Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 38
Filtrer
1.
J Integr Neurosci ; 23(1): 1, 2024 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-38287851

RÉSUMÉ

BACKGROUND: Cerebral visual impairment (CVI) is a common sequala of early brain injury, damage, or malformation and is one of the leading individual causes of visual dysfunction in pediatric populations worldwide. Although patients with CVI are heterogeneous both in terms of underlying etiology and visual behavioural manifestations, there may be underlying similarities in terms of which white matter pathways are potentially altered. This exploratory study used diffusion tractography to examine potential differences in volume, quantitative anisotropy (QA), as well as mean, axial, and radial diffusivities (mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), respectively) focusing on the dorsal and ventral visual stream pathways in a cohort of young adults with CVI compared to typically sighted and developing controls. METHODS: High angular resolution diffusion imaging (HARDI) data were acquired in a sample of 10 individuals with a diagnosis of CVI (mean age = 17.3 years, 2.97 standard deviation (SD), range 14-22 years) and 17 controls (mean age = 19.82 years, 3.34 SD, range 15-25 years). The inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF), vertical occipital fasciculus (VOF), and the three divisions of the superior longitudinal fasciculus (SLF I, II, and III) were virtually reconstructed and average tract volume (adjusted for intracranial volume), MD, AD, and RD were compared between CVI and control groups. As a secondary analysis, an analysis of variance (ANOVA) was carried out to investigate potential differences based on etiology (i.e., CVI due to periventricular leukomalacia (CVI-PVL) and CVI due to other causes (CVI-nonPVL)). RESULTS: We observed a large degree of variation within the CVI group, which minimized the overall group differences in tractography outcomes when examining the CVI sample as a unitary group. In our secondary analysis, we observed significant reductions in tract volume in the CVI-PVL group compared to both controls and individuals with CVI due to other causes. We also observed widespread significant increases in QA, MD, and AD in CVI-PVL compared to the control group, with mixed effects in the CVI-nonPVL group. CONCLUSIONS: These data provide preliminary evidence for aberrant development of key white matter fasciculi implicated in visual perceptual processing skills, which are often impaired to varying degrees in individuals with CVI. The results also indicate that the severity and extent of the white matter changes may be due in part to the underlying cause of the cerebral visual impairments. Additional analyses will need to be done in a larger sample alongside behavioural testing to fully appreciate the relationships between white matter integrity, visual dysfunction, and associated causes in individuals with CVI.


Sujet(s)
Lésions encéphaliques , Substance blanche , Enfant , Jeune adulte , Humains , Adolescent , Adulte , Substance blanche/imagerie diagnostique , Voies nerveuses , Imagerie par résonance magnétique de diffusion , Lésions encéphaliques/complications , Lésions encéphaliques/imagerie diagnostique , Troubles de la vision/étiologie , Encéphale/imagerie diagnostique
2.
Annu Rev Vis Sci ; 9: 409-434, 2023 09 15.
Article de Anglais | MEDLINE | ID: mdl-37068791

RÉSUMÉ

Perception and memory are traditionally thought of as separate cognitive functions, supported by distinct brain regions. The canonical perspective is that perceptual processing of visual information is supported by the ventral visual stream, whereas long-term declarative memory is supported by the medial temporal lobe. However, this modular framework cannot account for the increasingly large body of evidence that reveals a role for early visual areas in long-term recognition memory and a role for medial temporal lobe structures in high-level perceptual processing. In this article, we review relevant research conducted in humans, nonhuman primates, and rodents. We conclude that the evidence is largely inconsistent with theoretical proposals that draw sharp functional boundaries between perceptual and memory systems in the brain. Instead, the weight of the empirical findings is best captured by a representational-hierarchical model that emphasizes differences in content, rather than in cognitive processes within the ventral visual stream and medial temporal lobe.


Sujet(s)
, Lobe temporal , Animaux , Humains , Encéphale , Cognition , Perception
3.
Cereb Cortex ; 33(6): 3098-3106, 2023 03 10.
Article de Anglais | MEDLINE | ID: mdl-35770336

RÉSUMÉ

The primate visual system is often described as a hierarchical feature-conjunction pathway, whereby each level represents an increasingly complex combination of image elements, culminating in the representation of whole coherent images in anterior inferior temporal cortex. Although many models of the ventral visual stream emphasize serial feedforward processing ((Poggio T, Mutch J, Leibo J, Rosasco L, Tacchetti A. The computationalmagic of the ventral stream: sketch of a theory (and why some deep architectures work). TechRep MIT-CSAIL-TR-2012-035. MIT CSAIL, Cambridge, MA. 2012); (Yamins DLK, DiCarlo JJ. Eight open questions in the computational modeling of higher sensory cortex. Curr Opin Neurobiol. 2016:37:114-120.)), anatomical studies show connections that bypass intermediate areas and that feedback to preceding areas ((Distler C, Boussaoud D, Desimone R, Ungerleider LG. Cortical connections of inferior temporal area TEO in macaque monkeys. J Comp Neurol. 1993:334(1):125-150.); (Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011:12(4):217-230.)). Prior studies on visual discrimination and object transforms also provide evidence against a strictly feed-forward serial transfer of information between adjacent areas ((Kikuchi R, Iwai E. The locus of the posterior subdivision of the inferotemporal visual learning area in the monkey. Brain Res. 1980:198(2):347-360.); (Weiskrantz L, Saunders RC. Impairments of visual object transforms in monkeys. Brain. 1984:107(4):1033-1072.); (Kar K, DiCarlo JJ. Fast recurrent processing via ventrolateral prefrontal cortex is needed by the primate ventral stream for robust Core visual object recognition. Neuron. 2021:109(1):164-176.e5.)). Thus, we sought to investigate whether behaviorally relevant propagation of visual information is as strictly sequential as sometimes supposed. We compared the accuracy of visual recognition after selective removal of specific subregions of inferior temporal cortex-area TEO, area TE, or both areas combined. Removal of TEO alone had no detectable effect on recognition memory, whereas removal of TE alone produced a large and significant impairment. Combined removal of both areas created no additional deficit relative to removal of TE alone. Thus, area TE is critical for rapid visual object recognition, and detailed image-level visual information can reach area TE via a route other than through TEO.


Sujet(s)
Cortex cérébral , Lobe temporal , Animaux , Macaca mulatta , Lobe temporal/physiologie , Cortex cérébral/physiologie , Lobe pariétal , Perception visuelle , Voies optiques/physiologie
4.
J Alzheimers Dis ; 91(3): 1151-1164, 2023.
Article de Anglais | MEDLINE | ID: mdl-36565110

RÉSUMÉ

BACKGROUND: Investigation of neural response patterns along the entire network of functionally defined object recognition ventral stream regions in Alzheimer's disease (AD) is surprisingly lacking. OBJECTIVE: We aimed to investigate putative functional reorganization along a wide-ranging network of known regions in the ventral visual stream in mild AD. METHODS: Overall we investigated 6 regions of interest (5 of which were not investigated before), in 19 AD patients and 19 controls, in both hemispheres along the ventral visual stream: Fusiform Face Area, Fusiform Body Area, Extrastriate Body Area, Lateral Occipital Cortex, Parahippocampal Place Area, and Visual Word Form Area, while assessing object recognition performance. RESULTS: We found group differences in dprime measures for all object categories, corroborating generalized deficits in object recognition. Concerning neural responses, we found region dependent group differences respecting a priori expected Hemispheric asymmetries. Patients showed significantly decreased BOLD responses in the right hemisphere-biased Fusiform Body Area, and lower left hemisphere responses in the Visual Word Form Area (with a priori known left hemispheric bias), consistent with deficits in body shape and word/pseudoword processing deficits. This hemispheric dominance related effects were preserved when controlling for performance differences. Whole brain analysis during the recognition task showed enhanced activity in AD group of left dorsolateral prefrontal cortex, left cingulate gyrus, and in the posterior cingulate cortex- a hotspot of amyloid-ß accumulation. CONCLUSION: These findings demonstrate region dependent respecting hemispheric dominance patterns activation changes in independently localized selective regions in mild AD, accompanied by putative compensatory activity of frontal and cingular networks.


Sujet(s)
Maladie d'Alzheimer , Cartographie cérébrale , Humains , Maladie d'Alzheimer/imagerie diagnostique , Reconnaissance visuelle des formes/physiologie , Imagerie par résonance magnétique , Encéphale
5.
Front Neurosci ; 16: 1061867, 2022.
Article de Anglais | MEDLINE | ID: mdl-36532288

RÉSUMÉ

Introduction: Intracranial EEG (iEEG) data is a powerful way to map brain function, characterized by high temporal and spatial resolution, allowing the study of interactions among neuronal populations that orchestrate cognitive processing. However, the statistical inference and analysis of brain networks using iEEG data faces many challenges related to its sparse brain coverage, and its inhomogeneity across patients. Methods: We review these challenges and develop a methodological pipeline for estimation of network structure not obtainable from any single patient, illustrated on the inference of the interaction among visual streams using a dataset of 27 human iEEG recordings from a visual experiment employing visual scene stimuli. 100 ms sliding window and multiple band-pass filtered signals are used to provide temporal and spectral resolution. For the connectivity analysis we showcase two connectivity measures reflecting different types of interaction between regions of interest (ROI): Phase Locking Value as a symmetric measure of synchrony, and Directed Transfer Function-asymmetric measure describing causal interaction. For each two channels, initial uncorrected significance testing at p < 0.05 for every time-frequency point is carried out by comparison of the data-derived connectivity to a baseline surrogate-based null distribution, providing a binary time-frequency connectivity map. For each ROI pair, a connectivity density map is obtained by averaging across all pairs of channels spanning them, effectively agglomerating data across relevant channels and subjects. Finally, the difference of the mean map value after and before the stimulation is compared to the same statistic in surrogate data to assess link significance. Results: The analysis confirmed the function of the parieto-medial temporal pathway, mediating visuospatial information between dorsal and ventral visual streams during visual scene analysis. Moreover, we observed the anterior hippocampal connectivity with more posterior areas in the medial temporal lobe, and found the reciprocal information flow between early processing areas and medial place area. Discussion: To summarize, we developed an approach for estimating network connectivity, dealing with the challenge of sparse individual coverage of intracranial EEG electrodes. Its application provided new insights into the interaction between the dorsal and ventral visual streams, one of the iconic dualities in human cognition.

6.
Front Hum Neurosci ; 16: 943618, 2022.
Article de Anglais | MEDLINE | ID: mdl-36330314

RÉSUMÉ

Optic neuropathy refers to disease of the optic nerve and can result in loss of visual acuity and/or visual field defects. Combining findings from multiple fMRI modalities can offer valuable information for characterizing and managing optic neuropathies. In this article, we review a subset of resting-state functional magnetic resonance imaging (RS-fMRI) studies of optic neuropathies. We consider glaucoma, acute optic neuritis (ON), discuss traumatic optic neuropathy (TON), and explore consistency between findings from RS and visually driven fMRI studies. Consistent with visually driven studies, glaucoma studies at rest also indicated reduced activation in the visual cortex and dorsal visual stream. RS-fMRI further reported varying levels of functional connectivity in the ventral stream depending on disease severity. ON patients show alterations within the visual cortex in both fMRI techniques. Particularly, higher-than-normal RS activity is observed in the acute phase and decreases as the disease progresses. A similar pattern is observed in the visual cortex of TON-like, open globe injury (OGI), patients. Additionally, visually driven and RS-fMRI studies of ON patients show recovery of brain activity in the visual cortex. RS-fMRI suggests recovery of signals in higher-tier visual areas MT and LOC as well. Finally, RS-fMRI has not yet been applied to TON, although reviewing OGI studies suggests that it is feasible. Future RS-fMRI studies of optic neuropathies could prioritize studying the fine scale RS activity of brain areas that visually driven studies have identified. We suggest that a more systematic longitudinal comparison of optic neuropathies with advanced fMRI would provide improved diagnostic and prognostic information.

7.
Proc Natl Acad Sci U S A ; 119(43): e2200800119, 2022 10 25.
Article de Anglais | MEDLINE | ID: mdl-36251997

RÉSUMÉ

Understanding the neural basis of the remarkable human cognitive capacity to learn novel concepts from just one or a few sensory experiences constitutes a fundamental problem. We propose a simple, biologically plausible, mathematically tractable, and computationally powerful neural mechanism for few-shot learning of naturalistic concepts. We posit that the concepts that can be learned from few examples are defined by tightly circumscribed manifolds in the neural firing-rate space of higher-order sensory areas. We further posit that a single plastic downstream readout neuron learns to discriminate new concepts based on few examples using a simple plasticity rule. We demonstrate the computational power of our proposal by showing that it can achieve high few-shot learning accuracy on natural visual concepts using both macaque inferotemporal cortex representations and deep neural network (DNN) models of these representations and can even learn novel visual concepts specified only through linguistic descriptors. Moreover, we develop a mathematical theory of few-shot learning that links neurophysiology to predictions about behavioral outcomes by delineating several fundamental and measurable geometric properties of neural representations that can accurately predict the few-shot learning performance of naturalistic concepts across all our numerical simulations. This theory reveals, for instance, that high-dimensional manifolds enhance the ability to learn new concepts from few examples. Intriguingly, we observe striking mismatches between the geometry of manifolds in the primate visual pathway and in trained DNNs. We discuss testable predictions of our theory for psychophysics and neurophysiological experiments.


