data sets of human breast cancer. RESULTS: We identified a large number of differentially expressed genes which were mainly associated with metabolic pathways for the PRA transgenics phenotype while inflammation- related pathways were negatively correlated. Further, we determined a significant overlap of the pathways characterizing PRA transgenics and those in breast cancer subtypes Luminal A and Luminal B and identified novel putative biomarkers, such as PDHB and LAMB3. CONCLUSION: The transcriptional targets identified in this study should facilitate the formulation or refinement of useful molecular descriptors for diagnosis, prognosis, and therapy of breast cancer.


Sujet(s)
Tumeurs du sein/métabolisme , Glandes mammaires animales/métabolisme , Récepteurs à la progestérone/physiologie , Transcriptome , Animaux , Femelle , Gene Ontology , Humains , Souris , Souris transgéniques , Facteur de transcription NF-kappa B/physiologie , Phosphorylation oxydative , Facteur de nécrose tumorale alpha/physiologie
18.
J Alzheimers Dis ; 63(1): 93-101, 2018.
Article de Anglais | MEDLINE | ID: mdl-29614649

RÉSUMÉ

Telomere length (TL) is a biomarker of cell aging, and its shortening has been linked to several age-related diseases. In Alzheimer's disease (AD), telomere shortening has been associated with neuroinflammation and oxidative stress. The majority of studies on TL in AD were based on leucocyte DNA, with little information about its status in the central nervous system. In addition to other neuroprotective effects, lithium has been implicated in the maintenance of TL. The present study aims to determine the effect of chronic lithium treatment on TL in different regions of the mouse brain, using a triple-transgenic mouse model (3xTg-AD). Eighteen transgenic and 22 wild-type (Wt) male mice were treated for eight months with chow containing 1.0 g (Li1) or 2.0 g (Li2) of lithium carbonate/kg, or standard chow (Li0). DNA was extracted from parietal cortex, hippocampus and olfactory epithelium and TL was quantified by real-time PCR. Chronic lithium treatment was associated with longer telomeres in the hippocampus (Li2, p = 0.0159) and in the parietal cortex (Li1, p = 0.0375) of 3xTg-AD compared to Wt. Our findings suggest that chronic lithium treatment does affect telomere maintenance, but the magnitude and nature of this effect depend on the working concentrations of lithium and characteristics of the tissue. This effect was observed when comparing 3xTg-AD with Wt mice, suggesting that the presence of AD pathology was required for the lithium modulation of TL.


Sujet(s)
Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/anatomopathologie , Neuroleptiques/usage thérapeutique , Hippocampe/effets des médicaments et des substances chimiques , Composés du lithium/usage thérapeutique , Lobe pariétal/effets des médicaments et des substances chimiques , Homéostasie des télomères/effets des médicaments et des substances chimiques , Maladie d'Alzheimer/sang , Maladie d'Alzheimer/génétique , Précurseur de la protéine bêta-amyloïde/génétique , Animaux , Neuroleptiques/sang , Modèles animaux de maladie humaine , Hippocampe/métabolisme , Humains , Mâle , Souris , Souris de lignée C57BL , Souris transgéniques , Mutation/génétique , Lobe pariétal/métabolisme , Préséniline-1/génétique , Protéines tau/génétique
19.
Mol Neurobiol ; 55(9): 7201-7215, 2018 Sep.
Article de Anglais | MEDLINE | ID: mdl-29388082

RÉSUMÉ

Huntington disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the Huntington disease gene. The symptomatic stage of the disease is defined by the onset of motor symptoms. However, psychiatric disturbances, including depression, are common features of HD and can occur a decade before the manifestation of motor symptoms. We used the YAC128 transgenic mice (which develop motor deficits at a later stage, allowing more time to study depressive behaviors without the confounding effects of motor impairment) to test the effects of intranasal brain-derived neurotrophic factor (BDNF) treatment for 15 days in the occurrence of depressive-like behaviors. Using multiple well-validated behavioral tests, we found that BDNF treatment alleviated anhedonic and depressive-like behaviors in the YAC128 HD mice. Furthermore, we also investigated whether the antidepressant-like effects of BDNF were associated with an increase in adult hippocampal neurogenesis. However, BDNF treatment only increased cell proliferation and neuronal differentiation in the hippocampal dentate gyrus (DG) of wild-type (WT) mice, without altering these parameters in their YAC128 counterparts. Moreover, BDNF treatment did not cause an increase in the number of dendritic branches in the hippocampal DG when compared with animals treated with vehicle. In conclusion, our results suggest that non-invasive administration of BDNF via the intranasal route may have important therapeutic potential for treating mood disturbances in early-symptomatic HD patients.


Sujet(s)
Comportement animal , Facteur neurotrophique dérivé du cerveau/usage thérapeutique , Dépression/traitement médicamenteux , Dépression/prévention et contrôle , Maladie de Huntington/complications , Maladie de Huntington/anatomopathologie , Administration par voie nasale , Animaux , Facteur neurotrophique dérivé du cerveau/administration et posologie , Facteur neurotrophique dérivé du cerveau/pharmacologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Dendrites/effets des médicaments et des substances chimiques , Dendrites/métabolisme , Dépression/complications , Dépression/physiopathologie , Modèles animaux de maladie humaine , Femelle , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/anatomopathologie , Humains , Maladie de Huntington/physiopathologie , Mâle , Souris transgéniques , Activité motrice/effets des médicaments et des substances chimiques , Néostriatum/effets des médicaments et des substances chimiques , Néostriatum/anatomopathologie , Protéines recombinantes/administration et posologie , Protéines recombinantes/pharmacologie , Protéines recombinantes/usage thérapeutique
20.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01007, 2018. graf, ilus
Article de Anglais | LILACS | ID: biblio-974431

RÉSUMÉ

The use of serum containing polyclonal antibodies from animals immunized with toxins marked the beginning of the application of antibody-based therapy in late nineteenth century. Advances in basic research led to the development of the hybridoma technology in 1975. Eleven years later, the first therapeutic monoclonal antibody (mAb) was approved, and since then, driven by technological advances, the development of mAbs has played a prominent role in the pharmaceutical industry. In this review, we present the developments to circumvent problems of safety and efficacy arising from the murine origin of the first mAbs and generate structures more similar to human antibodies. As of October 2017, there are 61 mAbs and 11 Fc-fusion proteins in clinical use. An overview of all mAbs currently approved is provided, showing the development of sophisticated mAbs formats that were engineered based on the challenges posed by therapeutic indications, including antibody-drug conjugates (ADC) and glycoengineered mAbs. In the field of immunotherapy, the use of immunomodulators, bispecific mAbs and CAR-T cells are highlighted. As an example of promising therapy to treat infectious diseases, we discuss the generation of neutralizing monoclonal-oligoclonal antibodies obtained from human B cells. Scientific and technological advances represent mAbs successful translation to the clinic


Sujet(s)
Animaux , Souris , Développement Technologique/classification , Anticorps , Anticorps monoclonaux/analyse , Souris transgéniques/classification , Immunothérapie/effets indésirables
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE