Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 35
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Water Sci Technol ; 89(9): 2498-2511, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38747963

RÉSUMÉ

Ventilation is paramount in sanitary and stormwater sewer systems to mitigate odor problems and avert pressure surges. Existing numerical models have constraints in practical applications in actual sewer systems due to insufficient airflow modeling or suitability only for steady-state conditions. This research endeavors to formulate a mathematical model capable of accurately simulating various operational conditions of sewer systems under the natural ventilation condition. The dynamic water flow is modeled using a shock-capturing MacCormack scheme. The dynamic airflow model amalgamates energy and momentum equations, circumventing laborious pressure iteration computations. This model utilizes friction coefficients at interfaces to enhance the description of the momentum exchange in the airflow and provide a logical explanation for air pressure. A systematic analysis indicates that this model can be easily adapted to include complex boundary conditions, facilitating its use for modeling airflow in real sewer networks. Furthermore, this research uncovers a direct correlation between the air-to-water flow rate ratio and the filling ratio under natural ventilation conditions, and an empirical formula encapsulating this relationship is derived. This finding offers insights for practical engineering applications.


Sujet(s)
Modèles théoriques , Eaux d'égout , Mouvements de l'eau , Drainage sanitaire
2.
Nanotechnology ; 34(45)2023 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-37541222

RÉSUMÉ

The laminar boundary layer flow of a Zinc Oxide-Society of Automotive Engineers 50 alias nano-lubricant (ZnO-SAE50) past a permeable shrinking cylinder is investigated. The flow is unsteady, incompressible, and Ohmic dissipative. The present study holds immense significance in different engineering as well as scientific domains. It combines research on nanoparticle effects, unsteady flows, and solid surface interactions. The study claimed that the use ofZnO-SAE50nanofluid in the unsteady flow past a permeable shrinking cylinder led to significant heat transfer enhancement. The acquired results from the study would be fruitful in the fields of thermal engineering and heat transfer. The findings of the study can aid in optimizing cooling systems, heat exchangers, and energy-efficient designs. A governing model has been achieved for the flow and heat transfer by using conservation laws related to mass, momentum, and energy. Governing system of partial differential equations is solved to a nonlinear system of ordinary differential equations by using similarity transformation, which is later on solved with the help of the Shooting method and RK-Fehlberg duos. Plots are shown for both velocity and temperature profiles, to display the impacts of involved dimensionless parameters. Additionally, graphs for Nusselt Number have also been represented which shows the local rate of heat transfer. It is examined that the Ohmic dissipation as well as the volumetric ratio of the nanoparticles greatly influence the overall thermal performance of the system.

3.
Comput Biol Med ; 164: 107278, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37478713

RÉSUMÉ

Blood flow in stenosed arteries is a common cause of cardiovascular diseases, leading to serious health problems. The present study aims to investigate the unsteady Womersley blood flow in a stenosed, porous saturated artery under the influence of acceleration and magnetic fields. The study utilizes a Carreau constitutive equation to model blood rheology and employs the finite difference technique to compute the governing equations under the assumption of unsteady, unidirectional, and laminar flow. The importance of this study lies in its potential to provide a better understanding of the complex behavior of hemodynamic flow in the presence of external fields and porous media, which has significant implications for the control and management of cardiovascular diseases. In particular, the study analyses the impacts of non-dimensional parameters, such as magnetic field, channel permeability, acceleration field, Weissenberg number, and stenosis amplitude, on critical flow variables, such as velocity, resistivity, wall shear stress, and flow rate. Our calculations suggest that a magnetic field is an effective instrument for regulating hemodynamic flow because it increases resistance by up to 8.31% while decreasing flow by up to 8.44%. Channel permeability, on the other hand, improves blood velocity by up to 33.35% while eliminating resistance by up to 23.43%. Furthermore, greater acceleration fields decrease resistivity while increasing velocity, flow rate, and wall shear stress. Additionally, the severity of the stenosis and the Weissenberg number substantially affect flow factors. By raising the stenosis amplitude, resistivity rises, and other flow characteristics diminish, whereas modifying the Weissenberg number causes the reverse effect.


Sujet(s)
Maladies cardiovasculaires , Humains , Porosité , Sténose pathologique , Simulation numérique , Hémodynamique/physiologie , Artères , Champs magnétiques , Accélération , Contrainte mécanique , Modèles cardiovasculaires , Vitesse du flux sanguin/physiologie
4.
Heliyon ; 9(7): e17788, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37424599

RÉSUMÉ

Blood is indeed a suspension of the different type of cells along with shear thinning, yield stress and viscoelastic characteristics, which can be expressed by Newtonian and a lot of non-Newtonian models. Choosing Newtonian fluid as a sample, an unsteady solver for Newtonian fluid is constructed to determine the transient flow of blood in the obscure region. In this probe, the computational unsteady flow of blood in artery with aneurysm and symmetric stenosis has been considered, which is novelty of current research. The results of this investigation can be applied to detect stenotic-aneurysmal diseases and enhance knowledge of the stenotic-aneurysmal artery, which may increase the understanding of medical science. The blood artery is modeled as a circular tube having a 0.3-m radius and a 2-m length along the horizontal axis. The velocity of blood is taken at 0.12 ms-1 so that the geometry satisfies the characteristics of the blood vessel. The governing mass and momentum equations are then solved by finite difference technique of discretization. In this research, important variations in blood pressure and velocity at stenosis and aneurysms in the artery are found. The significant influences on blood flow of the stenotic-aneurysmal artery for pressure and velocity profiles of blood are displayed graphically for the Newtonian model.

5.
Heliyon ; 9(6): e16522, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37292310

RÉSUMÉ

Blood flow analysis through arterial walls depicts unsteady non-Newtonian fluid flow behavior. Arterial walls are impacted by various chemical reactions and magnetohydrodynamic effects during treatment of malign and tumors, cancers, drug targeting and endoscopy. In this regard, current manuscript focuses on modeling and analysis of unsteady non-Newtonian Carreau-Yasuda fluid with chemical reaction, Brownian motion and thermophoresis under variable magnetic field. The main objective is to simulate the effect of different fluid parameters, especially variable magnetic field, chemical reaction and viscous dissipation on the blood flow to help medical practitioners in predicting the changes in blood to make diagnosis and treatment more efficient. Suitable similarity transformations are used for the conversion of partial differential equations into a coupled system of ordinary differential equations. Homotopy analysis method is used to solve the system and convergent results are drawn. Effect of different dimensionless parameters on the velocity, temperature and concentration profiles of blood flow are analyzed in shear thinning and thickening cases graphically. Analysis reveals that chemical reaction increases blood concentration which enhance the drug transportation. It is also observed that magnetic field elevates the blood flow in shear thinning and thickening scenarios. Furthermore, Brownian motion and thermophoresis increases temperature profile.

6.
Nanotechnology ; 34(36)2023 Jun 23.
Article de Anglais | MEDLINE | ID: mdl-37263194

RÉSUMÉ

The primary objective of this investigation is to examine the thermal state of an unsteady ternary hybrid-nanofluid flow over an expanding/shrinking cylinder. The influence of radiation along with a non-uniform thermal source/sink is taken into account to expedite heat distribution. Multiple slips are considered at the cylinder interface. The mathematical model is simplified by incorporating appropriate transformations. A numerical solution is obtained using the bvp4c algorithm. The flow characteristics and behavior of the trihybrid nanoliquid exhibit significant changes when the cylinder expands or contracts. The effects of various emerging parameters are analyzed using graphical representations. The velocity field shows an opposite trend when the unsteadiness and mass transfer parameters are increased. The thermal field improves with higher values of the non-uniform source/sink parameter but deteriorates with an increase in the thermal slip parameter. The drag force increases with higher values of the unsteadiness parameter, while it decreases with amplified values of the mass suction and velocity slip parameters. A strong correlation is observed with previous studies which validates and strengthens the credibility of the present analysis.


Sujet(s)
Algorithmes , Température élevée
7.
Heliyon ; 9(4): e15012, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-37089338

RÉSUMÉ

Significance of study: Nanofluids with aggregation effects mediated by nanoparticles, like geothermal panels and crossflow heat exchangers, ignite new industrial interests. Polymer and conversion processes have transport phenomena in the stagnation zone that must be continuously improved to raise the process quality standard. Aim of study: Hence, the current computational study examines a T i O 2 - C 2 H 6 O 2 nanofluid's unsteady stagnation-point flow performance via a shrinking horizontal cylinder. In addition, the effects of a magnetic field, joule-heating viscous dissipation, nanoparticles aggregation and mass suction on the boundary layer flow are reflected. Method: ology: The RK-IV with shooting method is applied to resolve the simplified mathematical model numerically in computing software MATHEMATICA. In certain circumstances, comparing the current and prior findings indicates good agreement with a relative error of around 0%. Findings: The implementation of a heat transfer operation may be improved by increasing suction settings. Unsteadiness, nanoparticle volume fraction, magnetic, curvature, and Eckert number (implies the operating Joule heating and viscous dissipation) all influence heat transfer rate. The velocity and temperature profiles both increase as the unsteadiness, magnetic field, and nanoparticle volume fraction parameters increase, whereas the curvature and suction parameters show the opposite behavior. When the values of the suction parameters were changed from 2.0 to 2.5 with φ  = 0.01, the heat transfer rates rose by 4.751%. A comparison shows that the model with aggregation has a better velocity profile, while the model without aggregation has a better temperature profile.

8.
Heliyon ; 9(3): e14248, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36925526

RÉSUMÉ

Significance of study: Typical liquids aren't great for engineering because of their low heat conductivity. To enhance heat transfer capabilities in industries as diverse as computers, pharmaceuticals, and molten metals, researchers and scientists have developed nanofluids, which are composed of nanoparticles distributed in a base fluid. Aim of study: Mathematical modeling of micropolar C u - H 2 O nanofluid driven by a deformable sheet in the stagnation area with nanoparticle aggregation, thermal radiation, and the mass suction action has been investigated in this paper. In this case, copper ( C u ) nanoparticles make up the nanofluid. Method: ology: We have used suitable transformations to arrive at a system of nonlinear ODEs, which we then solve numerically in MATHEMATICA using Runge-Kutta methods of the fourth order coupled with shooting approaches. Findings: Tables and graphs are used to examine the effects of immersed flow and display profiles of physical parameters of interest. This includes velocities, temperatures, skin friction, and Nusselt numbers. The average heat transfer rate increased to 17 . 725 % as the volume percentage of copper nanoparticles in micropolar nanofluid increased from 0.0 to 0.01 . Additionally, the results showed that the local Nusselt number of the micropolar nanofluid increased along with an increase in the unsteady and radiation parameters. However, its value is reduced in an undeniable fashion if a material parameter is present. The impact of radiation on the aggregation of nanoparticles is compared and contrasted with the effects of a non-radiative scenario, and the resulting fluctuations in Nusselt numbers are provided in tables. When the results of this study were compared to data that had already been published about some cases, a lot of agreement was found.

9.
Sports Biomech ; : 1-15, 2022 Dec 12.
Article de Anglais | MEDLINE | ID: mdl-36510445

RÉSUMÉ

This study was designed to develop a computational fluid dynamics (CFD) method for unsteady analysis of a series of ski jump movements with attitude changes, and to analyse the aerodynamic characteristics of an expert jumper over the entire ski jump movement. Two ski jumpers participated in this study. A sensor-based motion capture suit was used to capture the jumper's posture during the actual ski jump. A three-dimensional computer graphics animation was created by superimposing the joint angles obtained from the motion measurements of the 3D shape of the athlete. The unsteady aerodynamic forces acting on the ski jumper, from the takeoff to the landing, were then calculated using CFD. A time-varying spatially uniform flow was specified as the inflow boundary condition of the computational domain. The results indicated that both the lift and drag forces of the expert jumper increase rapidly during the initial flight when the jumper's posture changes drastically. Thereafter, drag force decreased considerably, but the decrease in the lift force was less drastic. Later in the flight phase, the lift force acting on the expert jumper increased, and throughout the flight phase, the lift-drag ratio of the expert jumper remained higher than that of the unskilled jumper.

10.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Article de Anglais | MEDLINE | ID: mdl-36432385

RÉSUMÉ

The use of hybrid nanoparticles to increase heat transfer is a favorable area of research, and therefore, numerous scientists, researchers, and scholars have expressed their appreciation for and interest in this field. Determining the dynamic role of nanofluids in the cooling of microscopic electronic gadgets, such as microchips and related devices, is also one of the fundamental tasks. With such interesting and useful applications of hybrid nanofluids in mind, the main objective is to deal with the analysis of the unsteady flow towards a shrinking sheet in a water-based hybrid ferrite nanoparticle in porous media, with heat sink/source effects. Moreover, the impact of these parameters on heat and mass transfers is also reported. Numerical results are obtained using MATLAB software. Non-unique solutions are determined for a certain shrinking strength, in addition to the unsteadiness parameter. The mass transfer and friction factor increase for the first solution due to the hybrid nanoparticles, but the heat transfer rate shows the opposite effect.

11.
Micromachines (Basel) ; 13(9)2022 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-36144168

RÉSUMÉ

In this study, a numerical investigation based on the CFD method is carried out to study the unsteady laminar flow of Newtonian fluid with a high viscosity in a three-dimensional simulation of a twisted double planetary mixer, which is composed of two agitating rods inside a moving tank. The considered stirring protocol is a "Continuous sine squared motion" by using the dynamic mesh model and user-defined functions (UDFs)to define the velocity profiles. The chaotic advection is obtained in our active mixers by the temporal modulation of rotational velocities of the moving walls in order to enhance the mixing of the fluid for a low Reynolds number and a high Peclet number. For this goal, we applied the Poincaré section and Lyapunov exponent as reliable mathematic tools for checking mixing quality by tracking a number of massless particles inside the fluid domain. Additionally, we investigated the development of fluid kinematics proprieties, such as vorticity, helicity, strain rate and elongation rate, at various time periods in order to view the impact of temporal modulation on the flow properties. The results of the mentioned simulation showed that it is possible to obtain a chaotic advection after a relatively short time, which can deeply enhance mixing fluid efficiency.

12.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-36144989

RÉSUMÉ

This paper examines the unsteady separated stagnation point (USSP) flow and thermal progress of Fe3O4-CoFe2O4/H2O on a moving plate subject to the heat generation and MHD effects. The model of the flow includes the boundary layer and energy equations. These equations are then simplified with the aid of similarity variables. The numerical results are generated by the bvp4c function and then presented in graphs and tables. The magnetic and acceleration (strength of the stagnation point flow) parameters are the contributing factors in the augmentation of the skin friction and heat transfer coefficients. However, the enhancement of heat generation parameter up to 10% shows a reduction trend in the thermal rate distribution of Fe3O4-CoFe2O4/H2O. This finding reveals the effectiveness of heat absorption as compared to the heat generation in the thermal flow process. From the stability analysis, the first solution is the physical solution. The streamline for the first solution acts as a normal stagnation point flow, whereas the second solution splits into two regions, proving the occurrence of reverse flow.

13.
J Appl Biomater Funct Mater ; 20: 22808000221114715, 2022.
Article de Anglais | MEDLINE | ID: mdl-35912571

RÉSUMÉ

The analysis of nanofluids under various physical scenarios convinced the researchers and scientists because of their broad range of applications in potential area of the current time like chemical engineering, biomedical engineering and applied thermal engineering etc. To give the final shape of many industrial and engineering processes, enhanced heat transfer desired, therefore, the study of Al2O3-H2O, γAl2O3-H2O, Al2O3-C2H6O2, and γAl2O3- C2H6O2 nanofluids is reported. The model successfully achieved after mathematical operations and by appealing similarity transforms. To examine the behavior of heat transfer, numerical tools utilized and performed the results. It is observed that enhanced heat transfer in Al2O3-H2O, γAl2O3-H2O, Al2O3-C2H6O2, and γAl2O3-C2H6O2 could be attained by setting nanoparticles concentration up to 20%. For Al2O3-H2O, γAl2O3-H2O, optimum heat transfer trends noticed due to their prominent thermophysical values. Also, fewer effects of combined convection on θ(η) examined.


Sujet(s)
Convection , Nanoparticules , Aluminium , Température élevée
14.
Bioinspir Biomim ; 17(6)2022 09 13.
Article de Anglais | MEDLINE | ID: mdl-35917821

RÉSUMÉ

Natural fliers like bats exploit the complex fluid-structure interaction between their flexible membrane wings and the air with great ease. Yet, replicating and scaling the balance between the structural and fluid-dynamical parameters of unsteady membrane wings for engineering applications remains challenging. In this study, we introduce a novel bio-inspired membrane wing design and systematically investigate the fluid-structure interactions of flapping membrane wings. The membrane wing can passively camber, and its leading and trailing edges rotate with respect to the stroke plane. We find optimal combinations of the membrane properties and flapping kinematics that out-perform their rigid counterparts both in terms of increased stroke-average lift and efficiency, but the improvements are not persistent over the entire input parameter space. The lift and efficiency optima occur at different angles of attack and effective membrane stiffnesses which we characterise with the aeroelastic number. At optimal aeroelastic numbers, the membrane has a moderate camber between 15% and 20% and its leading and trailing edges align favourably with the flow. Higher camber at lower aeroelastic numbers leads to reduced aerodynamic performance due to negative angles of attack at the leading edge and an over-rotation of the trailing edge. Most of the performance gain of the membrane wings with respect to rigid wings is achieved in the second half of the stroke when the wing is decelerating. The stroke-maximum camber is reached around mid-stroke but is sustained during most of the remainder of the stroke which leads to an increase in lift and a reduction in power. Our results show that combining the effect of variable stiffness and angle of attack variation can significantly enhance the aerodynamic performance of membrane wings and has the potential to improve the control capabilities of micro air vehicles.