Sujet(s)
Formation de concepts , , Animaux , Humains , Apprentissage/physiologie , Macaca , Matières plastiques , Primates , Voies optiques/physiologie
8.
Front Aging Neurosci ; 14: 780630, 2022.
Article de Anglais | MEDLINE | ID: mdl-35651531

RÉSUMÉ

Aging is associated with memory decline and progressive disabilities in the activities of daily living. These deficits have a significant impact on the quality of life of the aging population and lead to a tremendous burden on societies and health care systems. Understanding the mechanisms underlying aging-related memory decline is likely to inform the development of compensatory strategies promoting independence in old age. Research on aging-related memory decline has mainly focused on encoding and retrieval. However, some findings suggest that memory deficits may at least partly be due to impaired consolidation. To date, it remains elusive whether aging-related memory decline results from defective consolidation. This study examined age effects on consolidation-related neural mechanisms and their susceptibility to interference using functional magnetic resonance imaging data from 13 younger (20-30 years, 8 female) and 16 older (49-75 years, 5 female) healthy participants. fMRI was performed before and during a memory paradigm comprised of encoding, consolidation, and retrieval phases. Consolidation was variously challenged: (1) control (no manipulation), (2) interference (repeated stimulus presentation with interfering information), and (3) reminder condition (repeated presentation without interfering information). We analyzed the fractional amplitude of low-frequency fluctuations (fALFF) to compare brain activity changes from pre- to post-encoding rest. In the control condition, fALFF was decreased in the left supramarginal gyrus, right middle temporal gyrus, and left precuneus but increased in parts of the occipital and inferior temporal cortex. Connectivity analyses between fALFF-derived seeds and network ROIs revealed an aging-related decrease in the efficiency of functional connectivity (FC) within the ventral stream network and between salience, default mode, and central executive networks during consolidation. Moreover, our results indicate increased interference susceptibility in older individuals with dynamics between salience and default mode networks as a neurophysiological correlate. Conclusively, aging-related memory decline is partly caused by inefficient consolidation. Memory consolidation requires a complex interplay between large-scale brain networks, which qualitatively decreases with age.

9.
Proc Natl Acad Sci U S A ; 119(17): e2115302119, 2022 04 26.
Article de Anglais | MEDLINE | ID: mdl-35439063

RÉSUMÉ

The human visual ability to recognize objects and scenes is widely thought to rely on representations in category-selective regions of the visual cortex. These representations could support object vision by specifically representing objects, or, more simply, by representing complex visual features regardless of the particular spatial arrangement needed to constitute real-world objects, that is, by representing visual textures. To discriminate between these hypotheses, we leveraged an image synthesis approach that, unlike previous methods, provides independent control over the complexity and spatial arrangement of visual features. We found that human observers could easily detect a natural object among synthetic images with similar complex features that were spatially scrambled. However, observer models built from BOLD responses from category-selective regions, as well as a model of macaque inferotemporal cortex and Imagenet-trained deep convolutional neural networks, were all unable to identify the real object. This inability was not due to a lack of signal to noise, as all observer models could predict human performance in image categorization tasks. How then might these texture-like representations in category-selective regions support object perception? An image-specific readout from category-selective cortex yielded a representation that was more selective for natural feature arrangement, showing that the information necessary for natural object discrimination is available. Thus, our results suggest that the role of the human category-selective visual cortex is not to explicitly encode objects but rather to provide a basis set of texture-like features that can be infinitely reconfigured to flexibly learn and identify new object categories.


Sujet(s)
Cortex visuel , Voies optiques , Cartographie cérébrale , Humains , Imagerie par résonance magnétique , , Reconnaissance visuelle des formes , Stimulation lumineuse , Perception visuelle
10.
Cereb Cortex ; 32(17): 3706-3725, 2022 08 22.
Article de Anglais | MEDLINE | ID: mdl-35034120

RÉSUMÉ

Effective connectivity measurements in the human hippocampal memory system based on the resting-state blood oxygenation-level dependent signal were made in 172 participants in the Human Connectome Project to reveal the directionality and strength of the connectivity. A ventral "what" hippocampal stream involves the temporal lobe cortex, perirhinal and parahippocampal TF cortex, and entorhinal cortex. A dorsal "where" hippocampal stream connects parietal cortex with posterior and retrosplenial cingulate cortex, and with parahippocampal TH cortex, which, in turn, project to the presubiculum, which connects to the hippocampus. A third stream involves the orbitofrontal and ventromedial-prefrontal cortex with effective connectivity with the hippocampal, entorhinal, and perirhinal cortex. There is generally stronger forward connectivity to the hippocampus than backward. Thus separate "what," "where," and "reward" streams can converge in the hippocampus, from which back projections return to the sources. However, unlike the simple dual stream hippocampal model, there is a third stream related to reward value; there is some cross-connectivity between these systems before the hippocampus is reached; and the hippocampus has some effective connectivity with earlier stages of processing than the entorhinal cortex and presubiculum. These findings complement diffusion tractography and provide a foundation for new concepts on the operation of the human hippocampal memory system.


Sujet(s)
Connectome , Hippocampe , Cortex entorhinal , Hippocampe/imagerie diagnostique , Humains , Gyrus parahippocampique , Lobe temporal
11.
Cortex ; 147: 83-101, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-35026557

RÉSUMÉ

The cortical connections of the human hippocampal memory system are fundamental to understanding its operation in health and disease, especially in the context of the great development of the human cortex. The functional connectivity of the human hippocampal system was analyzed in 172 participants imaged at 7T in the Human Connectome Project. The human hippocampus has high functional connectivity not only with the entorhinal cortex, but also with areas that are more distant in the ventral 'what' stream including the perirhinal cortex and temporal cortical visual areas. Parahippocampal gyrus TF in humans has connectivity with this ventral 'what' subsystem. Correspondingly for the dorsal stream, the hippocampus has high functional connectivity not only with the presubiculum, but also with areas more distant, the medial parahippocampal cortex TH which includes the parahippocampal place or scene area, the posterior cingulate including retrosplenial cortex, and the parietal cortex. Further, there is considerable cross connectivity between the ventral and dorsal streams with the hippocampus. The findings are supported by anatomical connections, which together provide an unprecedented and quantitative overview of the extensive cortical connectivity of the human hippocampal system that goes beyond hierarchically organised and segregated pathways connecting the hippocampus and neocortex, and leads to new concepts on the operation of the hippocampal memory system in humans.


Sujet(s)
Hippocampe , Cortex périrhinal , Cortex entorhinal , Humains , Voies nerveuses , Gyrus parahippocampique , Lobe temporal
12.
J Neurosci ; 41(45): 9340-9349, 2021 11 10.
Article de Anglais | MEDLINE | ID: mdl-34732521

RÉSUMÉ

The exquisite capacity of primates to detect and recognize faces is crucial for social interactions. Although disentangling the neural basis of human face recognition remains a key goal in neuroscience, direct evidence at the single-neuron level is limited. We recorded from face-selective neurons in human visual cortex in a region characterized by functional magnetic resonance imaging (fMRI) activations for faces compared with objects. The majority of visually responsive neurons in this fMRI activation showed strong selectivity at short latencies for faces compared with objects. Feature-scrambled faces and face-like objects could also drive these neurons, suggesting that this region is not tightly tuned to the visual attributes that typically define whole human faces. These single-cell recordings within the human face processing system provide vital experimental evidence linking previous imaging studies in humans and invasive studies in animal models.SIGNIFICANCE STATEMENT We present the first recordings of face-selective neurons in or near an fMRI-defined patch in human visual cortex. Our unbiased multielectrode array recordings (i.e., no selection of neurons based on a search strategy) confirmed the validity of the BOLD contrast (faces-objects) in humans, a finding with implications for all human imaging studies. By presenting faces, feature-scrambled faces, and face-pareidolia (perceiving faces in inanimate objects) stimuli, we demonstrate that neurons at this level of the visual hierarchy are broadly tuned to the features of a face, independent of spatial configuration and low-level visual attributes.