Sujet(s)
Vol animal , Modèles biologiques , Animaux , Phénomènes biomécaniques , Rotation , Ailes d'animaux
15.
Article de Anglais | MEDLINE | ID: mdl-35805294

RÉSUMÉ

Ephemeral rivers commonly occur in regions with a shortage of water resources, and their channel configuration tends to change substantially owing to long drying times and artificial sand extraction. During short-term water conveyance, water storage in large potholes and leakage along the dry riverbed retards the flow, which is detrimental for the river landscape and ecological water demand. The objective of this study is to evaluate the flow process corresponding to a certain release scheme. A coupled dynamic leakage loss and flood routing model was established to predict the flood routing distance for dry rivers with potholes and strong leakage. The model mainly includes three sub-models of flow dynamics, dynamic leakage loss and water balance along multiple cross sections of the river channel. The water head was dominated by flow velocity and the overflow from potholes. The model was applied to Yongding River, a typical ephemeral river in northern China, and the model parameters were calibrated and verified using monitoring data from ecological water releases into the Yongding River in 2019 and 2020, thus, making the model more stable and reliable. Finally, the model was used to evaluate the impact of cross section optimization and pothole treatment on the flow process. This study can provide scientific guidance for ecological water conveyance and the ecological restoration of ephemeral rivers.


Sujet(s)
Inondations , Rivières , Chine , Eau , Ressources en eau
16.
Nanomaterials (Basel) ; 12(10)2022 May 23.
Article de Anglais | MEDLINE | ID: mdl-35630996

RÉSUMÉ

Numerous manufacturing processes, including the drawing of plastic films, have a major impact on mass transport. These functionalities necessitate the solution of the Falkner-Skan equation and some of its configurations when applied to various geometries and boundary conditions. Hence, the current paper discusses the impact of unsteady hybrid nanofluid flow on a moving Falkner-Skan wedge with a convective boundary condition. This problem is modeled by partial differential equations, which are then converted into ordinary (similar) differential equations using appropriate similarity transformations. The bvp4c technique in MATLAB solves these ordinary differential equations numerically. Since more than one solution is possible in this paper, stability analysis is conducted. Thus, it is found that only one stable solution is identified as reliable (physically realizable in practice). The skin friction coefficient and heat transfer rate, along with the velocity and temperature profile distributions, are examined to determine the values of several parameters. The findings reveal that dual-type nanoparticles and wedge angle parameters improve thermal efficiency. A lower value of the unsteadiness parameter reduces the efficiency of hybrid nanofluids in terms of heat transfer and skin friction coefficient, whereas increasing the Biot number of the working fluid does not affect the critical point in the current analysis.

17.
Heliyon ; 8(3): e09015, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-35265763

RÉSUMÉ

The mathematical modeling of two-dimensional unsteady free convective flow and thermal transport inside a half-moon shaped domain charged in the presence of uniform/non-uniform temperature and magnetic effects with Brownian motion of the nanoparticles has been conducted. Thirty-two types of nanofluids in a combination of various nanoparticles and base fluids having different sizes, shapes, and solid concentrations of nanoparticles are chosen to examine the better performance of heat transfer. The circular boundary is cooled while the diameter boundary is heated with uniform/non-uniform temperature. An external uniform/non-uniform/periodic magnetic field is imposed along diameter. The powerful partial differential equations solver, finite element method of Galerkin type, has been engaged in numerical simulation. The numerical solution's heat transfer mechanism reaches a steady state from the unsteady situation within a very short dimensionless time of about 0.65. The thermal transport rate enhances for increasing buoyancy force whereas decreases with higher magnetic intensity. The uniform thermal condition along the diameter of half-moon gives a higher thermal transport rate compared to non-uniform heating conditions. The non-uniform magnetic field provides greater values of the mean Nusselt number than the uniform field. In addition, the outcomes also predict that a better rate of temperature transport for kerosene-based nanofluid than water-based, ethylene glycol-based, and engine oil-based nanofluid. The heat transfer rate is observed at about 67.86 and 23.78% using Co-Kerosene and Co-water nanofluids, respectively, with an additional 1% nanoparticles volume fraction. The blade shape nanoparticles provide a better heat transfer rate than spherical, cylindrical, brick, and platelet shapes. Small size nanoparticles confirm a higher value of average Nusselt number than big size. Mean Nusselt number increases 22.1 and 5.4% using 1% concentrated Cu-water and Cu-engine oil nanofluid, respectively than base fluid.