Sujet(s)
Cartographie cérébrale/méthodes , Reconnaissance faciale/physiologie , Neurones/physiologie , Cortex visuel/physiologie , Adulte , Électrodes implantées , Femelle , Humains , Imagerie par résonance magnétique/méthodes
13.
Neuron ; 109(17): 2755-2766.e6, 2021 09 01.
Article de Anglais | MEDLINE | ID: mdl-34265252

RÉSUMÉ

The medial temporal lobe (MTL) supports a constellation of memory-related behaviors. Its involvement in perceptual processing, however, has been subject to enduring debate. This debate centers on perirhinal cortex (PRC), an MTL structure at the apex of the ventral visual stream (VVS). Here we leverage a deep learning framework that approximates visual behaviors supported by the VVS (i.e., lacking PRC). We first apply this approach retroactively, modeling 30 published visual discrimination experiments: excluding non-diagnostic stimulus sets, there is a striking correspondence between VVS-modeled and PRC-lesioned behavior, while each is outperformed by PRC-intact participants. We corroborate and extend these results with a novel experiment, directly comparing PRC-intact human performance to electrophysiological recordings from the macaque VVS: PRC-intact participants outperform a linear readout of high-level visual cortex. By situating lesion, electrophysiological, and behavioral results within a shared computational framework, this work resolves decades of seemingly inconsistent findings surrounding PRC involvement in perception.


Sujet(s)
Modèles neurologiques , Cortex périrhinal/physiologie , Perception visuelle , Animaux , Apprentissage profond , Humains , Macaca
14.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article de Anglais | MEDLINE | ID: mdl-33431673

RÉSUMÉ

Deep neural networks currently provide the best quantitative models of the response patterns of neurons throughout the primate ventral visual stream. However, such networks have remained implausible as a model of the development of the ventral stream, in part because they are trained with supervised methods requiring many more labels than are accessible to infants during development. Here, we report that recent rapid progress in unsupervised learning has largely closed this gap. We find that neural network models learned with deep unsupervised contrastive embedding methods achieve neural prediction accuracy in multiple ventral visual cortical areas that equals or exceeds that of models derived using today's best supervised methods and that the mapping of these neural network models' hidden layers is neuroanatomically consistent across the ventral stream. Strikingly, we find that these methods produce brain-like representations even when trained solely with real human child developmental data collected from head-mounted cameras, despite the fact that these datasets are noisy and limited. We also find that semisupervised deep contrastive embeddings can leverage small numbers of labeled examples to produce representations with substantially improved error-pattern consistency to human behavior. Taken together, these results illustrate a use of unsupervised learning to provide a quantitative model of a multiarea cortical brain system and present a strong candidate for a biologically plausible computational theory of primate sensory learning.


Sujet(s)
Réseau nerveux/physiologie , , Neurones/physiologie , Reconnaissance visuelle des formes/physiologie , Cortex visuel/physiologie , Animaux , Enfant , Jeux de données comme sujet , Humains , Macaca/physiologie , Réseau nerveux/anatomie et histologie , Apprentissage machine non supervisé , Cortex visuel/anatomie et histologie
15.
Aging Brain ; 1: 100023, 2021.
Article de Anglais | MEDLINE | ID: mdl-36911518

RÉSUMÉ

While aging is associated with social-cognitive change and oxytocin plays a crucial role in social cognition, oxytocin's effects on the social brain in older age remain understudied. To date, no study has examined the effects of chronic intranasal oxytocin administration on brain mechanisms underlying animacy perception in older adults. Using a placebo-controlled, randomized, double-blinded design in generally healthy older men (mean age (SD) = 69(6); n = 17 oxytocin; n = 14 placebo), this study determined the effects of a four-week intranasal oxytocin administration (24 international units/twice a day) on functional MRI (fMRI) during the Heider-Simmel task. This passive-viewing animacy perception paradigm contains video-clips of simple shapes suggesting social interactions (SOCIAL condition) or exhibiting random trajectories (RANDOM condition). While there were no oxytocin-specific effects on brain fMRI activation during the SOCIAL compared to the RANDOM condition, pre-to-post intervention change in the SOCIAL-RANDOM difference in functional connectivity (FC) was higher in the oxytocin compared to the placebo group in a network covering occipital, temporal, and parietal areas, and the superior temporal sulcus, a key structure in animacy perception. These findings suggest oxytocin modulation of circuits involved in action observation and social perception. Follow-up analyses on this network's connections suggested a pre-to-post intervention decrease in the SOCIAL-RANDOM difference in FC among the placebo group, possibly reflecting habituation to repeated exposure to social cues. Chronic oxytocin appeared to counter this process by decreasing FC during the RANDOM and increasing it during the SOCIAL condition. This study advances knowledge about oxytocin intervention mechanisms in the social brain of older adults.

16.
Cereb Cortex ; 30(5): 2721-2739, 2020 05 14.
Article de Anglais | MEDLINE | ID: mdl-32118259

RÉSUMÉ

Certain transformations must occur within the brain to allow rapid processing of familiar experiences. Complex objects are thought to become unitized, whereby multifeature conjunctions are retrieved as rapidly as a single feature. Behavioral studies strongly support unitization theory, but a compelling neural mechanism is lacking. Here, we examined how unitization transforms conjunctive representations to become more "feature-like" by recruiting posterior regions of the ventral visual stream (VVS) whose architecture is specialized for processing single features. We used functional magnetic resonance imaging to scan humans before and after visual training with novel objects. We implemented a novel multivoxel pattern analysis to measure a conjunctive code, which represented a conjunction of object features above and beyond the sum of the parts. Importantly, a multivoxel searchlight showed that the strength of conjunctive coding in posterior VVS increased posttraining. Furthermore, multidimensional scaling revealed representational separation at the level of individual features in parallel to the changes at the level of feature conjunctions. Finally, functional connectivity between anterior and posterior VVS was higher for novel objects than for trained objects, consistent with early involvement of anterior VVS in unitizing feature conjunctions in response to novelty. These data demonstrate that the brain implements unitization as a mechanism to refine complex object representations over the course of multiple learning experiences.


Sujet(s)
Reconnaissance visuelle des formes/physiologie , Stimulation lumineuse/méthodes , Cortex visuel/imagerie diagnostique , Cortex visuel/physiologie , Voies optiques/imagerie diagnostique , Voies optiques/physiologie , Femelle , Humains , Imagerie par résonance magnétique/méthodes , Mâle , Jeune adulte
17.
Neuroimage ; 211: 116629, 2020 05 01.
Article de Anglais | MEDLINE | ID: mdl-32057998

RÉSUMÉ

How are outliers in an otherwise homogeneous object ensemble represented by our visual system? Are outliers ignored because they are the minority? Or do outliers alter our perception of an otherwise homogeneous ensemble? We have previously demonstrated ensemble representation in human anterior-medial ventral visual cortex (overlapping the scene-selective parahippocampal place area; PPA). In this study we investigated how outliers impact object-ensemble representation in this human brain region as well as visual representation throughout posterior brain regions. We presented a homogeneous ensemble followed by an ensemble containing either identical elements or a majority of identical elements with a few outliers. Human participants ignored the outliers and made a same/different judgment between the two ensembles. In PPA, fMRI adaptation was observed when the outliers in the second ensemble matched the items in the first, even though the majority of the elements in the second ensemble were distinct from those in the first; conversely, release from fMRI adaptation was observed when the outliers in the second ensemble were distinct from the items in the first, even though the majority of the elements in the second ensemble were identical to those in the first. A similarly robust outlier effect was also found in other brain regions, including a shape-processing region in lateral occipital cortex (LO) and task-processing fronto-parietal regions. These brain regions likely work in concert to flag the presence of outliers during visual perception and then weigh the outliers appropriately in subsequent behavioral decisions. To our knowledge, this is the first time the neural mechanisms involved in outlier processing have been systematically documented in the human brain. Such an outlier effect could well provide the neural basis mediating our perceptual experience in situations like "one bad apple spoils the whole bushel".


Sujet(s)
Cartographie cérébrale , Cortex cérébral/physiologie , Perception des couleurs/physiologie , Reconnaissance visuelle des formes/physiologie , Voies optiques/physiologie , Adulte , Cortex cérébral/imagerie diagnostique , Femelle , Humains , Imagerie par résonance magnétique , Mâle , Cortex visuel/imagerie diagnostique , Cortex visuel/physiologie , Voies optiques/imagerie diagnostique , Jeune adulte
18.
Neuroimage Clin ; 25: 102197, 2020.
Article de Anglais | MEDLINE | ID: mdl-32014827

RÉSUMÉ

Object recognition relies on a hierarchically organized ventral visual stream, with both bottom-up and top-down processes. Here, we aimed at investigating the neural underpinnings of perceptual organization along the ventral visual stream in Autism Spectrum Disorders (ASD), and at determining whether this would be associated with decreased top-down processing in ASD. Nineteen typically developing (TD) adolescents and sixteen adolescents with ASD participated in an fMRI study where they had to detect visual objects. Five conditions displayed Gabor patterns (defined by texture and/or contour) with increasing levels of perceptual organization. In each condition, both groups showed similar abilities. In line with the expected cortical hierarchy, brain activity patterns revealed a progressive involvement of regions, from low-level occipital regions to higher-level frontal regions, when stimuli became more and more organized. The brain patterns were generally similar in both groups, but the ASD group showed greater activation than TD participants in the middle occipital gyrus and lateral occipital complex when perceiving fully organized everyday objects. Effective connectivity analyses suggested that top-down functional connections between the lower levels of the cortical hierarchy were less influenced by the meaning carried by the stimuli in the ASD group than in the TD group. We hypothesize that adolescents with ASD may have been less influenced by top-down processing when perceiving recognizable objects.


Sujet(s)
Trouble du spectre autistique/physiopathologie , Cortex cérébral/physiopathologie , Connectome , Réseau nerveux/physiopathologie , Reconnaissance visuelle des formes/physiologie , Voies optiques/physiopathologie , Adolescent , Trouble du spectre autistique/imagerie diagnostique , Cortex cérébral/imagerie diagnostique , Enfant , Femelle , Humains , Imagerie par résonance magnétique , Mâle , Réseau nerveux/imagerie diagnostique , Lobe occipital/imagerie diagnostique , Lobe occipital/physiopathologie , Voies optiques/imagerie diagnostique
19.
Neuroscientist ; 26(3): 252-265, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-31691627

RÉSUMÉ

Color provides valuable information about the environment, yet the exact mechanisms explaining how colors appear to us remain poorly understood. Retinal signals are processed in the visual cortex through high-level mechanisms that link color perception with top-down expectations and knowledge. Here, we review the neuroimaging evidence about color processing in the brain, and how it is affected by acquired brain lesions in humans. Evidence from patients with brain-damage suggests that high-level color processing may be divided into at least three modules: perceptual color experience, color naming, and color knowledge. These modules appear to be functionally independent but richly interconnected, and serve as cortical relays linking sensory and semantic information, with the final goal of directing object-related behavior. We argue that the relations between colors and their objects are key mechanisms to understand high-level color processing.


Sujet(s)
Agnosie/physiopathologie , Anomie (trouble du langage)/physiopathologie , Cortex cérébral/physiopathologie , Perception des couleurs/physiologie , Troubles de la vision des couleurs/physiopathologie , Voies optiques/physiopathologie , Agnosie/anatomopathologie , Anomie (trouble du langage)/anatomopathologie , Cortex cérébral/anatomopathologie , Troubles de la vision des couleurs/anatomopathologie , Humains , Voies optiques/anatomopathologie
20.
Psychiatry Res ; 278: 199-204, 2019 08.
Article de Anglais | MEDLINE | ID: mdl-31220786

RÉSUMÉ

Surface-based, two-dimensional regional homogeneity (2dReHo) was used in the current study to compare local functional synchronization of spontaneous neuronal activity between patients with bipolar disorder (BD) and healthy controls (HC), rather than volume-based, three-dimensional regional homogeneity (3dReHo) methods that have been previously described. Seventy-one BD patients and 113 HC participated in structural and resting-state fMRI scans. Participants ranged in age from 12 to 54 years. All subjects were rated with the Young Mania Rating Scale and the Hamilton Depression Rating Scale. BD patients showed reduced surface-based ReHo across the cortical surface, both at the global level and in the left ventral visual stream (VVS). Additionally, ReHo value across the cortical surface showed a significant negative correlation with age in both groups at the global level. Abnormal activity in the left VVS cortex may contribute to the pathogenesis of BD. Therefore, surface-based ReHo may be a useful index to explore the pathophysiology of BD.


Sujet(s)
Trouble bipolaire/physiopathologie , Cortex cérébral/physiopathologie , Neuroimagerie fonctionnelle/méthodes , Adolescent , Adulte , Trouble bipolaire/imagerie diagnostique , Cortex cérébral/imagerie diagnostique , Enfant , Femelle , Humains , Imagerie par résonance magnétique , Mâle , Adulte d'âge moyen , Cortex visuel/imagerie diagnostique , Cortex visuel/physiopathologie , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...