18.
Materials (Basel) ; 15(3)2022 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-35160693

RÉSUMÉ

The influence of the chemical interaction and dynamic micropolar convective heat transfer flow of Casson fluid caused by a moving wedge immersed in a porous material was explored. The Joule heating owing to magnetized porous matrix heating was also deliberated. The mathematical formulation for mass conservation, momentum, energy, and concentration profiles was expressed in the form of partial differential equations. The dimensionless set of ordinary equations was reduced from modeled equations via a transformation framework and then solved by the RK4 built-in function in MATLAB SOFTWARE by taking a step size of Δη=0.01. The existing work was compared with the published work. The iteration procedure was stopped until all of the nodes in the η-direction met the convergence condition 10-5. The physical appearance of material parameters on the flow field, temperature, concentration, drag force, and Nusselt number was discussed through plots. The numerical results were obtained for limiting circumstances. The unsteadiness factor thinned the velocity boundary layer but decreased the thermal and concentration boundary layers. By increasing the Eckert number, the nondimensional temperature profile was enhanced. The novelty of the present study is that no one has numerically investigated the magnetized Casson fluid over a moving wedge in the presence of a chemical reaction and thermal radiation.

19.
MAGMA ; 35(5): 733-748, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-35175449

RÉSUMÉ

OBJECTIVE: Arterial stenosis is a significant cardiovascular disease requiring accurate estimation of the pressure gradients for determining hemodynamic significance. In this paper, we propose Generalized Bernoulli Equation (GBE) utilizing interpolated-based method to estimate relative pressures using streamlines and pathlines from 4D Flow MRI. METHODS: 4D Flow MRI data in a stenotic phantom model and computational fluid dynamics simulated velocities generated under identical flow conditions were processed by Generalized Bernoulli Equation (GBE), Reduced Bernoulli Equations (RBE), as well as the Simple Bernoulli Equation (SBE) which is clinically prevalent. Pressures derived from 4D flow MRI and noise corrupted CFD velocities were compared with pressures generated directly with CFD as well as pressures obtained using Millar catheters under identical flow conditions. RESULTS: It was found that SBE and RBE methods underestimated the relative pressure for lower flow rates while overestimating the relative pressure at higher flow rates. Specifically, compared to the reference pressure, SBE underestimated the maximum relative pressure by 22[Formula: see text] for a pulsatile flow data with peak flow rate [Formula: see text] and overestimated by around 40[Formula: see text] when [Formula: see text]. In contrast, for GBE method the relative pressure values were overestimated by 15[Formula: see text] with [Formula: see text]and around 10[Formula: see text] with [Formula: see text]. CONCLUSION: GBE methods showed robust performance to additive image noise compared to other methods. Our findings indicate that GBE pressure estimation over pathlines attains the highest level of accuracy compared to GBE over streamlines, and the SBE and RBE methods.


Sujet(s)
Imagerie par résonance magnétique , Maladies vasculaires , Sténose pathologique/imagerie diagnostique , Hémodynamique , Humains , Hydrodynamique , Écoulement pulsatoire
20.
Data Brief ; 39: 107584, 2021 Dec.
Article de Anglais | MEDLINE | ID: mdl-34869803

RÉSUMÉ

The dataset presented here regard the analysis reported in the research article entitled "Comparison of different plasma actuation strategies for aeroelastic control on a linear compressor cascade" De Giorgi et al. (2021) [1]. These data are related to the Computational Fluid Dynamics (CFD) assessment of different plasma actuation strategies for the aeroelastic control of an aero engine compressor cascade in subsonic flow conditions. The authors evaluated the accuracy of numerical computations using experimental results. Here, both experimental and raw data of the CFD simulations are presented.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE